网络阵列、转发器设备及操作转发器设备的方法

文档序号:7949004阅读:288来源:国知局
专利名称:网络阵列、转发器设备及操作转发器设备的方法
技术领域
本发明涉及网络阵列。
本发明进一步涉及转发器设备。
除此之外,本发明涉及一种操作转发器设备的方法。
背景技术
可以将无线网络划分为基于基础的网络和自组织(ad-hoc)网络。传统上,无线网络通常是基于基础网络的。但是,由于系统可能的ad-hoc部署,近来越来越多地关注自组织网络。
在基础网络中,使用称为基站(BS)或者接入点(AP)的通信集线器在无线客户端和有线网络资源之间提供通信。在电信中使用集线器,以连接网段或者单个计算机。来自一个网络节点的信号从集线器发送至另一个网络节点。
与基础网络相反,ad-hoc网络不使用通信集线器(AP)。相反地,在ad-hoc网络中,设备相互之间直接通信。Ad-hoc网络可以自然地以任意方式生成,并且用于支持无线客户端之间的相互通信。
由于在ad-hoc网络中不存在中心实体,网络中的每个节点都作为一个路由器,向网络中的其它节点转发数据分组。这称为多跳路由。
虽然过去ad-hoc网络主要用于军用,但是,目前可以预见到多种其他应用。实例是用于短距离通信的个人域网络(PAN)以及用于音频、视频和数据交换的家庭数字网络(IHDN)。已经完成了ad-hoc容量的第一通信标准蓝牙无线PAN、IEEE 802.11、无线局域网(WLAN)以及Hiper-LAN/2、WLAN和IHDN。
不同网络的连接变得越来越重要。例如,在很多情况下都希望具有主通信集线器的基础网络可与另一个网络,例如,ad-hoc网络进行通信以及交换数据。
作为两个这种网络之间的接口,可实现所谓的转发器设备,以将来自其中一个网络的节点的数据分组转发至其中另一个网络的节点。但是,以有效率的方式对这种网络阵列中不同网络的节点之间的数据分组业务进行管理可能存在问题。

发明内容
本发明的一个目的在于提供通信架构,允许以有效率的方式在两个网络之间进行数据传输。
为了实现上述目的,提供依照独立权利要求书的网络阵列、转发器设备以及操作转发器设备的方法。
本发明的网络阵列包括第一网络,具有多个第一节点,包括第二网络,具有多个第二节点,以及包括转发器节点。转发器节点构成其中一个第一节点,以及构成其中一个第二节点,以形成第一网络和第二网络之间的通信接口。此外,转发器节点具有数据传输调度管理功能,能够区分要在第一网络和第二网络之间传输的数据以及要在第一网络内或者第二网络内传输的数据。转发器节点适用于使用第一工作频率与第一网络进行通信,以及适用于使用与第一工作频率不同的第二工作频率与第二网络进行通信。
而且,本发明提供一种转发器设备,用于在网络阵列的第一网络和第二网络之间形成通信接口,以及用于管理数据传输调度。转发器设备适用于构成第一网络中多个第一节点的其中一个,以及适用于构成第二网络中多个第二节点的其中一个,以在第一网络和第二网络之间形成通信接口。此外,转发器设备具有数据传输调度管理功能,能够区分要在第一网络和第二网络之间传输的数据以及要在第一网络内或者第二网络内传输的数据。转发器设备适用于使用第一工作频率与第一网络进行通信,以及适用于使用与第一工作频率不同的第二工作频率与第二网络进行通信。
除此之外,提供一种操作转发器设备的方法,用于在网络阵列的第一网络和第二网络之间形成通信接口,以及用于管理数据传输调度。方法包括步骤调整转发器设备以构成第一网络中多个第一节点的其中一个,以及调整转发器设备以构成第二网络中多个第二节点的其中一个,以在第一网络和第二网络之间形成通信接口。而且,转发器设备具有数据传输调度管理功能,能够区分要在第一网络和第二网络之间传输的数据以及要在第一网络内或者第二网络内传输的数据。转发器设备适用于使用第一工作频率与第一网络进行通信,以及使用与第一工作频率不同的第二工作频率与第二网络进行通信。
依照本发明的特征尤其具有下列优势,提供精密的网络架构,具有转发器节点或者转发器设备,其具有非常特殊的功能。这个转发器节点满足了接口用于允许在第一网络的节点和第二网络的节点之间进行通信以及同时管理用于任何一个方向上传输数据调度的功能。转发器节点可使用第一工作频率与第一网络进行通信,以及可使用第二工作频率与第二网络进行通信。转发器节点可在两个工作状态之间进行切换,因此,允许将使用不同工作频率或者不同频段的任何两个网络系统连接起来。例如,转发器节点可作为第一网络的从属节点,同时作为第二网络的主节点。或者,转发器节点可同时作为第一网络和第二网络的主节点。从而,转发器可将数据分组从第一网络的节点传输至第二网络的节点,反之亦然。
除了作为用于在两个网络的节点之间转发数据分组的接口,本发明的转发器设备的一个基本方面在于,其进一步包括用于管理和安排两个网络之间数据分组传输的调度功能。“调度”表示对网络中的进程在优先级队列中分配优先级,并且包括用于实现不同的数据传输进程的时序。依照本发明,这种分配是由作为调度器的转发器设备实现的。调度器的目的在于均衡处理器负载,以及防止任何进程独占处理器或者缺乏资源。从而,依照本发明的转发器具有双重功能,作为用于在两个网络之间传输数据的实体以及作为管理数据传输顺序的实体,以避免多个节点发送数据分组情况下的带宽问题和数据丢失达到这样一个程度,使得网络阵列的带宽容量可能暂时不够用。
本发明的一个基本方面在于,转发器节点在其作为调度管理实体的功能中,一方面区分要在两个不同网络的节点之间传输的数据,另一个方面区分由于其中一个网络内的数据传输而生成的业务。两个不同网络之间的业务也称为“多跳”业务,而同一个网络内部的业务表示为“单跳”业务。这种区别允许转发器正确地实现其作为调度实体的功能,使得,服务质量(QoS)要求得到满足。多跳业务和单跳业务之间的区别对于合理地安排要传输的数据分组是至关重要的。
