用于提供干扰特性以便进行干扰抑制的系统和方法与流程

文档序号:13671962阅读:159来源:国知局
技术领域一般来说,特定实施例涉及无线通信,更具体来说,涉及用于提供干扰特性以便进行干扰抑制的系统和方法。

背景技术:
为了满足更高的容量要求以及为了增强用户体验,蜂窝通信网络正在增加采用的基站的数量。一种增加基站密度的方法是通过在高负载地理区域中分割宏小区来实现的。具体来说,可在高负载地理区域中将宏小区分割成多个小型小区。这些高负载区域可视为是宏小区的覆盖区域内的业务热点。对蜂窝网络的底层支持的这种密集化可允许重复使用无线电资源。另外,由于无线装置可能更靠近服务基站,所以无线装置可实现更高位速率。另一种满足高容量要求的方法是在蜂窝网络内采用具有重叠覆盖区域的宏小区和小型小区的混合。这种类型的蜂窝网络可称为异构网络(HetNet)。这些网络可以是对宏小区分割的重要补充。一个示例包括在宏覆盖区域内具有微微小区的群集以便卸载宏业务的蜂窝网络。微微基站向微微小区提供服务。通常,微微基站是以低输出功率进行传送并覆盖比诸如宏基站的高功率节点小得多的地理区域的低功率节点(LPN)。低功率节点的其它示例是家庭基站和中继站。尽管另外基站的存在增加了系统性能并改善了用户体验,但是这些网络也不是没有它的缺点的。一个这样的缺点可以是,通过网络提供服务的无线装置可能会经历较低的几何图形。因此,下行链路小区间干扰可能会更加显著,并且可达到的位速率可能会受限制。为了抑制小区间干扰,采用抑制技术来改善用户性能。这些技术可探索无线电接入技术的物理层传送的结构。干扰抑制可在传送器侧、接收器侧或两侧上进行。传送器侧上的干扰抑制包括试图协调跨越小区的物理信道传送以便避免严重干扰的那些方法。例如,侵扰基站可偶尔使它在某些无线电资源上的传送静默,以便受扰基站在具有减小的干扰的无线电资源上调度干扰敏感无线装置。小区间干扰协调(ICIC)和协调多点传送(CoMP)的上下文中规定了网络侧上试图协调传送的LTE特征。例如,在ICIC的情况下,诸如eNodeB的网络节点可通过LTEeNB间接口(X2)发送消息。该消息可包括诸如另一个eNodeB的接收网络节点可在调度干扰敏感无线装置时使用的协调信息。因此,可协调竞争传送以免点间干扰。作为另一个示例,CoMP可利用传送点或基站的群集来共同地同步传送相同信号并且从而增加期望信号上的接收功率。TS36.423中规定了X2上的以下ICIC消息:·上行链路(UL)过载干扰指示(OII)指示所指示的小区在所有资源块(RB)上所经历的每个RB的干扰等级(低、中、高)。·UL高干扰指示(HII)指示从发送eNodeB看到的每个RB的高干扰灵敏度的发生。·接收窄传送功率(RNTP)指示对于每个RBDL传送功率是否小于阈值所指示的值。·几乎空白子帧(ABS)模式指示发送eNodeB将对于一些物理信道和/或降低的活动减小功率的子帧。X2消息OII、HII和RNTP代表用于在跨越小区的频域中协调物理数据信道传送的方法。相反,ABS消息是通过令宏小区在某些子帧中偶尔静默或减小PDCCH/PDSCH上的传送功率来主要保护小型小区中的PDCCH、PHICH和PDSCH的接收的时域机制。eNodeB通过在ABS模式中继续传送必需的信道和信号以便获取系统信息和时间同步化来确保向无线装置的向后兼容性。在接收器侧上,采用增强型干扰遏制方案、最大似然技术和干扰消除技术的高级收发器正越来越普及。这些高级接收器进行操作以便抑制由到相邻小区中的无线装置的相邻小区传送引起的下行链路(DL)干扰。具体来说,这些接收器可明确地移除干扰信号的全部或部分。一般来说,这些接收器可归类为3个系列:·线性接收器,它们的目的是通过利用干扰信号的显式信道估计来遏制干扰。·非线性接收器,例如ML检测(迭代或非迭代)。·干扰消除(IC)接收器,它们明确地从接收信号消除干扰。IC接收器可以是线性或非线性、迭代或非迭代。一种特定类型的接收器可利用干扰抑制组合(IRC)来抑制小区间干扰。IRC是需要估计干扰/噪声协方差矩阵的遏制干扰的技术。另一种类型的用于抑制干扰的接收器可包括进行操作以便估计不想要的信号(小区内/小区间干扰)的干扰消除(IC)接收器。作为一个示例,受扰无线装置中的IC接收器可进行操作以便解调制并且可选地解码干扰信号,产生所传送并对应接收的信号的估计值,并从总接收信号移除该估计值,以便改善期望信号的有效信噪比(SINR)。在解码后IC接收器中,解调制、解码干扰数据信号,重新生成并减去它对接收信号的估计贡献。在解码前接收器中,在解调制之后直接执行重新生成步骤,以便绕过信道解码器。执行这类消除的优选模式可包括应用软信号映射和重新生成,而不是应用硬符号或位判决。另外或备选地,可利用最大似然接收器来根据最大似然准则共同检测期望信号和干扰信号。迭代型最大似然接收器可定义成利用干扰信号的解码。IRC和IC均是LTE中的无线装置参考接收器技术。但是,LTE中的IC局限于消除诸如CRS的不间断信号,其中网络在如何在侵扰小区中传送这些信号方面为无线装置提供帮助。这两种干扰消除方法的差别在于可达到的消除效率。换句话说,在消除操作之后剩余的减损功率的部分在一些场景中可基本相同,并且在其它场景中可显著变化。尽管解码后IC方法可在“高”SIR操作点提供优异性能,但是这些方法具有不同的计算资源要求。例如,所描述的解码后解决方案意味着turbo解码处理。另外,招致的处理延迟可能依据技术而变化。例如,解码后解决方案需要缓冲干扰信号的整个代码块。为了将这些高级干扰消除技术应用于源自其它小区的信号,可能需要了解某些信号格式参数以便配置接收器。对于解码前IC,资源分配、调制格式、应用的任何预编码、层数等都可能是有用的,并且可经由盲估计、窃取其它小区控制信令或经由NW帮助特征来获得。对于解码后,需要另外的传送格式参数,这些参数通常只可通过接收或窃取有关控制信令而获得。但是,不同类型的接收器可能需要不同的信息和/或参数,并且需要不同类型的接收器来盲估接收器实现所需的所有参数。另外,可适用于LTE的众多通信标准可包括需要无线装置支持但是不会由网络使用(取决于配置)并且会使得盲检测变得困难和复杂的许多特征。当前,LTE标准中没有定义信令来为无线装置提供以有限的复杂度实现高级接收器所需的帮助。

