音响信号传送系统、调制装置、解调装置以及音响信号传送方法

文档序号:7675407阅读:191来源:国知局

专利名称::音响信号传送系统、调制装置、解调装置以及音响信号传送方法
技术领域
:本发明涉及音响信号传送系统、调制装置、解调装置以及音响信号传送方法。
背景技术
:作为利用声波传送信息的通信技术,使用超声波的方法和使用可听声波的方法是公知的。使用超声波的优点是,由于超声波是人的听觉所不能识别的,因而在传送中不会给人带来不快的影响。并且,超声波由于指向性是尖锐的,因而可应用在小区域通信中。使用可听声波的优点是,可将市场出售的声频设备用作通信装置。市场出售的许多声频设备能再现并记录可听声波,难以处理超声波。并且,声波由于介质粘性而产生吸收衰减。该吸收衰减与频率成正比地增大。因此,与超声波相比可听声波对距离的衰减小,可延长通信距离。作为使用这种可听声波进行通信的技术,例如有根据声波或音乐的频率掩蔽阈值将传送信号进行频谱扩展来传送的方法(下述专利文献1)。专利文献1:国际公开第02/45286号小册子然而,在将使用上述专利文献1记载的技术而生成的传送信号输入到立体声再现用或环绕声再现用的声频设备的情况下,从多个扬声器输出相同的传送信号。从多个扬声器所输出的传送信号相互干扰,发生频率选择性衰落。因此,接收差错的产生频度增高。
发明内容本发明是为了解决上述问题而作成的,本发明的目的是提供一种抑制了接收差错的产生的音响信号传送系统、调制装置、解调装置以及音响信号传送方法。本发明的音响信号传送系统是利用声波传送信息的系统,其特征在于,该音响信号传送系统具有调制装置,其以发送分集方式对传送信号进行编码,并生成分配给多个发送路径的多个发送音响信号;多个扬声器,其根据该分配将多个发送音响信号作为声波分别输出;麦克风,其接收从多个扬声器所输出的声波并输出接收音响信号;以及解调装置,其使用从多个扬声器的各方到麦克风的各个声波的传递函数,以发送分集方式对接收音响信号进行解码。本发明的音响信号传送方法是利用声波传送信息的方法,其特征在于,该音响信号传送方法具有调制步骤,在该步骤中,调制单元以发送分集方式对传送信号进行编码,并生成分配给多个发送路径的多个发送音响信号;输出步骤,在该步骤中,多个扬声器根据该分配将多个发送音响信号作为声波分别输出;接收步骤,在该步骤中,麦克风接收从多个扬声器所输出的声波并输出接收音响信号;以及解调步骤,在该步骤中,解调装置使用从多个扬声器的各方到麦克风的各个声波的传递函数,以发送分集方式对接收音响信号进行解码。根据本发明,调制装置将发送音响信号分配给传送路径,多个扬声器将所分配的发送音响信号作为声波分别输出,解调装置使用从多个扬声器的各方到麦克风的各个声波的传递函数来进行解码。因此,即使在发生了频率选择性衰落的情况下,也能使用上述各传递函数来抑制接收差错的产生,可对传送信号进行解码。并且,在本发明中,调制装置以发送分集方式进行编码并将传送信号分配给多个发送路径,解调装置以发送分集方式进行解码。因此,可有效地应对空间和频率的延迟扩展。即,可有效地抑制接收差错。本发明的调制装置的特征在于,该调制装置具有编码单元,其对传送信号进行空频编码,并生成分配给多个发送路径的多个编码传送信号;以及调制单元,其利用该分配的各个编码传送信号对可听音频带的副载波进行OFDM调制,生成分配给多个发送路径的多个发送音响信号。本发明的解调装置的特征在于,该解调装置具有解调单元,其对从多个扬声器所输出并由麦克风所接收到的接收音响信号进行OFDM解调来生成编码接收信号;以及解码单元,其使用从多个扬声器的各方到麦克风的各个声波的传递函数来对编码接收信号进行空频解码。根据本发明,在调制装置中将传送信号分配给多个发送路径并生成编码传送信号,在解调装置中使用从多个扬声器的各方到麦克风的各个声波的传递函数来对编码接收信号进行空频解码。因此,即使在发生了频率选择性衰落的情况下,也能使用上述各传递函数来抑制接收差错的产生,可对传送信号进行解码。并且,调制装置利用空频编码进行编码并将传送信号分配给多个发送路径,解调装置利用空频解码进行解码。因此,可更有效地应对空间和频率的延迟扩展。g卩,可更有效地抑制接收差错。本发明的音响信号传送系统是利用声波传送信息的系统,其特征在于,该音响信号传送系统具有调制装置,其将传送信号分配给多个发送路径,生成多个发送音响信号;多个扬声器,其根据该分配将多个发送音响信号作为声波分别输出;多个麦克风,其接收从多个扬声器所输出的声波并分别输出接收音响信号;以及解调装置,其使用从多个扬声器的各方到多个麦克风的各方的各个声波的传递函数来对接收音响信号进行解码。本发明的音响信号传送方法是利用声波传送信息的方法,其特征在于,该音响信号传送方法具有调制步骤,在该步骤中,调制装置将传送信号分配给多个发送路径,生成多个发送音响信号;输出步骤,在该步骤中,多个扬声器根据该分配将多个发送音响信号作为声波分别输出;接收步骤,在该步骤中,多个麦克风接收从多个扬声器所输出的声波并分别输出接收音响信号;以及解调步骤,在该步骤中,解调装置使用从多个扬声器的各方到多个麦克风的各方的各个声波的传递函数来对接收音响信号进行解码。根据本发明,调制装置将传送信号分配给多个发送路径,多个扬声器将所分配的发送音响信号作为声波分别输出。然后,多个麦克风接收所输出的声波,解调装置使用从多个扬声器的各方到多个麦克风的各方的各个声波的传递函数来进行解码。因此,即使在发生了频率选择性衰落的情况下,也能使用上述各传递函数来抑制接收差错的产生,可对传送信号进行解码。并且,由于利用多个麦克风接收声波,因而可更有效地抑制接收差错的产生。优选的是,上述音响信号传送系统的调制装置具有分配单元,该分配单元根据副载波的指向特性,将传送信号分别分配给通过多个发送路径的各方而传送的各副载波的频率。这样,可对应于根据副载波的频率而不同的指向特性来发送传送信号。本发明的调制装置的特征在于,该调制装置具有分配单元,其将传送信号分配给多个发送路径;以及调制单元,其利用编码后的传送信号对可听音频带的副载波进行OFDM调制,生成分配给多个发送路径的多个发送音响信号。本发明的解调装置的特征在于,该解调装置具有解调单元,其对从多个扬声器所输出并由多个麦克风分别所接收到的接收音响信号分别进行OFDM解调来生成编码接收信号;以及解码单元,其使用从多个扬声器的各方到多个麦克风的各方的各个声波的传递函数来对接收音响信号进行解码。根据本发明,在调制装置中分配单元将传送信号分配给多个发送路径,解码单元使用从多个扬声器的各方到多个麦克风的各方的各个声波的传递函数来对接收音响信号进行解码。因此,即使在发生了频率选择性衰落的情况下,也能使用上述各传递函数来抑制接收差错的产生,可对传送信号进行解码。