作为一种用于依照本发明连接两个网络的解决方案,使用用于连接两个网络的专用设备,其同时管理数据调度。这种设备称为转发器(FHC),可将分组从AP/HC转发(即,中继)至远程QSTA,反之亦然。这种转发过程可以一种透明的方式实现,这就是,无论AP/HC还是QSTA都不需要路由功能。
很多现有的多跳ad-hoc网络只使用一个频率信道在时域中转发分组。但是,如本发明所实现的在频域中进行转发更可取,而且增加了每个网络(QBSS,服务质量基本服务组)的总容量。本发明优选使用单个收发机实现频率转发。
换句话说,本发明提供一种具有服务质量支持的频率转发机制。具体地,本发明说明称为转发器的设备的使用,其可能包括单个收发机,专用于调度以及执行多个分组在两个工作于不同频率信道上的网络之间的转发。从而,增加了每个网络(QBSS)的总容量。
当在两个不同的频率信道上转发数据分组时,转发器不在两个网络中同时接收/发送分组。因此,其首先与一个QBSS进行通信,然后,切换信道,之后与另一个QBSS进行通信,依此类推。因此,转发器通常部分位于第一网络(不在第二网络中),以及部分位于第二网络(不在第一网络中)。
从而,本发明的网络设定包括两个网络中的设备(例如,包括多个QSTA“服务质量站”,以及一个AP“接入点”)。本发明可以实现在IEEE 802.11e标准帧中(如在2003年7月IEEE 802.11WG,part 11无线LAN媒体接入控制(MAC)以及物理层(PHY)规范用于服务质量(QoS)的媒体接入控制(MAC)增强,802.11e/D5.0,IEEE 802.11标准草稿补充中所述)。
本发明的一个重要方面在于在转发器中实现调度机制,以获得QoS(服务质量)。
调度通常包括下列方面允许控制,在其中计算可用的数据传输容量。此外,对业务流的建立进行估计,也就是,估计是否提供足够的容量,以依照数据传输要求传送数据分组。从而,基于可用容量与所要求容量的比较,接受或者拒绝请求。调度管理的另一个方面是如何分配业务的方式,也就是,依照其对传送不同分组的先后顺序进行判断的业务策略。
依照本发明的调度管理,可将多个多跳业务请求捆绑在一起,以最小化在转发设备两种工作状态之间进行切换的数量。从而,可以对系统的传输特性进行最优化。
本发明描述一种用于多跳无线网络中QoS支持的调度机制。依照本发明,转发器使用一种调度机制,优选是基于循环,以保证多跳业务的QoS。依照这种调度机制进行业务流协商。如果是所谓的多跳上行链路请求(也就是,两个网络其中一个的从属节点,例如QSTA,到两个网络中另一个的主节点,例如AP的请求),则检查转发器是否具有可用的容量,如果这个检查是肯定的,则将请求转发至主节点(AP),可将主节点(AP)的响应转发至从属节点(远程QSTA)。如果是所谓的多跳下行链路请求(也就是,从两个网络其中一个的主节点,例如AP,到两个网络中另一个的从属节点,例如QSTA的请求),则主节点(AP)将调度请求发送至转发器。如果具有足够的带宽来接收TS(业务流),转发器将调度请求消息发送至从属节点(远程QSTA)。
同时可包括在调度机制中的允许控制单元可适用于在具有足够带宽的情况下使转发器允许多跳业务。这可能基于现有单跳和多跳业务的TXOP(传输机会)持续时间,转发器的不存在时间。对于单跳业务,如果可能在两个远程QSTA之间建立直接链路,则转发器将试图将TXOP填充在不存在间隔中。反之,转发器可基于存在时间分配业务。
本发明的转发器可以由计算机程序,也就是由软件,或者使用一个或多个专用电子优化电路,也就是,以硬件或者混合形式,也就是通过软件组件和硬件组件的形式实现。
参考从属权利要求书,将在下面描述本发明的其它具体实施方式

接下来,将描述本发明网络阵列的具体实施方式
。这些实施方式还可应用于转发器设备以及操作转发器设备的方法。
在本发明的网络阵列中,可调整转发器节点,使得,其作为第一网络的从属节点和第二网络的主节点。换句话说,可以调整第一网络,使得,提供通信集线器(接入点,AP),其具有主-从系统中主节点的功能。在转发器存在于这个第一网络的工作状态下,其作为从属节点,并且由作为主节点的集线器进行控制。与之相反,转发器可具有第二网络中主节点的功能,也就是,其可控制第二网络的其它节点。
但是,包括调度管理功能的转发器还可根据网络架构进行调整,其中,转发器作为每个网络中的主节点。依照这种网络架构,必须据此对本发明的调度机制进行调整。
在本发明网络阵列的情况下,可将第一网络调整为主-从网络,可将第二网络调整为主从网络。
具体地,可将第一网络调整为基础网络,可将第二网络调整为ad-hoc网络。基础网络可具有通信集线器,作为这种基础网络的主节点,而ad-hoc网络可自然地形成,并且不具有用于分发数据以及连接不同节点的中心集线器。在ad-hoc节点中,多个节点可相互进行通信。
多个第一节点可包括通信集线器(接入点),其作为第一网络中的主节点。
多个第一节点可包括至少一个节点,其作为第一网络的另一个从属节点(除了转发器设备作为第一网络中从属节点的实施方式中的转发器设备之外)。换句话说,连同作为第一网络从属节点的转发器,可在第一网络的主从架构中提供另一个从属节点。
转发器节点可适用于作为第二网络的混合协调器。混合协调器(HC)可满足对于其它站的中心协调器功能。这种混合协调器可实现至少下列功能信标生成,业务请求的业务协商,站轮询以及在第二(QBSS)网络中调度本地业务。
转发器结点可适用于在转发器节点与第一网络进行相连并且不与第二网络进行通信的第一工作状态和转发器节点与第二网络进行相连并且不与第一网络进行通信的第二工作状态之间进行切换。换句话说,本发明的网络阵列具有一个转发器,其可以在其使用第一工作频率与第一网络的节点进行通信交互的第一工作状态和不可能与第一网络进行通信,但是通过第二工作频率与第二网络的节点进行通信的第二工作状态之间进行切换。从而,可激活转发器与第一网络的通信,同时关闭与第二网络的通信,或者可关闭与第一网络的通信,同时激活与第二网络的通信。两种通信模式之间的切换可与两个工作频率之间的切换同时进行,也就是,转发器节点可以在其与第一网络通信并且工作在第一工作频率的第一模式和其与第二网络通信并且工作在第二工作频率的第二模式之间进行切换。