技术实现要素:
根据一些实施例,提供系统和方法,它们包括通过网络节点向第一无线装置提供干扰特征数据以便在执行干扰抑制时使用。在一个示例实施例中,一种通过网络节点提供干扰特征数据的方法可包括为与网络节点相关联的第一无线装置提供电信服务。可通过网络节点标识与第二无线装置相关联的干扰信号的至少一个特性相关联的特性数据。可将与第二无线装置相关联的干扰信号相关联的特性数据传送给第一无线装置。所述至少一个特性可标识从与干扰信号相关联的至少一个物理资源块对配置的资源分配粒度。在另一个示例实施例中,一种用于提供干扰特征数据的网络节点可包括包含可执行指令的存储器和与存储器通信的一个或多个处理器。所述一个或多个处理器可执行指令以使得网络节点为与网络节点相关联的第一无线装置提供电信服务。可标识与第二无线装置相关联的干扰信号的至少一个特性相关联的特性数据。可将与第二无线装置相关联的干扰信号相关联的特性数据传送给第一无线装置。所述至少一个特性可标识从与干扰信号相关联的至少一个物理资源块对配置的资源分配粒度。在又一个示例实施例中,一种通过第一无线装置利用干扰特征数据来进行干扰抑制的方法可包括接收标识预计给第二无线装置的干扰信号的至少一个特性的特性数据。可从向第一无线装置提供电信服务的网络节点接收特性数据。所述至少一个特性可标识从与干扰信号相关联的至少一个物理资源块对配置的资源分配粒度。包含所述至少一个特性的特性数据可用于形成与干扰信号有关的一些特性的估计值。然后,可基于与干扰信号有关的这些特性的估计值抑制预计给第二无线装置的干扰信号。在再一个示例实施例中,一种利用干扰特征数据进行干扰抑制的第一无线装置包括包含可执行指令的存储器和与存储器通信的一个或多个处理器。所述一个或多个处理器可执行指令以使得第一无线装置接收标识预计给第二无线装置的干扰信号的至少一个特性的特性数据。可从向第一无线装置提供电信服务的网络节点接收特性数据。所述至少一个特性标识从与干扰信号相关联的至少一个物理资源块对配置的资源分配粒度。包含所述至少一个特性的特性数据可用于形成与干扰信号有关的一些特性的估计值。然后,可基于与干扰信号有关的这特性的估计值抑制预计给第二无线装置的干扰信号。本公开的一些实施例可提供一个或多个技术优点。例如,在某些实施例中,系统和方法允许无线装置在执行各种形式的干扰消除和/或抑制技术时在干扰的各种特性的盲估计和检测上花费更少的精力。因此,一个技术优点是,无线装置所花精力的减少降低了装置复杂度。一个另外的技术优点是增加的性能,因为提供的特征数据减小了无线装置必须考虑的搜索空间。相应地,降低了进行错误估计和检测的风险。其它优点是,可降低无线装置的电池消耗。还有的优点是,无线装置的设计者可对各种盲估计和检测技术应用更严的公差和/或阈值。一些实施例可得益于这些优点中的一些或所有优点,或不得益于这些优点中的任何优点。本领域技术人员可容易地弄清其它技术优点。附图说明为了更完整地了解本发明及其特征和优点,现在结合附图参考以下详细描述,图中:图1是示出根据某些实施例的无线电信网络的实施例的框图;图2是根据某些实施例的部署宏小区和微微小区的示例无线电信网络的示意图;图3是根据某些实施例的LTE中的示例下行链路物理资源的示意图;图4是根据某些实施例的LTE中的时域结构的示例的示意图;图5是根据某些实施例的LTE下行链路子帧内的PDCCH、PDSCH和CRS的示例映射的示意图;图6是根据某些实施例的下行链路子帧的示意图;图7是根据某些实施例用于LTE中的ePDCCH的示例UE特定参考符号指派的示意图;图8是根据某些实施例示出参考信号的潜在位置的资源块对上的示例资源元素栅格的示意图;图9是根据某些实施例在异构小区场景中的示例上行链路和下行链路覆盖的示意图;图10是根据某些实施例在小区间干扰协调场景中的宏小区和微微小区的示例低干扰下行链路子帧的示意图;图11是根据某些实施例在LTE中的预编码空间复用模式的示例传送结构的示意性框图;图12是根据某些实施例具有预编码的四天线系统的示例码字-层映射的示意性框图;图13是示出根据某些实施例用于提供和接收特征数据以便进行干扰抑制的方法的流程图;图14是示出根据某些实施例的无线电网络节点的某些实施例的框图;图15是示出根据某些实施例的无线装置的某些实施例的框图;以及图16是示出根据某些实施例的核心网络节点的某些实施例的框图。具体实施方式附图的图1-16中描述了特定实施例,类似数字用于各图的类似和对应部分。图1是示出无线电网络100的实施例的框图,无线电网络100包括一个或多个无线装置110、无线电网络节点115、无线电网络控制器120和核心网络节点130。