并且,由于使用由多个麦克风所接收的接收音响信号来对传送信号进行解码,因而可更有效地抑制接收差错的产生。优选的是,上述调制装置的多个发送路径包含第1发送路径和第2发送路径,分配单元将传送信号分配给通过第1发送路径而输出的副载波中较低频率的副载波,并将该分配后的传送信号分配给通过第2发送路径而输出的副载波中较高频率的副载波。这样,可将分配给通过第2发送路径而输出的指向性尖锐的高频率的副载波的传送信号分配给通过第1发送路径而输出的指向性宽的低频率的副载波。因此,即使在由于高频率的副载波偏离扬声器的中心被输出而使包含传送信号的声波变弱的情况下,也能利用强的声波输出低频率的副载波。因此,能更可靠地发送传送信号,可抑制接收差错的产生。根据本发明,可提供抑制了接收差错的产生的音响信号传送系统、调制装置、解调装置以及音响信号传送方法。图1是第1实施方式的音响信号传送系统内包含的音响信号发送系统的结构图。图2是第1实施方式的音响信号传送系统内包含的音响信号接收系统的结构图。图3是示出第1实施方式的调制装置的结构的图。图4是用于说明第1实施方式的L用信号和R用信号的图。图5是示出第1实施方式的解调装置的结构的图。图6是示出第1实施方式的音响信号发送系统的动作的流程图。图7是示出第1实施方式的音响信号接收系统的动作的流程图。图8是第2实施方式的音响信号传送系统内包含的音响信号发送系统的结构图。图9是第2实施方式的音响信号传送系统内包含的音响信号接收系统的结构图。图10是示出第2实施方式的调制装置的结构的图。图11是用于说明第2实施方式的L用信号和R用信号的图。图12是示出第2实施方式的解调装置的结构的图。图13是示出第2实施方式的音响信号发送系统的动作的流程图。图14是示出第2实施方式的音响信号接收系统的动作的流程图。图15是示出第3实施方式的调制装置的结构的图。图16是用于说明第3实施方式的L用信号和R用信号的图。图17是示出第3实施方式的解调装置的结构的图。标号说明TS1、TS2:音响信号发送系统;RS1、RS2:音响信号接收系统;4A4C:调制装置;6L、6R:扬声器;7:声波;8、8L、8R:各麦克风;10A10C:解调装置;12:纠错解码装置;41A41C:S/P转换部;43L、43R:调制部;46:保护时间信号生成部;47:帧同步信号生成部;48:D/A转换部;101:A/D转换部;102:帧同步部;103:保护时间去除部;104L、104R:解调部;106:SEBC解码部;107:P/S转换部;109B、109C:MIMO解码部。具体实施例方式以下,参照附图详细说明用于实施本发明的最佳方式。另外,在附图说明中对相同要素附上相同标号,省略重复说明。(第1实施方式)图1是第1实施方式的音响信号传送系统内包含的音响信号发送系统的结构图。图2是第1实施方式的音响信号传送系统内包含的音响信号接收系统的结构图。本实施方式的音响信号传送系统具有音响信号发送系统TS1和音响信号接收系统RS1。音响信号发送系统TS1是生成发送音响信号5L、5R并作为声波7进行输出的系统。音响信号发送系统TS1具有纠错编码装置2,调制装置4A,以及多个(在本实施方式中是2个)扬声器6L、6R(传送路径)。纠错编码装置2使用纠错编码对传送数据信号1进行编码并输出编码传送信号3。调制装置4A将编码传送信号3分配给扬声器6L和扬声器6R并对编码传送信号3进行调制来生成发送音响信号。即,调制装置4A分别生成并输出分配给扬声器6L的发送音响信号5L和分配给扬声器6R的发送音响信号5R。扬声器6L将发送音响信号5L作为声波7来输出。扬声器6R将发送音响信号5R作为声波7来输出。另外,扬声器6L和扬声器6R构成立体声扬声器。音响信号接收系统RS1是接收由音响信号发送系统TS1所输出的声波7并提取传送数据信号ld的系统。音响信号接收系统RS1具有1个麦克风8、解调装置10A以及纠错解码装置12。麦克风8接收声波7并输出接收音响信号9。解调装置10A对接收音响信号9进行解调,生成并输出接收传送信号11。纠错解码装置12对接收传送信号11进行纠错并作为传送数据信号ld来输出。接下来,更详细说明上述调制装置4A和上述解调装置IOA。图3是示出第l实施方式的调制装置的结构的图。调制装置4A具有S/P转换部41A,SFBC编码部(编码单元)42A,调制部(调制单元)43L和调制部43R,保护时间信号生成部46,帧同步信号生成部47,以及D/A转换部48。S/P转换部41A将所输入的编码传送信号3从单比特流转换成并行比特流,并提取并行传送比特s,、s2、s3、s4。S/P转换部41A将并行传送比特s^s2、s3、S4输出到SFBC编码部42A。SFBC编码部42A以发送分集方式对并行传送比特s卜s2、s3、34进行编码,并生成分配给多个发送路径的传送信号。具体地说,SFBC编码部42A对并行传送比特s!、s2、s3、S4进行空频编码,并将2组并行传送比特(s。s2、s3、s4)和(s/、一s/、s/、一s3*)分配给扬声器6L和扬声器6R来输出。在空频编码中,将多个扬声器和多个副载波作为一个块来进行编码。SFBC编码部42A将频率与扬声器6L和扬声器6R邻接的2个副载波作为一个块进行空频编码。即,SFBC编码部42A将并行传送比特Sl分配给从扬声器6L输出的第i副载波44P并将并行传送比特32分配给第2副载波442。并且,SFBC编码部42A将并行传送比特s/分配给从扬声器6R输出的第1副载波44n并将并行传送比特一Si'分配给第2副载波442。同样,SFBC编码部42A将并行传送比特s3分配给从扬声器6L输出的第3副载波443,并将并行传送比特34分配给第4副载波444。并且,SFBC编码部42A将并行传送比特s/分配给从扬声器6R输出的第3副载波443,并将并行传送比特一33*分配给第4副载波444。第1第4副载波4+444的频率按照第1副载波44。第2副载波442、第3副载波443、第4副载波444的顺序降低。并行传送比特s。s2、S3、S4是分配给扬声器6L的信号,并行传送比特s2,s1,s4-s3是分配给扬声器6R的信号。SFBC编码部42A将并行传送比特s。s2、s3、34分配给第1第4副载波44!444并输出到调制部43L,并将并行传送比特s/、—Sl'、s4*、一s/分配给第1第4副载波44i444并输出到调制部43R。调制部43L使用对应的并行传送比特s。s2、s3、S4对第l第4副载波44广444分另腿行OFDM(orthogonalfrequencydivisionmultiplex,正交频分复用)调制。调制部43L将通过调制而生成的信号作为L用信号45L输出到保护时间信号生成部46。调制部43R使用对应的并行传送比特s/、—Sl*、s4*、一33*对第1第4副载波4^444分别进行OFDM调制。