转发器节点可实现为单个收发机。
转发器节点可适用于依照IEEE 802.11e标准与第一网络和第二网络进行通信。IEEE 802.11e标准将对调度功能的设计留给开发商。从而,具有较大程度的自由性,以根据需要的条件调整转发器的调度管理功能。
多个第一节点和/或多个第二节点的一部分可实现为计算机设备,例如,桌面计算机、膝上型计算机、PDA、(“个人数字助理)等等。但是,每个节点也可实现为移动手机,等等。
转发器节点可适用于将数据分组从第一网络转发至第二网络或者将数据分组从第二网络转发至第一网络。
具体地,转发器节点可适用于,在将数据分组从第一网络转发至第二网络,或者将数据分组从第二网络转发至第一网络之前,估计用于发送数据分组必需的带宽。调度管理框架中的这个功能计算用于发送特定数据分组的必要带宽容量。这有助于管理数据分组在具有预定带宽容量的通信通道上的传输。
转发器节点可适用于,在将多个数据分组从第一网络转发至第二网络或者将多个数据分组从第二网络转发至第一网络之前,基于预先确定的业务策略,确定多个数据分组的传输先后顺序。从而,可预定义一个或多个规则,作为顺序地安排多个数据分组的基础。例如,即使是在用于发送优先级较低数据分组的请求的到达时间早于用于发送优先级较高数据分组的请求的情况下,具有较高优先级的数据分组可比具有较低优先级的数据分组早发送。或者,业务策略可遵守简单的“先到先服务”原则。
第一网络和第二网络的其中至少一个可能是无线网络。具体地,转发器可适用于以无线方式,例如,通过交换电磁信号,与两个网络的其中至少一个进行通信。
数据传输调度管理功能可适用于区分多跳传输数据和单跳传输数据。
“多跳”传输数据是通过在初始节点和最终节点之间提供的至少一个中间节点从初始节点传输至最终节点的数据。与之相反,单跳业务数据分组直接从初始节点传输至最终节点而没有经过一个或多个中间节点。
数据传输调度管理功能可适用于,一方面区分要从第一网络的通信集线器传送至第二网络多个第二节点的其中一个的多跳传输数据,以及另一方面,区分要从第二网络多个第二节点的其中一个传送至第一网络的通信集线器的多跳传输数据。对于这两个通信通道,可考虑不同的帧条件,以进一步细化调度功能,以进一步改善数据传输架构的质量。
数据传输调度管理功能可实现为循环调度方案。“循环”调度是一种以相等的部分和顺序向每个进程分配时间片,“时间量子”的调度准则,进程之间没有优先顺序。从而,所有进程将具有相同的优先级。
可调整转发器设备,使得,数据传输调度管理功能将有关多跳业务的数据流汇集在一起。
除此之外,可调整转发器设备,使得,在第二网络缺少转发器设备期间,将第二网络中的单跳业务分配在直接链路上。
接下来,将描述本发明操作转发器设备的方法的具体实施方式
。这些实施方式也可适用于网络阵列和转发器设备。
依照本方法的一个具体实施方式
,多跳上行链路请求的协商包括步骤使用转发器设备中提供的允许控制单元,使用第二工作频率检查来自至少一个第二节点的至少一个业务请求。如果确定在转发器设备中没有足够的容量可用,则拒绝业务请求。如果没有拒绝业务请求,则等待从第二工作频率切换至第一工作频率,并且,其使用第一工作频率将请求转发至形成第一网络的其中一个第一节点的通信集线器。此外,在转发器设备的允许控制单元中检查来自通信集线器的响应,等待从第一工作频率切换至第二工作频率,并且将响应转发至至少一个第二节点。
依照本方法的另一个具体实施方式
,多跳下行链路请求的协商包括步骤通过使用第一工作频率发送至少一个业务流请求,对来自形成其中一个第一节点的通信集线器的至少一个调度请求做出响应,以及等待使用第一工作频率接收来自通信集线器的业务流,以及使用转发器设备中的允许控制单元检查容量。如果确定没有足够的容量可用,则删除使用第一工作频率的业务流。如果没有删除业务流,则等待从第一工作频率切换至第二工作频率,并且使用第二工作频率将调度请求发送至其中一个第二节点。
通过下面对实施方式实例的详细描述,本发明上述定义的方面以及其它方面将更加清楚,并且将参考这些实施方式实例进行说明。
将在下文中参考本发明的实施方式实例更加详细地描述本发明,但是,本发明并不限于这些实施方式实例。


图1表示依照本发明一个具体实施方式
的网络阵列的示意图。
图2至图5表示依照本发明调度管理的对于数据流的时间调度。
图6表示依照本发明调度管理的对于多跳上行链路业务的建立协议。
图7表示依照本发明调度管理的对于多跳下行链路业务的建立协议。
图8表示实现在SDL中的业务流的协商算法。
附图中的说明是示意性的。在不同的附图中,相似或者相同的元件具有相同的参考标号。
具体实施例方式
在下面,将参考图1详细描述依照本发明第一实施方式的网络阵列100。
图1表示网络阵列100,包括第一QBSS网络101,其具有多个第一QSTA终端104。此外,网络阵列100包括第二QBSS网络102,其具有多个第二QSTA终端106。除此之外,转发设备109实现为两个QBSS网络101、102之间的接口,其实现为单个收发机。转发器设备109构成第一QBSS网络101的其中一个节点,并且构成第二QBSS网络102的其中一个节点,以形成第一QBSS网络101和第二QBSS网络102之间的通信接口,使得,转发器设备109作为第一网络101中的从属节点,以及作为第二QBSS网络102中的主节点。转发器设备109进一步适用于使用第一工作频率f1与第一QBSS网络101进行通信,以及使用与第一工作频率f1不同的第二工作频率f2与第二QBSS网络102进行通信。