无线装置110可通过无线接口与无线电网络节点115通信。例如,无线装置110可将无线信号传送给无线电网络节点115和/或从无线电网络节点115接收无线信号。无线信号可包含语音业务、数据业务、控制信号和/或任何其它合适的信息。无线电网络节点115可与无线电网络控制器120对接。无线电网络控制器120可控制无线电网络节点115,并且可提供某些无线电资源管理功能、移动管理功能和/或其它合适的功能。无线电网络控制器120可与核心网络节点130对接。在某些实施例中,无线电网络控制器120可经由互连网络与核心网络节点130对接。互连网络可以指能够传送音频、视频、信号、数据、消息或前述任意组合的任何互连系统。互连网络可包括以下网络中的所有或一部分:公共交换电话网络(PSTN);公共或私人数据网络;局域网(LAN);城域网(MAN);广域网(WAN);局部、区域或全局通信或计算机网络,例如互联网、有线或无线网络、企业内联网或任何其它合适的通信链路,包括其组合。在一些实施例中,核心网络节点130可管理通信会话的建立和无线装置110的各种其它功能性。无线装置110可利用非接入层与核心网络节点130交换某些信号。在非接入层信令中,无线装置110和核心网络节点130之间的信号可通过无线电接入网络透明地传递。如上所述,网络100的示例实施例可包括一个或多个无线装置110和一个或多个不同类型的能够与无线装置110(直接或间接地)通信的网络节点。网络节点的示例包括无线电网络节点115、120和核心网络节点130。网络还可包括适合支持无线装置110之间或无线装置110和另一个通信装置(例如,固定电话)之间的通信的任何另外的元件。无线装置110、无线电网络节点115、无线电网络控制器120和核心网络节点130中的每一个都可包括硬件和/或软件的任何合适的组合。下文分别关于图14、15和16描述无线装置110、无线电网络节点115和网络节点(例如,无线电网络控制器120或核心网络节点130)的特定实施例的示例。本文中所使用的术语无线装置110和网络节点115视为是一般术语,并且想视为是非限制性的。例如,“网络节点”可对应于任何类型的无线电网络节点或任何网络节点,它与无线装置110和/或另一个网络节点115通信。网络节点115的示例可包括但不限于节点B、基站(BS)、多标准无线电(MSR)无线电节点(例如,MSRBS)、eNodeB、网络控制器、无线电网络控制器(RNC)、基站控制器(BSC)、控制中继的中继施主节点、基站收发器(BTS)、接入点(AP)、传送点、传送节点、RRU、RRH、分布式天线系统(DAS)中的节点、核心网络节点(例如,MSC、MME等)、O&M、OSS、SON、定位节点(例如,E-SMLC)、MDT等。另外,“无线装置”可与用户设备(UE)互换使用,并且可以指与网络节点115和/或与蜂窝或移动通信系统中的另一个无线装置110通信的任何类型的无线装置。无线装置110的示例包括目标装置、装置到装置(D2D)UE、机器型UE或能够进行机器到机器(M2M)通信的UE、PDA、iPDA、平板、移动终端、智能电话、膝上型嵌入式设备(LEE)、膝上型安装式设备(LME)、USB电子狗、或任何其它合适的无线装置。无线装置110、无线电网络节点115和核心网络节点130可利用任何合适的无线电接入技术,例如长期演进(LTE)、高级LTE、UMTS、HSPA、GSM、cdma2000、WiMax、WiFi、另一种合适的无线电接入技术或一种或多种无线电接入技术的任何合适的组合。出于举例的目的,可在诸如3GPP长期演进(LTE)技术的某些无线电接入技术的上下文中描述各种实施例,3GPP长期演进(LTE)技术是移动宽带无线通信技术,其中利用正交频分复用(OFDM)来发送从无线电网络节点115(它们可包括基站,例如在特定实施例中称为eNB的基站)到无线装置(它们也可称为用户设备(UE))的传送。OFDM在频率中将信号分割成多个平行副载波。LTE中的基本传送单元是资源块(RB),在它的最常见配置中,它由12个副载波和7个OFDM符号(一个时隙)组成。一个副载波和1个OFDM符号的单元称为资源元素(RE)。但是,一般意识到,本公开不限于3GPPLTE或其它提供的示例,并且其它实施例可利用不同的无线电接入技术。为了满足更高的容量要求,网络100可包括异构网络,异构网络包括具有不同大小和重叠覆盖区域的小区的混合。图2是根据某些实施例部署宏小区202和微微小区204的示例无线电信网络200的示意图。如图所示,网络200包括一个宏小区202,该宏小区202包括部署在宏小区202的覆盖区域内的多个微微小区204A-C。在特定实施例中,微微小区204A-C可由比网络节点208消耗更少功率的较低功率节点206A-206C提供服务。例如,服务于宏小区202的网络节点208可与46dBm的输出功率相关联,而较低功率节点206A-C可与30dBm或更小的输出功率相关联。输出功率的较大差异可导致与在其中所有基站具有相同输出功率的网络中所见的干扰情形不同的干扰情形。异构网络中的低功率节点(又称为点)的其它示例是家庭基站和中继站。在宏小区202内使用低功率节点206A-C的目的是凭借小区分割增益改善系统容量。另一个目的是为用户提供整个网络200内的非常高速的数据存取的广域体验。异构部署在覆盖业务热点中尤其有效,并且代表更密集的宏网络的备选部署,其中业务热点可包括由较低功率节点206A-C提供服务的具有高用户密度的小型地理区域。