调制部43R将通过调制而生成的信号作为R用信号45R输出到保护时间信号生成部46。保护时间信号生成部46分别针对L用信号45L和R用信号45R,复制信号的后方区间来生成保护时间信号。保护时间信号生成部46使所生成的保护时间信号分别与L用信号45L和R用信号45R的前方连接。这样,可应对传送信号的传送中的反射波等的多径干扰。保护时间信号生成部46将附加了保护时间信号的L用信号45L和R用信号45R分别输出到帧同步信号生成部47。帧同步信号生成部47生成帧同步信号并分别附加给L用信号45L和R用信号45R。帧同步信号是用于在接收侧确定在L用信号45L和R用信号45R中分别包含的保护时间信号的场所的信号。具体地说,帧同步信号是使用M序列码调制后的PN(伪噪声)信号。并且,帧同步信号生成部47将用于区别L用信号45L和R用信号45R的导频信号分别附加给L用信号45L和R用信号45R。帧同步信号生成部47将附加了帧同步信号的L用信号45L和R用信号45R分别输出到D/A转换部48。D/A转换部48对L用信号45L进行模拟转换来生成发送音响信号5L,并对R用信号45R进行模拟转换来生成发送音响信号5R。然后,D/A转换部48将所生成的发送音响信号5L输出到扬声器6L,并将所生成的发送音响信号5R输出到扬声器6R。图4是用于说明第1实施方式的发送音响信号的图。图4(a)是用于说明发送音响信号5L的图。图4(b)是用于说明发送音响信号5R的图。如图4(a)所示,并行传送比特Sl被分配给发送音响信号5L的第1副载波44p并行传送比特32被分配给第2副载波442,并行传送比特S3被分配给第3副载波443,并行传送比特S4被分配给第4副载波444。并且,在发送音响信号5L中,表示是发送音响信号5L的L用导频信号49L被分配给与第1第4副载波44!444不同频率的副载波44a和44c。在发送音响信号5L中,不利用与第1第4副载波4+444、以及副载波44a、44c不同频率的副载波44b、44d。并且,在发送音响信号5L中,在与第1第4副载波44!444、以及44a44d不同的频带内配置有声音和帧同步信号。如图4(b)所示,并行传送比特s/被分配给发送音响信号5R的第l副载波44i,并行传送比特一sr被分配给第2副载波442,并行传送比特s/被分配给第3副载波443,并行传送比特一s/被分配给第4副载波444。并且,在发送音响信号5R中,表示是发送音响信号5R的R用导频信号49R被分配给副载波44b和44d。在发送音响信号5L中,不利用副载波44a、44c。并且,在发送音响信号5R中,在与第1第4副载波4+444、以及44a44d不同的频带内配置有声音和帧同步信号。图5是示出第1实施方式的解调装置的结构的图。本实施方式的解调装置IOA具有A/D转换部101,帧同步部102,保护信号去除部103,解调部(解调单元)104,SFBC解码部(解码单元)106,以及P/S转换部107。A/D转换部101对从麦克风8所输出的接收音响信号9进行抽样并转换成数字信号。A/D转换部101将数字信号输出到帧同步部102。帧同步部102将所输入的数字信号以帧为单位进行分割。更具体地说,帧同步部102在将所输入的数字信号按每1个抽样和每数个抽样错开的同时取得与通过M序列码调制后的PN信号的相关,将相关值最高的点识别为帧同步点,以帧为单位进行分割。帧同步部102按分割后的各帧将数字信号输出到保护时间去除部103。保护时间去除部103按分割后的各帧从数字信号中去除保护时间信号来提取信号帧。保护时间去除部103将所提取的信号帧输出到解调部104。解调部104利用第1第4副载波105i1054对信号帧进行OFDM解调,并提取并行接收比特^、r2、r3、r4。第1第4副载波10511054的频率按照第1副载波105。第2副载波1052、第3副载波1053、第4副载波1054的顺序降低。解调部104利用第1副载波105〗提取并行接收比特rp利用第2副载波1052提取并行接收比特r2,利用第3副载波1053提取并行接收比特r3,利用第4副载波1054提取并行接收比特r4。并且,解调部104对信号帧内包含的导频信号的副载波进行OFDM解调,并提取L用导频信号或R用导频信号。这样,可识别各信号帧的并行接收比特n、r2、r3、r4是从扬声器6L所输出的信号,还是从扬声器6R所输出的信号。解调部104将从包含L用导频信号的信号帧所提取的并行接收比特n、r2、r3、r4、以及从包含R用导频信号的信号帧所提取的并行接收比特r,、r2、r3、1"4可识别地输出到SFBC解码部106。SFBC解码部106使用在从各扬声器6L、6R向麦克风8传送声波时的传递函数,以发送分集方式对信号帧进行解码。即,SFBC解码部106使用从扬声器6L到麦克风8的传递函数以及从扬声器6R到麦克风8的传递函数,对并行接收比特"、r2、r3、1"4进行SFBC(Space-frequencyblockcoding,空频分组编码),提取并行传送比特IVT2、T3、T4。SFBC解码部106使用从包含L用导频信号的信号帧所提取的并行接收比特对(n、r2)的第l、第2副载波105^1052,计算从扬声器6L到麦克风8的传递函数hU2。SFBC解码部106使用从包含L用导频信号的信号帧所提取的并行接收比特对(r3、r4)的第3、第4副载波1053、1054,计算从扬声器6L到麦克风8的传递函数hu4。SFBC解码部106使用从包含R用导频信号的信号帧所提取的并行接收比特对(r,、r2)的第l、第2副载波105,、1052,计算从扬声器6R到麦克风8的传递函数hR12。SFBC解码部106使用从包含R用导频信号的信号帧所提取的并行接收比特对(r3、r4)的第3、第4副载波1053、1054,计算从扬声器6R到麦克风8的传递函数hR34。SFBC解码部106使用计算出的传递函数hu2、hU4、hR12、hR34,根据下式(1)计算并行传送比特^、T2、T3、T4。[算式l]<formula>formulaseeoriginaldocumentpage15</formula>SFBC解码部106将计算出的并行传送比特T,、T2、T3、丁4输出到P/S转换部107。P/S转换部107将并行传送比特T,、T2、T3、T4转换成单传送比特流,并作为接收传送信号ll来输出。接下来,参照图6和图7说明包含解调装置4A的音响信号发送系统TSl和包含调制装置10A的音响信号接收系统RS1的动作,并说明本实施方式的音响信号传送方法。图6是示出第1实施方式的音响信号发送系统的动作的流程图。图7是示出第1实施方式的音响信号接收系统的动作的流程图。首先,参照图6说明音响信号发送系统TS1的动作。