在交换机110的指示下,转发设备109可以在其工作在第一工作频率f1以与第一QBSS网络101的节点103、104进行通信的第一工作模式和转发设备109使用第二工作频率f2与第二QBSS网络102的节点106进行通信的第二工作模式之间进行切换。“f1”和“f2”每个表示特定的频率值,或者表示特定的频带。
可以从图1中看出,提供第一通信路径105,用于集线器103和任何一个第一QSTA终端104之间的无线通信。此外,提供第二通信路径107,用于转发设备109和第二QBSS网络102中任何一个第二QSTA终端106之间的通信。从而,转发设备109作为主节点,用于在第二工作模式下控制第二QSTA终端106,在第二工作模式下,可以进行转发设备109和第二QBSS网络102的节点106之间的通信。
此外,可建立第三通信路径108,用于转发设备109与集线器103之间的通信。在这个第一工作模式下,依照哪个数据信号可使用第一工作频率f1在转发设备109和集线器103之间传送,转发设备109作为第一QBSS网络101的从属节点,并且由集线器103控制,集线器103可将转发自转发设备109的信号传送至任何一个第一QSTA终端104,反之亦然。
从而,图1表示两个QBSS网络101、102之间使用转发器(FHC)109的连接。
当使用单个收发机在某个频率下进行转发时,FHC 109不能同时在两个QBSS网络101、102中接收/发送分组。与之相反,其首先需要与一个QBSS网络(例如,与第一QBSS网络101)进行通信,切换信道(也就是,将工作频率从f1改变为f2),以及与另一个QBSS网络(例如,与第二QBSS网络102)进行通信,等等。
转发器节点109具有基于循环调度方案的数据传输调度管理功能,能够控制和调节第一QBSS网络101的节点104、103与第二QBSS网络102的节点106之间的数据信号传输。实现在转发节点109中的数据传输调度管理功能能够区分要在第一QBSS网络101和第二QBSS网络102之间传送的数据以及要在第一QBSS网络101内部或者第二QBSS网络102内部传送的数据。
转发设备109可以工作在第一工作状态,其中,其形成第一QBSS网络101的活动结点,以及工作在第二工作状态,其中,其形成第二QBSS网络102的主节点。转发设备109的这种切换由交换机110进行示意性的说明。转发节点109适用于依照IEEE 802.11e标准与第一QBSS网络101和第二QBSS网络102进行通信。转发器节点109适用于通过使用通信路径105、107、108将数据分组从第一QBSS网络101转发至第二QBSS网络102,或者将数据分组从第二QBSS网络102转发至第一QBSS网络101。
为了使远程BSS(第二QBSS网络102)中的基站106与AP/HP103进行通信,提供表示为转发设备(FHC)109的特定设备。这个转发设备109使用单个收发机,以在频域转发分组。为了保证服务质量(QoS),FHC 109作为由AP 103控制的子网101中的站(QSTA),并且起到远程子网102的混合协调器(HC)的作用。但是,FHC 109具有与混合协调器(HC)相关的功能,例如,业务调度。
在下面,将详细描述WLAN(无线局域网)中的业务调度。
为了保证WLAN中的服务质量,必须实现业务调度功能,负责允许/拒绝业务请求(“允许控制”),以及依照业务策略分配业务。
IEEE 802.11e标准是一种将对调度功能的设计留给开发商的标准。标准化的文本确实表明,调度器应当基于预先协商的业务规范(TSPEC)提供传输机会(TXOP)。在协商过程期间,请求TSPEC(AddTS请求)的服务质量要求由强制性参数进行定义,这些参数是平均数据率、正常MSDU(“MAC服务数据单元”)大小、以及最大服务间隔和延迟界限的其中至少一个。调度功能将使用这些参数计算新请求所需要的带宽(TXOP持续时间),以及检查是否具有可用的带宽。如果允许TSPEC,则HC将使用AddTS响应消息进行响应,包括参数平均数据率,正常MSDU大小和最大服务间隔。
标准中提出的一种简单调度机制是循环(RR)调度。循环在基于轮询的协议中使用(参考M.Shreedhar,G.Varghese的“Efficientfair queuing using deficit round robin”,1995年8月的Proc.ACMSIGCOMM 1995,Cambridge,MA;以及Ravindra S.Ranasinghge,LachlanL.H.Andrew,David A.Hayes和David Everitt的“Schedulingdisciplines for multimedia WLANsEmbedded round robin andwireless dual queue”,2001年6月的IEEE Int.Conf.Comun.(ICC),Helsinki,Finland)。循环调度循环地轮询各站,无论其队列的状态。基于循环,在下面描述用于允许控制单元(ACU)的两种简单算法和业务策略。
在下面,将描述允许控制单元(ACU)的功能。
由于调度器对各站进行循环轮询,当新的业务流(TS)请求到达时,允许控制单元必须计算新的轮询周期(调度服务间隔,SI)以及对于给定SI的TXOP持续时间。
调度服务间隔的计算如公式(1)和公式(2)中所示。首先,调度器计算对于所有允许流的所有最大服务间隔中的最小值。这个最小值表示为m。然后,调度器选择一个小于m而且是信标间隔的因数的数值。
m=min(maxSIi) i∈允许的TSPEC(1) T=TBTT(2)SI值是对于具有允许流的所有非AP QSTA的调度服务间隔,如图2所示。