某些实施例可在网络200的不同层之间应用频率分隔。因此,在特定实施例中,宏小区202和微微小区204A-C可在不同的非重叠载波频率上操作,并且从而避免这些层之间的任何干扰。在没有对底层小区的宏小区干扰的情况下,当宏小区202和微微小区204A-C可同时使用所有资源时,可实现小区分割增益。但是,在不同载波频率上操作各层的缺点是资源利用效率低下。例如,当微微小区204A-C中的活动等级较低时,可通过在宏小区202中利用所有载波频率并忽视微微小区204A-C来更有效地操作网络200。但是,由于层间的载波频率的分割通常以静态方式进行,所以可能不能基于微微小区204A-C中的活动等级来调整网络200的操作。有效操作异构网络200的另一个相关技术是通过协调跨越宏小区202和微微小区204A-C的传送来共享相同载波频率上的无线电资源。这种协调类型称为小区间干扰协调(ICIC),其中在某个时间周期期间为宏小区分配某些无线电资源,而底层小区可在没有来自宏小区的干扰的情况下存取剩余资源。取决于层间的业务情形,这种资源分割可随时间改变以便适应不同的业务需求。与在宏小区202和微微小区204A-C之间利用载波频率的分割来操作网络200相比,取决于网络节点208和低功率节点206A-C之间的接口的实现,可或多或少地使在层间共享无线电资源的ICIC变得动态。例如,在LTE中,规定了X2接口,以便在网络节点208和低功率节点206A-C之间交换不同类型的信息。这种信息交换的一个示例是,每个低功率节点206A-C能够告知其它低功率节点206A-C和网络节点208它将减小它在某些资源上的传送功率。但是,需要低功率节点206A-C之间的时间同步化以便确保层间的ICIC将在异构网络200中有效地起作用。这对于在相同载波上在时间上共享资源的基于时域的ICIC方案尤其重要。在某些实施例中,LTE网络200中的物理层传送可以是下行链路中的OFDM和上行链路中的DFT-扩展OFDM。图3是根据某些实施例的LTE中的示例下行链路物理资源300的示意图。在示例实施例中,基本LTE物理资源300因而可视为是时间-频率栅格。每个资源元素302可在一个OFMD符号间隔期间对应于一个副载波306。图4是根据某些实施例的LTE中的时域结构的示例的示意图。在时域中,将LTE下行链路传送组织成无线电帧306,例如图3中所描绘的无线电帧。在特定实施例中,每个无线电帧306可以是10ms,并且可由10个1ms的相同大小的子帧404组成。子帧可划分成两个时隙,每个时隙为0.5ms时间的持续时间。在某些实施例中,可以用资源块(RB)来描述LTE网络中的资源分配。在特定实施例中,RB可对应于时域中的一个时隙和频域中的12个连续15kHz副载波。时间上连续的两个RB可视为是RB对,并且可对应于在其上进行调度的时间间隔。可在每个子帧中动态地调度LTE中的传送,其中诸如无线电网络节点115的无线电网络节点经由物理下行链路控制信道(PDCCH)或增强型PDCCH(ePDCCH)将下行链路指派和上行链路准许传送给无线装置110。在LTE下行链路中,通过物理下行链路共享信道(PDSCH)携带数据,并且在上行链路中,对应链路可称为物理上行链路共享信道(PUSCH)。在每个子帧中的第一个(前几个)OFDM符号中传送PDCCH,并且PDCCH可跨越(差不多)整个系统带宽。相反,在用于PDSCH的相同资源区域内的RB上映射ePDCCH。因此,在频域中与PDSCH一起复用ePDCCH,并且可在整个子帧内分配ePDCCH。在某些实施例中,已经解码由PDCCH或ePDCCH携带的指派的无线装置110可知道子帧中哪些资源元素包含针对无线电网络节点115的数据。类似地,在接收到上行链路准许时,无线装置110也可知道无线装置110应当在哪些时间/频率资源上传送。在各种实施例中,无线装置110解调制所接收的数据。数据的解调制可能需要对无线电信道进行估计。这种估计可利用接收无线装置110已知的传送的参考符号(RS)来进行。在LTE特定网络100中,在所有下行链路子帧中传送小区特定参考符号(CRS)。另外,为了帮助下行链路信道估计,还利用CRS来进行通过无线装置110执行的移动性测量。LTE特定网络100还可支持无线装置特定RS。因此,出于帮助信道估计以进行解调制的目的,可提供解调制参考信号(DMRS)。图5是根据某些实施例在LTE下行链路子帧502内的PDCCH、PDSCH和CRS的示例映射500的示意图。在所描绘的示例实施例中,PDCCH占据子帧502的控制区域504。例如,控制区域504可包括子帧502中的前三个可能的OFDM符号。结果,由PDSCH携带的数据的映射可能已经在第二个OFDM符号开始。由于CRS对于小区中的所有无线装置110是共同的,所以CRS508的传送无法轻易地调适成适合特定无线装置110的需要。与上述DMRS相比,与每个无线装置110相关联的小区特定参考信号510可作为PDSCH的一部分放置在数据区域506中。在LTE特定网络110中,每个子帧502可作为MBSFN子帧进行配置。结果,在每个子帧502内,CRS510只可存在于控制区域504中。在某些实施例中,PDCCH控制区域504的长度可在逐个子帧的基础上改变,并且可在物理控制格式指示符信道(PCFICH)中传达给无线装置110。在控制区域504内为无线装置110所知的位置处传送PCFICH。