传送数据信号1由纠错编码装置2利用纠错码进行编码,生成编码传送信号3(SIO)。所生成的编码传送信号3由调制装置4A的S/P转换部41A转换成并行比特流(Sll)。并行比特流的并行传送比特s"s2、s3、s4由调制装置4A的SFBC编码部42A进行空频编码,2组并行传送比特(Sl、s2、s3、s4)和(s2*、—Sl*、s/、一s/)分别被分配给扬声器6L和扬声器6R(S12)。2组并行传送比特(Sl、s2、s3、s4)和(s/、一Sl*、s/、一s3*)分别由调制部43L、43R对副载波44进行OFDM调审ij,分别生成L用信号45L和R用<formula>formulaseeoriginaldocumentpage15</formula>信号45R(S13)。即,在步骤S12和步骤S13中,以发送分集方式对传送信号进行编码并分配给多个发送路径(调制步骤)。当生成了L用信号45L和R用信号45R时,保护时间信号由保护时间信号生成部46生成并分别被附加给L用信号45L和R用信号45R(S14)。当被附加了保护时间信号时,帧同步信号由帧同步信号生成部47生成并分别被附加给L用信号45L和R用信号45R(S15)。被附加了帧同步信号的L用信号45L和R用信号45R由D/A转换部48分别转换成模拟信号,生成发送音响信号5L和发送音响信号5R(S16)。当生成了发送音响信号5L和发送音响信号5R时,发送音响信号5L和发送音响信号5R作为声波7从扬声器6L和扬声器6R分别被输出(S17)(输出步骤)。这样,载有传送数据信号1的声波7从2个扬声器6L、6R被输出。下面,参照图7说明音响信号接收系统RS1。首先,从扬声器6L和扬声器6R所输出的声波7由麦克风8接收并作为接收音响信号9被输出(S20:接收步骤)。当输出了接收音响信号9时,接收音响信号9由A/D转换部101转换成数字信号(S21)。当接收音响信号9被转换成数字信号时,接收音响信号9由帧同步部102以帧为单位进行分割(S22)。以帧为单位分割后的接收音响信号内包含的保护时间信号由保护时间去除部103去除,提取信号帧(S23)。当提取了信号帧信号时,信号帧信号由解调部104进行OFDM解调,提取并行接收比特r,、r2、r3、r4(S24)。当提取了并行接收比特r,、r2、r3、r4时,并行接收比特n、r2、r3、r4由SFBC解码部106使用传递函数hU2、hU4、hR12、hR34进行SFBC解码,求出并行传送比特TnT2、T3、T4(S25:解调步骤)。当求出了并行传送比特T"T2、T3、丁4时,并行传送比特T"T2、T3、T4由P/S转换部107转换成单比特流,并作为接收传送信号11被输出(S26)。当输出了接收传送信号11时,接收传送信号11由纠错解码装置12进行纠错(S27)。这样,对所接收的声波7进行解码。如上所述在本实施方式中,调制装置4A的SFBC编码部42A进行空频编码,将并行传送比特(Sl、S2、S3、S4)和(S2\—SAS/、一S3*)分配给扬声器6L和扬声器6R。然后,扬声器6L和扬声器6R将分别包含分配后的并行传送比特(S。S2、S3、S4)和(S2*、一Sr、S4*、一S3*)的发送音响信号5L和发送音响信号5R分别作为声波7来输出。解调装置10A的SFBC解码部106使用从扬声器6L和扬声器6R到麦克风的各个声波的传递函数hu2、hU4、hR12、hR34,利用空频解码来对并行接收比特n、r2、r3、r4进行解码。因此,即使在发生了频率选择性衰落的情况下,也能使用上述各传递函数来抑制接收差错的产生,可对并行接收比特n、r2、r3、i"4进行解码。本发明不限于上述实施方式,可进行各种变形。在上述实施方式中,利用SFBC编码部42A进行了空频编码,然而可以进行时空编码。在时空编码中,将多个扬声器和多个时间块作为一个块进行编码。并且,例如在上述实施方式中,声波7由1个麦克风8接收,然而可以由多个麦克风接收。(第2实施方式)图8是第2实施方式的音响信号传送系统内包含的音响信号发送系统的结构图。图9是第2实施方式的音响信号传送系统内包含的音响信号接收系统的结构图。本实施方式的音响信号传送系统具有音响信号发送系统TS2和音响信号接收系统RS2。本实施方式的音响信号发送系统TS2具有调制装置4B来替代第1实施方式的音响信号发送系统TS1内包含的调制装置4A。本实施方式的音响信号接收系统RS2具有多个(在本实施方式中是2个)麦克风8L和麦克风8R来替代第1实施方式的音响信号接收系统RS1内包含的1个麦克风8。麦克风8L接收声波7并输出接收音响信号9L,麦克风8R接收声波7并输出接收音响信号9R。并且,音响信号接收系统RS2具有解调装置10B来替代第1实施方式的音响信号接收系统RS1内包含的解调装置IOA。解调装置10A输入从麦克风8L和麦克风8R分别输出的接收音响信号9L和接收音响信号9R。接下来,更详细说明调制装置4B和解调装置IOB。图10是示出第2实施方式的调制装置的结构的图。调制装置4B具有S/P转换部(分配单元)41B,调制部(调制单元)43L和调制部(调制单元)43R,保护时间信号生成部46,帧同步信号生成部47,以及D/A转换部48。保护时间信号生成部46、帧同步信号生成部47以及D/A转换部48具有与上述第1实施方式的调制装置4B所对应的各构成要素相同的功能。S/P转换部41B将所输入的编码传送信号3从单比特流转换成并行比特流。S/P转换部41B将并行比特流的并行传送比特s,、s2、s3、s4、s5、s6、s7、ss分割为2组并行传送比特(Sl、s2、s3、s4)禾卩(s5、s6、s7、s8)。即,S/P转换部41B将并行传送比特s。s2、s3、S4分配给扬声器6L(传送路径),并将并行传送比特S5、s6、s7、Ss分配给扬声器6R(传送路径)。并且,S/P转换部41B将并行传送比特Sl分配给从扬声器6L输出的第1副载波4+,将并行传送比特S2分配给从扬声器6L输出的第2副载波442,将并行传送比特s3分配给从扬声器6L输出的第3副载波443,将并行传送比特S4分配给从扬声器6L输出的第4副载波444。然后,S/P转换部41B将并行传送比特s,、s2、s3、S4输出到调制部43L。并且,S/P转换部41B将并行传送比特35分配给从扬声器6R输出的第1副载波44,,将并行传送比特S6分配给从扬声器6R输出的第2副载波442,将并行传送比特S7分配给从扬声器6R输出的第3副载波443,将并行传送比特S8分配给从扬声器6R输出的第4副载波444。然后,S/P转换部41B将并行传送比特S5、s6、s7、Ss输出到调制部43R。如上所述,第1第4副载波44,444的频率按照第1副载波44,、第2副载波442、第3副载波443、第4副载波444的顺序降低。