图2表示对于来自图1一个QSTA节点的流的时间调度200。在图2中表示所传送信号的时间(t)依赖性。图2说明具有50ms时间长度的服务间隔(SI)201,其中,在每个服务间隔201中表示出传输机会分组(TXOP)202。
对于所允许流的TXOP 202持续时间的计算,调度器使用来自上述计算的协商TSPEC和调度服务间隔201的TSPEC参数平均数据率(ρ)和正常MSDU大小(L)。物理传输速率(Ri)是在TSPEC中协商的最小PHY速率。如果在AddTS响应中没有提交最小PHY速率,则调度器可以使用观察到的PHY速率作为R。
TXOP 202持续时间的计算如下所述首先,调度器计算在SI201期间以平均数据率到达的MSDU数量 然后,调度器计算TXOP 202持续时间,作为以下两个时间的最大值以速率Ri发送Ni个帧的时间,以及以Ri发送一个最大尺寸MSDU(加上开销)的时间TXOPi=max(NiTdatam(Li)+O,Tdatam(M)+O)---(4)]]>在公式(4)中,M是允许的MSDU最大大小,也就是,2304字节。MAC层开销(O)在时间上包括帧间间隔、ACK和CF轮询。Tdatam(Li)是以PHY模式m发送具有Li字节长度载荷的MPDU所需的时间。考虑到OFDM调制 其中,tPLCPPreamble和tPLPCHeader是PLCP前导和PLCP头部的持续时间(分别为,60ms和4ms)。TSIGNAL是OFDM符号的持续时间(4us),BpS(m)是每个OFDM符号的字节数量。
不使用块确认(BA)功能的MAC开销如下所述
O=TCF-Poll+Ni×Tack+Ni×2×SIFS+PIFS(6)对于仅一个最大尺寸MSDU的传输O=TCF-Poll+Tack+2×SIFS+PIFS(7)一旦基于公式(2)和(4)计算出调度服务间隔(SI)201和TXOP202持续时间,ACU必须检查超帧中是否仍然具有带宽分配新的TXOPTXOPk+1SI+Σi=1kTXOPiSI≤T-Tbeqcon-TCPT---(8)]]>其中,k是已经允许的流数量,k+1用于指示正请求的流。T表示信标间隔,TCP是用于竞争业务的时间。
在下面,将描述调度管理帧中的业务策略。
TXOP分配基于上述给出的TXOP持续时间和调度服务间隔(SI)计算,具体是公式(2)和公式(4)。
关于TXOP轮询顺序,一旦接受了TS,则在先前接受的TXOP之后立即轮询TXOP,遵循“先到先服务”策略。
在图2中表示了一个实例,其中,来自QSTAi(第i个)的流得到允许。信标间隔是100ms,对于流的最大服务间隔是60ms。调度器计算调度服务间隔(SI)201等于50ms,如上所述,这是最接近的信标间隔的因数。
在下面,参考图3,将说明对于来自QSTAi,j,k的流的时间调度300。
在时间调度300中,除了服务间隔201和第一传输机会分组202之外,对于每个服务间隔201表示了第二传输机会分组301和第三传输机会分组203。
如图3所示,每个新的TXOP 301、302分配在前一个202之后。如果允许新流具有的最大服务间隔小于当前的SI 201,则调度器需要将当前SI改变为小于最新允许流的最大服务间隔的较小数值。因此,当前允许流的TXOP持续时间也需要使用新的SI进行重新计算。
在下面,将参考图4说明时间调度400,图4表示当丢弃一个流时对TXOP的重新分配。
如果丢弃一个流,则调度器将移动跟在所丢弃QSTA之后的QSTA的TXOP,以对可用带宽进行再利用。在图4中表示了一个当删除QSTAj流时的实例。这要求向在j之后具有已调度TXOP的所有QSTA(在实例中是QSTA k)声明新的调度。
在下面,将更加详细地描述使用转发设备109保证多跳业务的服务质量以及调度管理功能(例如,基于循环机制)。
在其处于第二QBSS网络102期间,转发器109将如上所述分配TXOP。而且,其将利用在标准中给出的对业务汇总的支持。对于所有的多跳业务请求,FHC 109将设定汇总比特。这样,AP/HC 103将使所有多跳业务流形成组,可以从图5中看出。
图5表示时间调度500,其中,在I之后对新的业务I2进行调度。换句话说,依照时间调度500,第四传输机会分组501夹在第一传输机会分组202和第三传输机会分组302之间。如上所述,转发器109在频域中转发分组。因此,转发器109将从一个信道切换到另一个。在第二QBSS网络102中可用的容量则由第二QBSS网络102中的存在时间进行限制。而且,调度功能必须区分要转发的(多跳)业务和本地(单跳)业务,这是因为,前者需要传送两次(也就是,在第一QBSS网络101和第二QBSS网络102中),后者只有一次。
考虑到这点,依照本发明提出一种新的方法,用于业务流协商以及要在转发器109中实现的允许控制单元。将在下面更具体地描述本方法。在图8中说明了在FHC 109中本方法使用SDL语言的实现方式。换句话说,图8以SDL(“规范和描述语言”)表示通信协议800。
在下面,将描述依照本方法的业务流协商。
由于多跳流需要通过转发器109,所以建立协议必须区分所谓的多跳下行链路请求和所谓的多跳上行链路请求。多跳下行链路请求沿着从AP 103到第二QBSS网络102中的任何一个基站106的通信路径,换句话说,沿着通信路径108和之后的路径107。多跳上行链路请求沿着从第二QBSS网络102的其中一个QSTA 106到AP 103的通信路径,换句话说,沿着通信路径107和之后的通信路径108。
在下面,将更详细地描述多跳上行链路请求的建立。
在上行链路的情况下,将首先由转发器109中的允许控制单元检查来自远程QSTA 106的TS,这是因为,远程小区的容量是多跳业务的瓶颈。如果没有可用的容量,则FHC 109将只是拒绝请求。否则,将请求转发至HC 103,以及将HC 103的响应转发至远程QSTA 106。