在无线装置110解码PCFICH之后,无线装置110于是知道控制区域504的大小以及数据传送在哪个OFMD符号中开始。也可在控制区域504中传送物理混合ARQ指示符信道(PHICH)。该信道携带对无线装置110的ACK/NACK响应,以便告知无线装置110接收网络节点115是否成功解码之前子帧502中的上行链路数据传送。图6是根据某些实施例的下行链路子帧600的示意图。如图所示,增强型控制信道的形式的控制信息602的UE特定传送。增强型控制信道可通过基于UE特定参考信号利用这些传送将一般控制消息传送到无线装置110并通过在子帧502的数据区域506中放置控制数据602来实现。在图6中所描绘的特定实施例中,下行链路子帧600包括10个资源块对604和三个增强型PDCCH区域602A-C的配置。在一个特定示例中,每个增强型PDCCH区域602A-C可以是1个PRB604对的大小。剩余RB对可用于PDSCH传送。图7是根据某些实施例用于LTE中的ePDCCH的示例UE特定参考符号指派700的示意图。在所描绘的示例中,增强型控制信道利用天线端口来进行解调制。因此,由指派700的R7和R9表示的参考符号分别与对应于天线端口107和109的DMRS相关联。天线端口108和100可通过分别在R7和R9的相邻对上作为(1,-1)应用正交覆盖来获得。数据区域中的UE特定参考符号的一个益处是,可为控制信道实现预编码增益。另一个优点是,可将不同的PRB对604(如图6中举例描绘)分配给不同小区或小区内的不同传送点。因此,在某些实施例中,可在控制信道之间实现小区间或点间干扰协调。这种技术在HetNet场景中尤其有用,这将在下文更详细地论述。可意识到,CRS并不是LTE特定网络100中可用的唯一参考符号。可用的其它RS包括用于解调制PDSCH的装置特定RS。另外,提供来自无线装置110的信道状态信息(CSI)反馈的RS也可用。后一RS称为CSI-RS。CSI-RS可能不会在每个子帧604中传送,并且一般在时间和频率上比用于解调制的RS更稀疏。例如,在某些实施例中,根据RRC配置的周期性参数和/或RRC配置的子帧偏移,CSI-RS传送可在每第5、10、20、40或80个子帧604进行。在某些实施例中,无线电网络节点115可请求在连接模式操作的无线装置110执行信道状态信息(CSI)报告。这种请求可包括请求无线装置110向无线电网络节点115报告合适的秩指示符(RI)、一个或多个预编码矩阵索引(PMI)和信道质量指示符(CQI)的请求。另外或备选地,可请求其它类型的CSI,包括显式信道反馈和干扰协方差反馈。在某些实施例中,CSI反馈帮助无线电网络节点115进行调度。例如,CSI反馈可帮助无线电网络节点115确定用于传送的子帧和RB、使用哪个传送方案/预编码器、以及提供关于传送的正确用户位速率的信息。在LTE中,支持周期性和非周期性CSI报告。在周期性CSI报告的情况下,无线装置110在物理上行链路控制信令(PUCCH)上在配置的周期性时间基础上报告CSI测量。相反,在非周期报告的情况下,在从基站接收CSI准许之后的预先指定的时刻在物理上行链路共享信道(PUSCH)上传送CSI反馈。在非周期性CSI报告的情况下,无线电网络节点115可在特定子帧中请求反映下行链路无线电状况的CSI。大批的这些和其它反馈模式都可用。取决于特定实现,无线电网络节点115可将无线装置110配置成在PUSCH上根据一种反馈模式进行报告、而在PUCCH上根据另一种反馈模式进行报告。在某些实施例中,PUSCH上的非周期性模式分别称为PUSCH1-2、2-0、2-2、3-0、3-1,而PUCCH上的周期性模式分别称为1-0、1-1、2-0、2-1。图8是根据某些实施例示出参考信号的潜在位置的资源块对上的示例资源元素栅格800、802和804的示意图。具体来说,图8示出用于描绘装置特定RS、CSI-RS(用对应于CSI-RS天线端口的数字标记)和CRS(蓝色和深蓝色)的潜在位置的示例资源元素栅格800、802和804。CSI-RS可利用长度为2的正交覆盖码来在两个连续资源元素上覆盖两个天线端口。可见,许多不同的CSI-RS模式可用。对于栅格802中的2个CSI-RS天线端口的情形,可意识到,子帧内有20个不同的模式。对于具有4个CSI-RS天线端口的栅格802,对应的模式数量是10,而对于具有8个CSI-RS天线端口的栅格804,对应的模式数量是5。对于TDD,有另外的CSI-RS模式可用。CSI-RS资源可对应于特定子帧中存在的特定模式。例如,相同子帧中的两种不同模式或不同子帧中的相同CSI-RS模式构成两个独立的CSI-RS资源。CSI-RS模式也可对应于所谓的零功率CSI-RS(又称为静默的资源元素)。零功率CSI-RS对应于其资源元素为静止的、即不在那些资源元素上传送信号的CSI-RS模式。这些静止模式配置有对应于诸如栅格802的4天线端口CSI-RS模式的分辨率。因此,静止的最小单元可对应于4个资源元素。零功率CSI-RS的目的是通过在干扰小区中配置零功率CSI-RS以使得否则造成干扰的资源元素静止来提升小区中的CSI-RS的信噪比。因此,某个小区中的CSI-RS模式与干扰小区中的对应的零功率CSI-RS模式匹配。提升CSI-RS测量的信噪比等级在诸如协调多点(CoMP)的应用中或在异构部署中尤其重要。在CoMP中,无线装置110可能需要测量来自非服务小区的信道,并且来自强得多的服务小区的干扰在那种情况下会是灾难性的。