调制部43L利用对应的并行传送比特s!、s2、s3、54对第第4副载波44,444分别进行OFDM调制。调制部43L将通过调制而生成的信号作为L用信号45L输出到保护时间信号生成部46。调制部43R使用对应的并行传送比特S5、s6、s7、ss对第1第4副载波44广444分别进行OFDM调制。调制部43R将通过调制而生成的信号作为R用信号45R输出到保护时间信号生成部46。图11是用于说明第2实施方式的发送音响信号的图。图11(a)是用于说明发送音响信号5L的图。图11(b)是用于说明发送音响信号5R的图。如图11(a)所示,并行传送比特M皮分配给发送音响信号5L的第1副载波44,,并行传送比特32被分配给第2副载波442,并行传送比特33被分配给第3副载波443,并行传送比特34被分配给第4副载波444。并且,在发送音响信号5L中,表示是发送音响信号5L的L用导频信号49L被分配给与第1第4副载波4+444不同频率的副载波44a和44c。在发送音响信号5L中,不利用与第1第4副载波4+444、以及副载波44a、44c不同频率的副载波44b、44d。并且,在发送音响信号5L中,在与第1第4副载波4^444、以及44a44d不同的频带内配置有声音和帧同步信号。如图11(b)所示,并行传送比特S5被分配给发送音响信号5R的第1副载波4+,并行传送比特36被分配给第2副载波442,并行传送比特37被分配给第3副载波443,并行传送比特ss被分配给第4副载波444。并且,在发送音响信号5R中,表示是发送音响信号5R的R用导频信号49R被分配给副载波44b和44d。在发送音响信号5L中,不利用副载波44a、44c。并且,在发送音响信号5R中,在与第1第4副载波4+444、以及44a44d不同的频带内配置有声音和帧同步信号。图12是示出第2实施方式的解调装置的结构的图。解调装置10B具有A/D转换部101,帧同步部102,保护时间去除部103,解调部(解调单元)104L和解调部(解调单元)104R,MIMO解码部(解码单元)109,以及P/S转换部107。A/D转换部101对接收音响信号9L和接收音响信号9R进行抽样并分别转换成数字信号。A/D转换部101将转换成数字信号后的接收音响信号9L和接收音响信号9R分别输出到帧同步部102。帧同步部102将转换成数字信号后的接收音响信号9L和接收音响信号9R分别以帧为单位进行分割来生成帧信号。帧同步部102将所生成的接收音响信号9L的帧信号和接收音响信号9R的帧信号输出到保护信号去除部103B。保护时间去除部103B从接收音响信号9L的信号帧中去除保护时间信号,并提取L信道信号帧108L。并且,保护时间去除部103B从接收音响信号9R的信号帧中去除保护时间信号,并提取R信道信号帧108R。保护时间去除部103B将所提取的L信道信号帧108L输出到解调部104L,并将R信道信号帧108R输出到解调部104R。解调部104L利用第1第4副载波105!1054对L信道信号帧108L进行OFDM解调,并提取并行接收比特r"r2、r3、r4。第1第4副载波105i1054的频率按照第1副载波105i、第2副载波1052、第3副载波1053、第4副载波1054的顺序降低。解调部104L利用第1副载波105!提取并行接收比特rp利用第2副载波1052提取并行接收比特1"2,利用第3副载波1053提取并行接收比特r3,禾,第4副载波1054提取并行接收比特r4。并且,解调部104L对L信道信号帧108L内包含的导频信号的副载波进行OFDM解调,并提取L用导频信号或R用导频信号。这样,可识别各L信道信号帧108L的并行接收比特n、r2、r3、r^是从扬声器6L所输出的信号,还是从扬声器6R所输出的信号。解调部104L将从包含L用导频信号的L信道信号帧108L所提取的并行接收比特n、r2、r3、r4、以及从包含R用导频信号的L信道信号帧108L所提取的并行接收比特ri、r2、r3、r4可识别地输出到MIMO解码部109B。解调部104R利用第1第4副载波105!1054对R信道信号帧108R进行OFDM解调,并提取并行接收比特rs、r6、r7、r8。解调部104R利用第1副载波105,提取并行接收比特r5,利用第2副载波1052提取并行接收比特r6,禾,第3副载波1053提取并行接收比特r7,利用第4副载波1054提取并行接收比特rs。并且,解调部104R对R信道信号帧108R内包含的导频信号的副载波进行OFDM解调,并提取L用导频信号或R用导频信号。这样,可识别各R信道信号帧108R的并行接收比特r5、r6、r7、rs是从扬声器6L所输出的信号,还是从扬声器6R所输出的信号。解调部104R将从包含R用导频信号的R信道信号帧108R所提取的并行接收比特rs、r6、r7、rs、以及从包含R用导频信号的R信道信号帧108R所提取的并行接收比特r5、r6、r7、r8可识别地输出到MIMO解码部109B。MIMO解码部109B使用从各扬声器6L、6R到各麦克风8L、8R的各个声波的传递函数来对并行接收比特(r卜r2、r3、r4)禾口(r5、r6、r7、r8)进行MIMO(MultipleInputMultipleOutput,多输入多输出)解码。并提取并行传送比特(TVT2、T3、T4、T5、T6、T7、T8)。例如,设从扬声器6L到麦克风8L的理想的传递函数为hu,设从扬声器6R到麦克风8L的理想的传递函数为h21,设从扬声器6L到麦克风8R的理想的传递函数为h12,设从扬声器6R到麦克风8R的理想的传递函数为h22。对应于第1副载波44,而包含在L用信号45L内的并行传送比特Si和包含在R用信号45L内的并行传送比特S5与对应于第1副载波105t而包含在L信道信号帧108L内的并行接收比特r,和包含在R信道信号帧108R内的并行接收比特r5之间的关系由下式(2)表示。[算式2]<formula>formulaseeoriginaldocumentpage21</formula>(2)因此,可利用下式(3)计算并行传送比特s。s5([算式3]<formula>formulaseeoriginaldocumentpage21</formula>(3)MIMO解码部109B按如下计算各传递函数。MIMO解码部109B使用包含在L信道信号帧108L内并分配有L用导频信号49L的副载波,计算从扬声器6L到麦克风8L的传递函数hLL。MIMO解码部109B使用包含在L信道信号帧108L内并分配有R用导频信号49R的副载波,计算从扬声器6R到麦克风8L的传递函数hRL。MIMO解码部109B使用包含在R信道信号帧108R内并分配有L用导频信号49L的副载波,计算从扬声器6L到麦克风8R的传递函数hLR。