图6表示在对多跳上行链路业务进行调度的情况下的TS建立协议600。
依照多跳上行链路建立协议600,FHC 109将首先检查(依照公式(9))是否具有足够的容量允许所请求的TS参数。如果检查成功,则将请求帧存储在缓冲器中,等待频率切换。在频率切换完成之后,将该帧从缓冲器中取出,FHC 109将试图在竞争周期期间将请求发送至AP/HC 103,其中设置了业务汇总比特。一旦接收,AP/HC 103将判断是否如公式(8)中具体所示允许TSPEC、允许具有反建议的TSPEC、或者拒绝TSPEC,生成包含TSPEC和状态值“成功”、“替换”或者“拒绝”的MLME-AddTS响应。
FHC 109MAC将接收这个管理帧,以及将取消其AddTS定时器。其将检查TSPEC的状态。在“拒绝”状态的情况下,FHC 109将直接拒绝流,而无需任何进一步的计算。然后,其将切换至第二QBSS网络102,以及将发送具有“拒绝”状态的AddTSRsp消息。
在ALTENATIVE状态的情况下,FHC 109的ACU将再次检查对于新参数是否具有足够的容量。如果没有足够的容量,则FHC 109将在切换之前将DelTSReq消息发送至AP/HC 103。然后,其将具有“替换”状态的AddTSRsp消息发送至QSTA 106。
在“成功”状态的情况下,FHC 109将无需任何计算地切换至第二QBSS网络102,以及转发AddTSRsp消息。
在下面,将参考表示多跳下行链路建立协议700的图7,更详细地描述多跳下行链路请求的建立。
802.11e标准定义了每个业务流应当由非AP QSTA进行请求。然后,在这种情况下,AP/HC 103将向FHC 109发送调度请求。FHC 109在不知道业务规范的情况下不能够计算是否具有可用的容量。然后,FHC 109立即在相应的服务质量管理动作帧或者(重新)关联请求帧中向AP/HC 103发送设置了业务汇总比特的AddTS请求,并且将启动持续时间为AddTSResponseTimeout的T_ADD_TS定时器。
HC/AP 103 MAC将接收这个管理帧,并且将在相应的服务质量管理动作帧中发送AddTS响应或者包含这个TSPEC和状态的(重新)关联响应。
一旦FHC 109接收到这个管理帧,其将取消其AddTS定时器。只要具有TSPEC,转发器109的允许控制单元将计算是否具有足够的带宽来接收这个TS,并且将其转发至第二QBSS网络102,如下所述。在肯定的情况下,FHC 109切换至第二QBSS网络102,并且将向目的地QSTA 106发送ScheduleReq消息。否则,其将向AP/HC 103发送DELTSReq。
在下面,将更详细地描述用于转发器109的允许控制单元的功能。
通常,转发器109在两个QBSS网络101、102中不会存在相同的时间量。允许控制算法则必须区分多跳业务和单集线器(本地)业务。
由于在两个QBSS网络201、202中使用相同的SI 201和TXOPk202、301、302、501值,所以实现在转发设备109中的调度器将采取是由AP/HC 103给出的值。在本地业务的情况下,转发设备109的调度器按照公式(4)计算TXOP 202、301、302、501。
为了允许多跳流,应满足下列不等式(9)2(TXOPk+1MH+Σi=1kTXOPiMH)+Σi=1jTXOPiSH+2TFS≤T2-2Tbeacon-TCP-TCP2---(9)]]>在不等式(9)中,k是现有多跳流(MH)的个数,k+1是新请求的多跳流的索引。j是单跳(SH)业务流数据的个数,转发器109存在于第二QBSS网络102中。TFS是在频率之间切换所需的时间。T2指示远程QBSS网络102中的信标间隔,TCP2是用于竞争业务的时间。与AP/HC 103中的容量不同,FHC 109必须考虑到不存在时间,其包括第一QBSS网络101中Tbeacon和TCP的接收以及第一QBSS网络101中多跳业务的传输。因子2表示转发器业务在两个QBSS网络101、102中进行传输的事实。
如果所请求的流是单跳流,则ACU可以检查是否可以在不存在间隔期间使用直接链路协议(DLP)进行分配。
首先,转发器109将比较不存在间隔和所请求的TXOP 201,如果还没有使用,则ACU将试图将该TXOP放置在T不存在中,并且建立直接链路。
TXOPj+1SH≤Tbe+Σi=1kTXOPiMH+2TFS---(10)]]>如果不等式(10)不满足,或者不可能建立直接链路(例如,两个QSTA不在彼此的范围内),则ACU将试图将该流分配在存在时间内。在这种情况下,当满足下列不等式(11)时允许流TXOPj+1SH+Σi=1jTXOPiSH+2(TFS+Σi=1kTXOPiMH)≤T2-2Tbeacon-TCP-TCP2---(11)]]>
其中,j是现有单跳业务流的个数,j+1是新请求流的索引。k是现有多跳流的个数。T2指示远程集群中的信标间隔,TCP2是用于竞争业务的时间。
应当注意到,术语“包括”不排除其它元件或者步骤,术语“一个”不排除多个。与不同实施方式相关联描述的元件也可进行合并。
还应当注意到,权利要求书中的参考标号不应当被认为是限制权利要求书的范围。
权利要求
1.一种网络阵列(100),包括第一网络(101),具有多个第一节点(103、104、109);包括第二网络(102),具有多个第二节点(106、109);以及包括转发器节点(109);其中,所述转发器节点(109)构成所述第一节点(103、104、109)的其中一个,以及构成所述第二节点(106、109)的其中一个,以形成所述第一网络(101)和所述第二网络(102)之间的通信接口;其中,所述转发器节点(109)具有数据传输调度管理功能,能够区分要在所述第一网络(101)与所述第二网络(102)之间传输的数据和要在所述第一网络(101)内或者所述第二网络(102)内传输的数据;其中,所述转发器节点(109)适用于使用第一工作频率与所述第一网络(101)进行通信,以及适用于使用与所述第一工作频率不同的第二工作频率与所述第二网络(102)进行通信。