在异构部署中也需要零功率CSI-RS,其中将宏层中的零功率CSI-RS配置成使得它与微微层中的CSI-RS传送一致。这避免了在无线装置测量到微微节点的信道时来自宏节点的强干扰。可在由CSI-RS和零功率CSI-RS占据的资源元素周围映射PDSCH。因此,重要的是,网络节点115和无线装置110都假设相同的CSI-RS/零功率CSI-RS配置,否则无线装置110可能不能在包含CSI-RS或它们的零功率对的子帧中解码PDSCH。在LTE型无线装置110可与LTE网络通信之前,无线装置110必须找到并且获取到网络内的小区的同步。换句话说,无线装置110必须执行小区搜索。然后,无线装置110接收并解码与小区通信并在小区内正确地操作、并且最终通过所谓的随机访问过程访问小区所需的系统信息。为了支持移动性,无线装置110必须不断搜索它的服务小区和邻居小区,与它的服务小区和邻居小区同步,并估计它的服务小区和邻居小区的接收质量。然后,相对于当前小区的接收质量评估邻居小区的接收质量,以便推断是否应当进行交接(对于连接模式的无线装置110)或小区重新选择(对于空闲模式的无线装置110)。对于连接模式的无线装置110,通过网络组件基于由无线装置110提供的测量报告做出交接决定。这些报告的示例是参考信号接收功率(RSRP)和参考信号接收质量(RSRQ)。取决于如何使用这些测量,在某些场景中,无线装置110可连接到具有最强接收功率的小区。或者,无线装置110可连接到具有最佳路径增益的小区。在一些实施例中,可在最强接收功率和最佳路径增益之间达成妥协。这些和其它选择策略不会导致选择相同的小区,因为不同类型的小区的输出功率并不相同。这有时称为链路不平衡。例如,返回到图2,微微低功率节点206A-C或中继站的输出功率可以是大约30dBm或更小,而宏无线电网络节点(例如,无线电网络节点208)可具有大约46dBm的输出功率。因此,即使在微微小区204A-C的附近,来自宏小区202的下行链路信号强度仍可大于微微小区204A-C的信号强度。从下行链路的角度,较佳的是基于下行链路接收功率选择小区,而从上行链路的角度,较佳的是基于路径损耗选择小区。图9是根据某些实施例在异构小区场景中的示例上行链路和下行链路覆盖900的示意图。考虑上述场景,其中从系统的角度,较佳的情形可能是连接到微微小区902,即使宏下行链路比微微小区下行链路强得多。但是,当无线装置110在UL边界906和DL边界908之间的区域内操作时,由于该区域可视为是链路不平衡区910,所以可能需要ICIC。跨越小区层的某种形式的干扰协调对于下行链路控制信令尤其重要。如果没有消除或以其它方式抑制干扰,那么位于不平衡区910中并由微微无线电网络节点912提供服务的无线装置110可能不能从微微无线电网络节点912接收下行链路控制信令。图10是根据某些实施例在小区间干扰协调场景中对于宏小区和微微小区的示例性低干扰下行链路控制信号1000的示意图。具体来说,第一信号1004描绘宏小区(例如,图9的宏小区906)的示例控制信号。第二信号1006描绘微微小区(例如,微微小区902)的示例控制信号。在某些实施例中,宏无线电网络节点914可跨越如图9所示的层提供ICIC。例如,宏无线电网络节点914可避免在某些子帧中调度单播业务。这样做意味着,PDCCH和PDSCH均没有出现在那些子帧中。因此,宏无线电网络节点914可创建低干扰子帧1008,它们可用于保护无线装置110在链路不平衡区910中操作。宏无线电网络节点914(在某些实施例中,它可包括MeNB)经由回程接口X2向微微无线电网络节点(在某些实施例中,它可包括PeNB)指示。具体来说,宏无线电网络节点914可标识它将避免在哪些低干扰子帧1008内调度无线装置110。微微无线电网络节点912可在调度在链路不平衡区910内操作的无线装置110时利用该信息。例如,可在与宏层中的低干扰子帧1008对准的子帧1010中调度位于链路不平衡区910内的无线装置110。因此,可保护微微层子帧1010。在其它实施例中,可在所有子帧、即在受保护子帧1010和未受保护的子帧1012中调度在链路不平衡区910内操作的无线装置110。也可通过确保两个小区层中的调度决定在频域中不重叠来在频域中分隔这两个不同小区层中的数据传送。例如,可交换消息以便在不同无线电网络节点之间协调数据传送。但是,这种协调对于符合LTE规范的控制信令可能是不可能的,从而需要控制信号跨越整个带宽。因此,对于控制信令,必须改为使用时域方法。在某些实施例中,多天线技术可显著增加无线通信系统的数据速率和可靠性。如果传送器和接收器均配备有多个天线,从而导致多输入多输出(MIMO)通信信道,那么尤其改善性能。这些系统和/或相关技术可称为MIMO。LTE标准当前正与增强型MIMO支持一起发展。LTE中的核心组成是MIMO天线部署和MIMO相关技术的支持。当前,LTE支持多达8个传送天线的8层空间复用以及可能信道相关的预编码。空间复用模式针对有利信道状况中的高数据速率。图11是根据某些实施例在LTE中的预编码的空间复用模式的示例传送结构1100的示意性框图。如图所描绘,预编码器1106可从层1108A-N接收携带符号向量的数据1104A-N。预编码器1106进行操作以便将数据1104A-N乘以NTxr预编码器矩阵,由此用于经由对应数量的快速傅立叶逆变换1112A-N在NT(对应于NT个天线端口1110)维度向量空间中分发传送能量。