MIMO解码部109B使用包含在R信道信号帧108R内并分配有R用导频信号49R的副载波44b、44d,计算从扬声器6R到麦克风8R的传递函数MIMO解码部109B使用计算出的传递函数h!x、h肛、hLR、h収和与第1副载波105,对应的并行接收比特n、r5,利用下式(4)计算并行传送比特T!、T5。同样,MIMO解码部109B使用计算出的传递函数hix、hRL、h^、h収和与第2副载波1052对应的并行接收比特r2、r6来计算并行传送比特T2、T6。同样,MIMO解码部109B使用计算出的传递函数hix、h虹、hLR、h収和与第3副载波1053对应的并行接收比特1"3、r7来计算并行传送比特T3、T7。同样,MIMO解码部109B使用计算出的传递函数hLL、h虹、hLR、h収和与第4副载波1054对应的并行接收比特r4、r8来计算并行传送比特T4、T8。MIMO解码部109B将计算出的并行传送比特(1\、T2、T3、T4、T5、T6、T7、T8)输出到P/S转换部107。P/S转换部107将并行传送比特(T!、T2、T3、T4、T5、T6、T7、T8)转换成单比特流,并作为接收传送信号ll来输出。接下来,参照图13和图14说明包含解调装置4B的音响信号发送系统TS2和包含调制装置10B的音响信号接收系统RS2的动作,并说明本实施方式的音响信号传送方法。图13是示出第2实施方式的音响信号发送系统的动作的流程图。图14是示出第2实施方式的音响信号接收系统的动作的流程图。首先,参照图13说明音响信号发送系统TS2的动作。传送数据信号1由纠错编码装置2利用纠错码进行编码,生成编码传送信号3(S30)。所生成的编码传送信号3由调制装置4B的S/P转换部41B转换成并行比特流,并行传送比特s,、s2、s3、S4被分配给扬声器6L,并行传送比特S5、s6、s7、Ss被分配给扬声器6R(S31)。并行比特流的并行传送比特(Sl、s2、s3、s4)和(s5、s6、s7、s8)分别由调制部43L、43R对第l第4副载波44,444进行OFDM调审U,分别生成L用信号45L和R用信号45R(S32)。即,在步骤S31和步骤S32中,传送信号被分配给多个发送路径(调制步骤)。当生成了L用信号45L和R用信号45R时,保护时间信号由保护时间信号生成部46生成并分别被附加给L用信号45L和R用信号45R(S33)。当被附加了保护时间信号时,帧同步信号由帧同步信号生成部47生成并分别被附加给L用信号45L和R用信号45R(S34)。被附加了帧同步信号的L用信号45L和R用信号45R由D/A转换部48分别转换成模拟信号,生成发送音响信号5L和发送音响信号5R(S35)。当生成了发送音响信号5L和发送音响信号5R时,发送音响信号5L和发送音响信号5R作为声波7从扬声器6L和扬声器6R分别被输出(S36)(输出步骤)。这样,载有传送数据信号1的声波7从2个扬声器6L、6R被输出。下面,参照图14说明音响信号接收系统RS2的动作。首先,从扬声器6L和扬声器6R所输出的声波7由麦克风8L和麦克风8R接收并分别作为接收音响信号9R、9L被输出(S40)(接收步骤)。当输出了接收音响信号9R、9L时,接收音响信号9R、9L由A/D转换部101分别转换成数字信号(S41)。当接收音响信号9R、9L被转换成数字信号时,接收音响信号9R、9L由帧同步部102分别以帧为单位进行分割(S42)。分割后的帧信号内分别包含的保护时间信号由保护时间去除部103去除,分别提取L信道信号帧108L和R信道信号帧108R(S43)。当提取了L信道信号帧108L和R信道信号帧108R时,L信道信号帧108L和R信道信号帧108R由解调部104L和解调部R分别进行OFDM解调,分另lJ提取并4亍接收比特(r,、r2、r3、r4)禾口(r5、r6、r7、r8)(S44)。当提取了并行接收比特(n、r2、r3、r4)和(r5、r6、r7、r8)时,并行接收比特(r,、r2、r3、r4)和(r5、r6、r7、r8)由MIMO解码部109使用传递函数hLL、hLR、h虹、hRR进行MIMO解码,求出并行传送比特(T!、T2、T3、T4、T5、T6、T7、T8)(S45)。即,在步骤S44和步骤S45中,使用各传递函数hLL、hLR、h壯、h肌来对接收音响信号进行解码(解调步骤)。当求出了并行传送比特(TVT2、T3、T4、T5、T6、T7、T8)时,并行传送比特(T,、T2、T3、T4、T5、T6、T7、T8)由P/S转换部107转换成单比特流,并作为接收传送信号ll被输出(S46)。当输出了接收传送信号11时,接收传送信号11由纠错解码装置12进行纠错(S47)。这样,对所接收的声波7进行解码。如上所述在本实施方式中,调制装置4B的S/P转换部41B将并行传送比特(Sl、s2、s3、s4)禾tl(s5、s6、s7、s8)分配给扬声器6L和扬声器6R。然后,扬声器6L和扬声器6R将分配后的发送音响信号5L和发送音响信号5R作为声波来分别输出。然后,麦克风8L和麦克风8R接收声波。接下来,解调装置10B使用从扬声器6L、6R到各麦克风8L、8R的各个声波的传递函数h!x、hw、hRL、hRR来进行解码。因此,即使在发生了频率选择性衰落的情况下,也能使用上述各传递函数hLL、hLR、h虹、hRR来抑制接收差错的产生,可对并行接收比特(n、r2、r3、r4)和(r5、r6、r7、r8)进行解码。并且,由于由多个麦克风8L、8R接收声波,因而可更有效地抑制接收差错的产生。(第3实施方式)本实施方式的音响信号传送系统具有音响信号发送系统和音响信号接收系统。本实施方式的音响信号发送系统具有调制装置4C来替代第2实施方式的音响信号发送系统TS2内包含的调制装置4B。本实施方式的音响信号接收系统具有解调装置10C来替代第2实施方式的音响信号接收系统RS2内包含的解调装置IOB。详细说明调制装置4C和解调装置IOC。图15是示出第3实施方式的调制装置的结构的图。调制装置4C具有S/P转换部(分配单元)41C,调制部(调制单元)43L和调制部(调制单元)43R,保护时间信号生成部46,帧同步信号生成部47,以及D/A转换部48。保护时间信号生成部46、帧同步信号生成部47以及D/A转换部48具有与上述第2实施方式的调制装置4C所对应的各构成要素相同的功能。S/P转换部41C将所输入的编码传送信号3从单比特流转换成并行比特流。S/P转换部41B将并行比特流的并行传送比特s!、s2、s3、34分别分配给2个传送路径即扬声器6L和扬声器6R。S/P转换部41C将分配给扬声器6L的各并行传送比特Sl、s2、s3、s4进一步分配给从扬声器6L输出的第1第4副载波44!444。