2.根据权利要求1所述的网络阵列(100),其中,调整所述转发器节点(109),使得其作为所述第一网络(101)中的从属节点,以及作为所述第二网络(102)中的主节点。
3.根据权利要求1所述的网络阵列(100),其中,所述第一网络(101)调整为主从网络,所述第二网络(102)调整为主从网络。
4.根据权利要求1所述的网络阵列(100),其中,所述第一网络(101)调整为基础网络,所述第二网络(102)调整为自组织网络。
5.根据权利要求1所述的网络阵列(100),其中,所述多个第一节点(103、104、109)包括通信集线器(103),其作为所述第一网络(101)中的主节点。
6.根据权利要求2和5所述的网络阵列(100),其中,所述多个第一节点(103、104、109)包括至少一个节点(104),该节点作为所述第一网络(101)中的另一个从属节点。
7.根据权利要求1所述的网络阵列(100),其中,所述转发器节点(109)适用于作为所述第二网络(102)中的混合协调器。
8.根据权利要求1所述的网络阵列(100),其中,所述转发器节点(109)适用于在所述转发器节点(109)与所述第一网络(101)进行通信相连并且不与所述第二网络(102)进行通信的第一工作状态和所述转发器节点(109)与所述第二网络(102)进行通信相连并且不与所述第一网络(101)进行通信的第二工作状态之间进行切换。
9.根据权利要求1所述的网络阵列(100),其中,所述转发器节点(109)实现为单个收发机。
10.根据权利要求1所述的网络阵列(100),其中,所述转发器节点(109)适用于依照IEEE 802.11e标准与所述第一网络(101)和所述第二网络(102)进行通信。
11.根据权利要求1所述的网络阵列(100),其中,所述多个第一节点(103、104、109)和/或所述多个第二节点(106、109)的其中至少一部分实现为计算机设备。
12.根据权利要求1所述的网络阵列(100),其中,所述转发器节点(109)适用于将数据分组从所述第一网络(101)转发至所述第二网络(102)或者将数据分组从所述第二网络(102)转发至所述第一网络(101)。
13.根据权利要求12所述的网络阵列(100),其中,所述转发器节点(109)适用于,在将数据分组从所述第一网络(101)转发至所述第二网络(102)或者将数据分组从所述第二网络(102)转发至所述第一网络(101)之前,估计用于发送所述数据分组必需的带宽。
14.根据权利要求12所述的网络阵列(100),其中,所述转发器节点(109)适用于,在将数据分组从所述第一网络(101)转发至所述第二网络(102)或者将数据分组从所述第二网络(102)转发至所述第一网络(101)之前,基于估计的用于发送所述数据分组必需的带宽,接受或者拒绝数据分组传输请求。
15.根据权利要求12所述的网络阵列(100),其中,所述转发器节点(109)适用于,在将多个数据分组从所述第一网络(101)转发至所述第二网络(102)或者将多个数据分组从所述第二网络(102)转发至所述第一网络(101)之前,基于预先确定的业务策略,确定所述多个数据分组的先后传输顺序。
16.根据权利要求1所述的网络阵列(100),其中,所述第一网络(101)和所述第二网络(102)的其中至少一个是无线网络。
17.根据权利要求1所述的网络阵列(100),其中,所述数据传输调度管理功能适用于区分多跳传输数据和单跳传输数据。
18.根据权利要求1所述的网络阵列(100),其中,所述数据传输调度管理功能适用于区分要从所述第一网络(101)的通信集线器(103)传送至所述第二网络(102)的所述多个第二节点(106、109)之一的多跳传输数据和要从所述第二网络(202)的所述多个第二节点(106、109)之一传送至所述第一网络的通信集线器(103)的多跳传输数据。
19.根据权利要求1所述的网络阵列(100),其中,所述数据传输调度管理功能实现为循环调度方案。
20.一种转发器设备(109),用于形成网络阵列(100)中第一网络(101)和第二网络(102)之间的通信接口,以及用于管理数据传输调度,适用于构成第一网络(101)的多个第一节点(103、104、109)的其中一个,以及构成第二网络(102)的多个第二节点(106、109)的其中一个,以形成所述第一网络(101)和所述第二网络(102)之间的通信接口;具有数据传输调度管理功能,能够区分要在所述第一网络(101)与所述第二网络(102)之间传输的数据和要在所述第一网络(101)内或者所述第二网络(102)内传输的数据;适用于使用第一工作频率与所述第一网络(101)进行通信,以及适用于使用与所述第一工作频率不同的第二工作频率与所述第二网络(102)进行通信。
21.根据权利要求20所述的转发器设备(109),适用于作为所述第二网络(202)中的混合协调器。
22.根据权利要求20所述的转发器设备(109),适用于在其与所述第一网络(101)进行通信相连并且不与所述第二网络(102)进行通信的第一工作状态和其与所述第二网络(102)进行通信相连并且不与所述第一网络(101)进行通信的第二工作状态之间进行切换。
23.根据权利要求20所述的转发器设备(109),适用于依照IEEE 802.11e标准与所述第一网络(101)和所述第二网络(102)进行通信。
24.根据权利要求20所述的转发器设备(109),适用于将数据分组从所述第一网络(101)转发至所述第二网络(102)或者将数据分组从所述第二网络(102)转发至所述第一网络(101)。