预编码器矩阵可选自可能的预编码器矩阵的码本,并且通常用预编码器矩阵指示符(PMI)指示,PMI规定码本中对于给定数量的符号流的唯一预编码器矩阵。例如,如果预编码器矩阵局限于具有正交列,那么预编码器矩阵的码本的设计对应于格拉斯曼子空间装填问题。s中的符号r各自对应于一层,并且r称为传送秩。以此方式,实现空间复用,因为可在相同时间/频率资源元素(TFRE)上同时传送多个符号。符号r的数量可调适成适合当前信道性质。在LTE特定实施例中,可在下行链路中使用正交频分复用(OFDM),而在上行链路中可使用离散傅立叶变换预编码的OFDM。因此,在副载波n(或备选地在数据TFRE数n)上的某个TFRE的接收的NRx1向量yn可通过下式建模:其中en是作为随机过程的实现获得的噪声/干扰向量。在特定实施例中,预编码器可以是在频率上恒定或频率选择性的宽带预编码器。在某些实施例中,预编码器106可利用经选择以便与NRxNTMIMO信道矩阵H的特性匹配的预编码器矩阵,从而导致所谓的信道相关预编码。这可称为闭环预编码。闭环预编码的目的是将能量集中到较强的子空间,以便将传送的许多能量传达给无线装置110。另外,也可选择预编码器矩阵以便谋求信道的正交化。因此,在无线装置110处正确线性均衡化之后,可减小层间干扰。在LTE下行链路的闭环预编码中,基于正向链路(下行链路)中的信道测量,无线装置110向无线电网络节点115传送使用合适预编码器的建议。在某些备选实施例中,无线电网络节点115可选择使用如此推荐的预编码器或决定使用其它预编码器。尽管来自无线装置110的报告可能局限于码本,但是来自无线电网络节点115的传送可能或者可能不局限于码本。前一情形对应于传送侧上的基于所谓的码本的预编码,并且通常与基于CRS的数据传送相关联。传送不局限于预编码器码本的情形可依靠基于解调制参考信号(DMRS)的传送,并且可称为非基于码本的预编码。在特定实施例中,可反馈料想覆盖大带宽的单个预编码器(即,宽带预编码)。可实现另外益处,其中信道的频率变化是匹配的,并作为频率选择性预编码报告(例如,若干个预编码器,每个子带一个)反馈。这是信道状态信息(CSI)反馈的更一般情形的示例,它还涵盖将与帮助无线电网络节点115随后传送的预编码器不同的其它实体反馈给无线装置110。这些其它信息可包括信道质量指示符(CQI)以及传送秩指示符(RI)。对于LTE上行链路,使用闭环预编码意味着无线电网络节点115选择预编码器和传送秩,并且此后发信号通知料想无线装置110将使用的选择的预编码器。在某些实施例中,可采用空间-频率块编码(SFBC)作为用于LTE特定网络中的传送分集的方案。SFBC利用Alamouti代码来在天线端口上以及在频域中扩展信息。但是,SFBC一般还包括整个类别的正交空间-频率(空间-时间)块代码。对于两个天线端口,SFBC一次采用两个符号sk和sk+1作为输入,并且如以下码字矩阵所描述在频率和空间上分配这些符号:其中行对应于不同的天线端口,而列对应于副载波维度,并且()c表示复共轭。通常,选择两个连续副载波,并且可在后面(inthesequel)假设它们。但是,这只是基于Alamouti的SFBC矩阵的一个示例。可使用其它示例矩阵。例如,可以用各种方式对矩阵进行转置和共轭,以及用酉矩阵预编码,并且结果仍将是等效的基于Alamouti的SFBC码字。即使使用这类变换的SFBC,仍可获得与本文中所描述的结果类似的对应结果。在包括四个天线端口的一个示例中,一次性在两个天线端口处传送SFBC,并且这两个端口从一个副载波切换到另一个副载波(频率切换传送分集FSTD)。SFBC的密切相关的备选是空间-时间块编码(STBC)。于是,用时间维度来取代频率维度,并且在LTE中,时间维度可能对应于连续OFDM符号。还应注意,SFBC(STBC)的概念可推广至多于两个传送天线,并且对于更大的传送天线阵列,也可使用SFBC(STBC)和诸如频率切换传送分集(FSTD)或循环延迟分集(CDD)的其它技术的组合。出于说明的目的,考虑2传送天线端口设置,并考虑对应于两个连续副载波的两个接收向量。这给出如下接收矩阵:其中假设信道在这两个相关副载波上保持恒定。在某些实施例中,可使用码字和码字-层映射。针对基于分组的通信的无线通信系统可包括物理层上的混合ARQ(HARQ)功能性以便对无线电信道的损伤实现鲁棒性。LTE和WCDMA是其中这种功能性可用的系统的两个示例。HARQ背后的基本思想是通过编码包含数据块的信息、然后增加诸如循环冗余校验(CRC)的错误检测信息来组合正向纠错(FEC)和ARQ。在接收编码数据块之后,可将它解码,并且可利用错误检测机制来检查是否成功解码。如果没有错误地接收数据块,那么将ACK发送给传送器以便指示数据块的成功传送,并且接收器为新数据块做好准备。另一方面,如果没有正确解码数据块,那么可发送NACK。NACK指示接收器预期相同数据块的重新传送。在接收重新传送之后,接收器可选择独立地解码它或在解码过程中利用相同数据块的一些或所有之前接收。在某些实施例中,源自信息位的相同块的编码位可称为码字。这也可以是LTE中用于描述来自服务于特定传送块的单个HARQ过程的输出的术语,并且包括turbo编码、速率匹配、交错等。然后,可调制并在天线上分配码字。第一(调制)码字可例如映射到前两个天线,而第二码字可映射到四传送天线系统中的剩余两个天线。图12描绘根据某些实施例的示例码字映射1200。