第1第4副载波44广444的频率按照第1副载波44,、第2副载波442、第3副载波443、第4副载波444的顺序降低。S/P转换部41C将并行传送比特Sl分配给第1副载波44"将并行传送比特32分配给第2副载波442,将并行传送比特s3分配给第3副载波443,将并行传送比特34分配给第4副载波444。S/P转换部41C将这样分配的并行传送比特s!、s2、s3、S4输出到调制部43L。S/P转换部41C将分配给扬声器6R的各并行传送比特s。s2、s3、54进一步分配给从扬声器6R输出的第1第4副载波44!444。S/P转换部41C将并行传送比特Sl分配给第4副载波444,将并行传送比特32分配给第3副载波443,将并行传送比特33分配给第2副载波442,将并行传送比特34分配给第1副载波44,。S/P转换部41C将这样分配的并行传送比特s!、s2、s3、S4输出到调制部43R。调制部43L利用并行传送比特s,对第1副载波4+进行OFDM调审lj,利用并行传送比特32对第2副载波442进行OFDM调制,利用并行传送比特33对第3副载波443进行OFDM调制,利用并行传送比特34对第4副载波444进行OFDM调制。然后,调制部43L将调制后的信号作为L用信号45L输出到保护时间信号生成部46。调制部43R利用并行传送比特Sl对第4副载波444进行OFDM调制,利用并行传送比特32对第3副载波443进行OFDM调制,利用并行传送比特33对第2副载波442进行OFDM调制,利用并行传送比特54对第1副载波44i进行OFDM调制。然后,调制部43R将调制后的信号作为R用信号45R输出到保护时间信号生成部46。图16是用于说明第3实施方式的发送音响信号的图。图16(a)是用于说明发送音响信号5L的图。图16(b)是用于说明发送音响信号5R的图。并行传送比特Sl被分配给发送音响信号5L的第1副载波44P并行传送比特32被分配给第2副载波442,并行传送比特s3被分配给第3副载波443,并行传送比特S4被分配给第4副载波444。并行传送比特S4被分配给发送音响信号5R的第1副载波44!,并行传送比特S3被分配给第2副载波442,并行传送比特S2被分配给第3副载波443,并行传送比特Si被分配给第4副载波444。艮口,SA转换部41C将并行传送比特Sl分配给由扬声器6L输出的第1第4副载波44,444中最低频率的第1副载波44"并且,S/P转换部41C将并行传送比特Sl分配给由扬声器6R输出的第1第4副载波44!444中最高频率的第4副载波444。S/P转换部41C将并行传送比特s2分配给由扬声器6L输出的第l第4副载波4+444中第2低的频率的第2副载波442。并且,S/P转换部41C将并行传送比特32分配给由扬声器6R输出的第1第4副载波44l444中第2高的频率的第3副载波443。S/P转换部41C将并行传送比特s3分配给由扬声器6L输出的第l第4副载波44广444中第2高的频率的第3副载波443。并且,S/P转换部41C将并行传送比特33分配给由扬声器6R输出的第1第4副载波4+444中第2低的频率的第2副载波442。S/P转换部41C将并行传送比特34分配给由扬声器6L输出的第l第4副载波44广444中最高频率的第4副载波444。并且,S/P转换部41C将并行传送比特34分配给由扬声器6R输出的第1第4副载波44!444中最低频率的第1副载波44,。并且,与上述第1和第2实施方式一样,在发送音响信号5L中,表示是发送音响信号5L的L用导频信号被分配给与第1第4副载波44,444不同的副载波44a和44c。并且,与上述第1和第2实施方式一样,在发送音响信号5R中,表示是发送音响信号5R的R用导频信号被分配给与第1第4副载波44444不同的副载波44b和44d。图17是示出第3实施方式的解调装置的结构的图。解调装置10C具有A/D转换部101,帧同步部102,保护时间去除部103,解调部(解调单元)104L和解调部(解调单元)104R,MIMO解码部(解码单元)109C,以及P/S转换部107。A/D转换部101、帧同步部102以及保护时间去除部103具有与上述第2实施方式的解调装置10C所对应的各构成要素相同的功能。解调部104L利用第1副载波105!对L信道信号帧108L进行OFDM解调并提取并行接收比特r,,利用第2副载波1052对L信道信号帧108L进行OFDM解调并提取并行接收比特r2,利用第3副载波1053对L信道信号帧108L进行OFDM解调并提取并行接收比特r3,利用第4副载波1054对L信道信号帧108L进行OFDM解调并提取并行接收比特r4。并且,解调部104L对L信道信号帧108L的副载波进行OFDM解调,并提取L用导频信号或R用导频信号。这样,可识别各L信道信号帧108L的并行接收比特ri、r2、r3、"是从扬声器6L所输出的信号,还是从扬声器6R所输出的信号。解调部104L将从包含L用导频信号的L信道信号帧108L所提取的并行接收比特n、r2、r3、r4、以及从包含R用导频信号的R信道信号帧108R所提取的并行接收比特ri、r2、r3、&分别输出到MIMO解码部109C。解调部104R利用第1副载波105!对R信道信号帧108R进行OFDM解调并提取并行接收比特r5,利用第2副载波1052对R信道信号帧108R进行OFDM解调并提取并行接收比特r6,利用第3副载波1053对R信道信号帧108R进行OFDM解调并提取并行接收比特r7,禾l」用第1副载波1054对R信道信号帧108R进行OFDM解调并提取并行接收比特r8。并且,解调部104R对R信道信号帧108R的副载波进行OFDM解调,并提取L用导频信号或R用导频信号。这样,可识别各R信道信号帧108R的并行接收比特rs、r6、r7、r8是从扬声器6L所输出的信号,还是从扬声器6R所输出的信号。解调部104R将从包含L用导频信号的L信道信号帧108L所提取的并行接收比特rs、r6、r7、r8、以及从包含R用导频信号的R信道信号帧108R所提取的并行接收比特r5、r6、r7、^分别输出到MIMO解码部109C。MIMO解码部109C使用从各扬声器6L、6R到各麦克风8L、8R的各个声波的传递函数来对并行接收比特(n、r2、r3、r4)和(r5、r6、r7、r8)进行MIMO(MultipleInputMultipleOutput,多输入多输出)解码。并提取并行传送比特(T,、T2、T3、T4)。MIMO解码部109C按上述计算传递函数hix、kR、h虹、Iirr。MIMO解码部109C使用计算出的传递函数hrx、hLR、hRL、hRR和并行接收比特n、r4、r5、r8,利用下式(5)计算并行传送比特1、T4。