25.根据权利要求24所述的转发器设备(109),适用于,在将数据分组从所述第一网络(101)转发至所述第二网络(102)或者将数据分组从所述第二网络(102)转发至所述第一网络(101)之前,估计用于发送所述数据分组必需的带宽。
26.根据权利要求24所述的转发器设备(109),适用于,在将数据分组从所述第一网络(101)转发至所述第二网络(102)或者将数据分组从所述第二网络(102)转发至所述第一网络(101)之前,基于估计的用于发送所述数据分组必需的带宽,接受或者拒绝数据分组传输请求。
27.根据权利要求24所述的转发器设备(109),其中,所述转发器节点(109)适用于,在将多个数据分组从所述第一网络(101)转发至所述第二网络(102)或者将多个数据分组从所述第二网络(102)转发至所述第一网络(101)之前,基于预先确定的业务策略,确定所述多个数据分组的先后传输顺序。
28.根据权利要求20所述的转发器设备(109),适用于与所述第一网络(101)和/或所述第二网络(102)进行无线通信。
29.根据权利要求20所述的转发器设备(109),其中,所述数据传输调度管理功能适用于区分多跳传输数据和单跳传输数据。
30.根据权利要求20所述的转发器设备(109),其中,所述数据传输调度管理功能适用于区分要从所述第一网络(101)的通信集线器(103)传送至所述第二网络(102)的所述多个第二节点(106、109)之一的多跳传输数据和要从所述第二网络(102)的所述多个第二节点(106、109)之一传送至所述第一网络的通信集线器(103)的多跳传输数据。
31.根据权利要求20所述的转发器设备(109),其中,所述数据传输调度管理功能实现为循环调度方案。
32.根据权利要求20所述的转发器设备(109),其中,所述数据传输调度管理功能对与多跳业务有关的流进行汇总。
33.根据权利要求20所述的转发器设备(109),其中,在所述转发器设备(109)不存在于所述第二网络(102)中期间,将所述第二网络(102)中的单跳业务分配在直接链路上。
34.一种操作转发器设备(109)用于形成网络阵列(100)中第一网络(101)和第二网络(102)之间的通信接口以及用于管理数据传输调度的方法,包括下列步骤调整所述转发器设备(109),以构成第一网络(101)的多个第一节点(103、104、109)的其中一个,以及调整所述转发器设备(109),构成第二网络(102)的多个第二节点(106、109)的其中一个,以形成所述第一网络(101)和所述第二网络(102)之间的通信接口;以及在所述转发器设备(109)中实现数据传输调度管理功能,能够区分要在所述第一网络(101)与所述第二网络(102)之间传输的数据和要在所述第一网络(101)内或者所述第二网络(102)内传输的数据;调整所述转发器设备(109),以使用第一工作频率与所述第一网络(101)进行通信,以及使用与所述第一工作频率不同的第二工作频率与所述第二网络(102)进行通信。
35.根据权利要求34所述的方法,其中,多跳上行链路请求的协商包括下列步骤使用所述转发器设备(109)中提供的允许控制单元,使用所述第二工作频率检查来自至少一个所述第二节点(106)的至少一个业务请求;如果在所述转发器设备(109)中确定没有足够的容量可用,则拒绝业务请求;如果没有拒绝业务请求,则等待从所述第二工作频率切换至所述第一工作频率,以及使用所述第一工作频率将所述请求转发至通信集线器(103),该通信集线器(103)形成所述第一网络(101)的所述第一节点(103、104、109)的其中一个;在所述转发器设备(109)的所述允许控制单元中检查来自所述通信集线器(103)的响应;等待从所述第一工作频率切换至所述第二工作频率,并且将所述响应转发至所述至少一个所述第二节点(106)。
36.根据权利要求35所述的方法,其中,多跳下行链路请求的协商包括下列步骤响应于来自形成所述第一节点(103、104、109)之一的通信集线器(103)的至少一个调度请求,使用所述第一工作频率发送至少一个业务流请求;等待使用所述第一工作频率接收来自所述通信集线器(103)的业务流请求,以及使用所述转发器设备(109)中的允许控制单元检查容量;如果确定没有足够的容量可用,则删除使用所述第一工作频率的所述业务流;如果没有删除所述业务流,则等待从所述第一工作频率切换至所述第二工作频率,以及使用所述第二工作频率将调度请求发送至所述第二节点(106)之一。
全文摘要
一种网络阵列(100),包括第一网络(101),具有多个第一节点(103、104、109),包括第二网络(102),具有多个第二节点(106、109),以及包括转发器节点(109)。转发器节点(109)构成第一节点(103、104、109)的其中一个,以及构成第二节点(106、109)的其中一个,以形成第一网络(101)和第二网络(102)之间的通信接口。转发器节点(109)具有数据传输调度管理功能,能够区分要在第一网络(101)和第二网络(102)之间传输的数据和要在第一网络(101)内或者第二网络(102)内传输的数据。转发器节点(109)适用于使用第一工作频率与第一网络(101)进行通信,以及适用于使用与第一工作频率不同的第二工作频率与第二网络(102)进行通信。
文档编号H04W92/02GK101032125SQ200580032870
公开日2007年9月5日 申请日期2005年9月21日 优先权日2004年9月29日
发明者弗兰切斯卡·达尔马塞斯, 约尔格·哈贝塔, 阿道夫·乔斯·罗克 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1