并行接收比特r,、i"4对应于L信道信号帧108L的第1和第4副载波105,、1054,并行接收比特r5、rs对应于R信道信号帧108R的第1和第4副载波105i、1054。[算式5]<table>tableseeoriginaldocumentpage28</column></row><table>同样,MIMO解码部109C使用传递函数hLL、hw、hRL、hRR和并行接收比特&、r3、r6、&来计算并行传送比特丁2、T3。并行接收比特r2、r3对应于L信道信号帧108L的第2和第3副载波1052、1053,并行接收比特r6、r7对应于R信道信号帧108R的第2和第3副载波1052、1053。MIMO解码部109C将计算出的并行传送比特(T,、T2、T3、T4)输出到P/S转换部107。P/S转换部107将并行传送比特(TVT2、T3、T4)转换成单比特流,并作为接收传送信号ll来输出。不过,副载波的频率越高,传播时的指向性就越尖锐,副载波的频率越低,传播时的指向性越宽。因此,在从扬声器6L和扬声器6R分别输出发送音响信号5L和发送音响信号5R时,当高频率的副载波偏离各扬声器6L、6R的正面被输出时,高频率的副载波的麦克风8L、8R的接收功率下降。因此,由于麦克风8L、8R的接收功率下降,因而产生接收本实施方式的调制装置4C的S/P转换部41C将分配给从扬声器6L输出的指向性尖锐的高频率的第3、第4副载波443、444的并行传送比特s3、S4也分配给从扬声器6R输出的指向性宽的低频率的第1、第2副载波44。442。并且,S/P转换部41C将分配给从扬声器6R输出的指向性尖锐的高频率的第3、第4副载波443、444的并行传送比特51、S2也分配给从扬声器6L输出的指向性宽的低频率的第1、第2副载波4+、442。因此,即使在由于高频率的第3、第4副载波443、444偏离扬声器6L、6R的正面被输出而使声波变弱的情况下,也能利用强的声波输出低频率的第l、第2副载波4+、442,能更可靠地发送并行传送比特s。s2、s3、s4,可抑制接收差错的产生。即,可对应于根据副载波的频率而不同的指向特性来发送并行传送比特s"s2、s3、s4。权利要求1.一种音响信号传送系统,其利用声波传送信息,其特征在于,该音响信号传送系统具有调制装置,其以发送分集方式对传送信号进行编码,并生成分配给多个发送路径的多个发送音响信号;多个扬声器,其根据该分配将所述多个发送音响信号作为声波分别输出;麦克风,其接收从所述多个扬声器所输出的声波并输出接收音响信号;以及解调装置,其使用从所述多个扬声器的各方到所述麦克风的各个声波的传递函数,以发送分集方式对所述接收音响信号进行解码。2.—种音响信号传送系统,其利用声波传送信息,其特征在于,该音响信号传送系统具有-调制装置,其将传送信号分配给多个发送路径,生成多个发送音响信号;多个扬声器,其根据该分配将所述多个发送音响信号作为声波分别输出;多个麦克风,其接收从所述多个扬声器所输出的声波并分别输出接收音响信号;以及解调装置,其使用从所述多个扬声器的各方到所述麦克风的各方的各个声波的传递函数来对所述接收音响信号进行解码。3.根据权利要求2所述的音响信号传送系统,其特征在于,所述调制装置具有分配单元,该分配单元根据副载波的指向特性,将所述传送信号分别分配给通过所述多个发送路径的各方而传送的各副载波的频率。4.一种调制装置,其特征在于,该调制装置具有编码单元,其对传送信号进行空频编码,并生成分配给多个发送路径的多个编码传送信号;以及调制单元,其利用该分配后的各个编码传送信号对可听音频带的副载波进行OFDM调制,生成分配给所述多个发送路径的多个发送音响信号。5.—种调制装置,其特征在于,该调制装置具有-分配单元,其将传送信号分配给多个发送路径;以及调制单元,其利用编码后的所述传送信号对可听音频带的副载波进行OFDM调制,生成分配给所述多个发送路径的多个发送音响信号。6.根据权利要求5所述的调制装置,其特征在于,所述多个发送路径包含第1发送路径和第2发送路径,所述分配单元将传送信号分配给通过所述第1发送路径而输出的副载波中较低频率的副载波,并将该分配的传送信号分配给通过所述第2发送路径而输出的副载波中较高频率的副载波。7.—种解调装置,其特征在于,该解调装置具有解调单元,其对从多个扬声器所输出并由麦克风所接收到的接收音响信号进行OFDM解调,生成编码接收信号;以及解码单元,其使用从所述多个扬声器的各方到所述麦克风的各个声波的传递函数来对所述编码接收信号进行空频解码。8.—种解调装置,其特征在于,该解调装置具有解调单元,其对从多个扬声器所输出并由多个麦克风分别所接收到的接收音响信号分别进行OFDM解调,生成编码接收信号;以及解码单元,其使用从所述多个扬声器的各方到所述多个麦克风的各方的各个声波的传递函数来对所述接收音响信号进行解码。9.一种音响信号传送方法,其利用声波传送信息,其特征在于,该音响信号传送方法具有调制步骤,在该步骤中,调制单元以发送分集方式对传送信号进行编码,并生成分配给多个发送路径的多个发送音响信号;输出步骤,在该步骤中,多个扬声器根据该分配将所述多个发送音响信号作为声波分别输出;接收步骤,在该步骤中,麦克风接收从所述多个扬声器所输出的声波并输出接收音响信号;以及解调步骤,在该步骤中,解调装置使用从所述多个扬声器的各方到所述麦克风的各个声波的传递函数,以发送分集方式对所述接收音响信号进行解码。10.—种音响信号传送方法,其利用声波传送信息,其特征在于,该音响信号传送方法具有调制步骤,在该步骤中,调制装置将传送信号分配给多个发送路径,生成多个发送音响信号;输出步骤,在该步骤中,多个扬声器根据该分配将所述多个发送音响信号作为声波分别输出;接收步骤,在该步骤中,多个麦克风接收从所述多个扬声器所输出的声波并分别输出接收音响信号;以及解调步骤,在该步骤中,解调装置使用从所述多个扬声器的各方到所述多个麦克风的各方的各个声波的传递函数来对所述接收音响信号进行解码。全文摘要本发明的音响信号传送系统是利用声波传送信息的系统,并具有调制装置、多个扬声器、麦克风以及解调装置。调制装置以发送分集方式对传送信号进行编码,并生成分配给多个发送路径的发送音响信号。多个扬声器根据分配将发送音响信号作为声波分别输出。麦克风接收从多个扬声器所输出的声波并输出接收音响信号。解调装置使用从多个扬声器到麦克风的各个声波的传递函数,以发送分集方式对接收音响信号进行解码。文档编号H04J99/00GK101390315SQ20078000650公开日2009年3月18日申请日期2007年1月26日优先权日2006年2月22日发明者松冈保静申请人:株式会社Ntt都科摩
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1