如图所描绘,映射1200包括五个天线排名1202、1204、1206、1208和1210。每个天线排名包括由预编码器1212接收以便输出到一个或多个天线1216的至少一个码字1210。天线排名1206、1208和1212还示出由预编码器接收的码字数据1210。在某些实施例中,可结合多天线传送利用预编码,以便在可能考虑当前信道状况的同时混合调制符号并在天线上分配调制符号。这可通过将携带符号向量的信息乘以经选择与信道匹配的矩阵来实现。符号向量将包含来自可能所有码字的调制符号,并且这些码字因而映射到符号向量的序列。这些序列形成并行符号流的集合,并且每个这样的符号流称为层。因此,取决于预编码器选择,层可直接对应于某个天线,或者它可经由预编码器映射分配到若干个天线上。在多天线系统(又称为MIMO系统)中,在某些实施例中,可一次性从若干个HARQ过程传送数据。这又可称为多码字传送。取决于信道状况,这可实质增加数据速率,因为在有利状况中,信道可大致支持像传送和接收天线的最小数量那样多的码字。高速率多天线传送领域中的信道状况的最重要特性之一是所谓的信道秩。粗略地讲,信道秩可从1到传送和接收天线的最小数量变化。考虑4×2系统作为一个示例。4×2系统包括4个传送天线和2个接收天线。在该系统中,最大信道秩是2。当快速衰减改变信道系数时,信道秩及时改变。此外,信道秩确定可同时成功传送多少层以及最终多少码字。因此,如果在将两个码字映射传送到两个独立层的时刻信道秩为1,那么对应于码字的这两个信号非常大概率将造成干扰,从而使得在接收器处错误地检测到这两个码字。结合预编码,调适传送以适应信道秩可涉及利用像信道秩那么多的层。在最简单的情况下,每个层可对应于一个特定天线。于是,出现如何将码字映射到层的问题。取LTE中的4个传送天线的情形作为示例,码字的最大数量局限于2,同时可传送多达4层。在某些实施例中,可利用随固定秩的映射,例如图12中所描绘的映射1200。一般来说,CoMP传送和接收是指这样的系统,其中对多个地理上分离的天线站点处的传送和/或接收进行协调,以便提高系统性能。更具体来说,CoMP是指协调具有不同的地理覆盖区域和/或以不同方式覆盖的覆盖区域的天线阵列。如本文中所论述,以某种方式覆盖某个地理区域的天线可称为点,或更具体来说,可称为传送点(TP)。协调可通过不同站点之间的直接通信或通过中央协调节点来分配。CoMP是在LTE中为了改善高数据速率的覆盖、小区边缘吞吐量和/或增加系统吞吐量而引入的工具。具体来说,目的是通过降低干扰和/或更好地预测干扰、从而控制系统中的干扰来在网络中更均匀地分布用户察觉的性能。CoMP操作瞄准许多不同的部署,包括蜂窝宏部署中的站点和扇区之间的协调、以及异构部署的不同配置,其中例如宏节点协调与宏覆盖区域内的微微节点的传送。有许多不同的CoMP传送方案可使用。一些示例CoMP传送方案包括:动态点消隐包括多个传送点和传送协调,以使得相邻传送点可使分配给经历显著干扰的无线装置的时间-频率资源(TFRE)上的传送静默;动态点选择允许到无线装置110的数据传送在不同传送点之间(在时间和频率上)动态地切换,以便充分利用传送点;协调波束形成要求传送点通过以使得对由相邻传送点服务的无线装置的干扰进行遏制的方式对传送功率进行波束形成来在空间域中协调传送;联合传送导致在相同时间/频率资源上同时从多个传送点传送信号到无线装置110。联合传送的目的是在没有考虑联合传送装置的情况下协作传送点否则将服务于一些其它无线装置110时增加接收信号功率和/或减少接收干扰。点的概念可结合协调多点(CoMP)的技术。在该上下文中,点对应于以类似方式覆盖基本上相同的地理区域的天线的集合。因此,点可对应于某个站点处的扇区之一,但是它也可对应于具有全都想要覆盖类似地理区域的一个或多个天线的站点。通常,不同点表示不同站点。当天线在地理上足够分离和/或在足够不同的方向具有天线图指向时,天线对应于不同点。与其中从调度的观点看一个点或多或少地独立于其它点操作的常规蜂窝系统相比,CoMP的技术需要在不同点中调度或传送/接收时引入相关性。DLCoMP操作可包括例如在频谱的重叠或非重叠部分上在不同时刻或对于给定子帧从多个点服务于某个无线装置110。服务于某个无线装置110的传送点之间的动态切换通常称为DPS(动态点选择)。在重叠资源上从不同点同时服务于无线装置110通常称为JT(联合传送)。点选择可基于例如信道、干扰或业务的即时状况。CoMP操作旨在对于例如数据(PDSCH)信道和/或诸如ePDCCH的控制信道执行。在某些实施例中,可提供CoMP反馈。CoMP传送方案的共同特征是,网络不仅需要服务TP的CSI信息,而且还需要将相邻TP链接到无线装置110的信道的CSI信息。通过例如每个TP配置唯一的CSI-RS资源,无线装置可通过对应CSI-RS上的测量为每个传送点解决有效信道。可意识到,CSI-RS资源可宽松地描述为是在其上传送特定CSI-RS配置的资源元素的模式。CSI-RS可通过由RRC信令配置的“resoureConfig”、“subrameConfig”和“antennaPortsCOunt”的组合确定。每个传送点的有效信道可通过以与用于CSI信道测量的参考符号相同的方式映射物理天线来解决。CoMP反馈构建在对应于CSI-RS资源集合中的每个CSI-RS资源的信道状态信息(CSI)的独立报告的每个CSI-RS资源反馈上。在某些示例实施例中,这种CSI报告可对应于表示用于相关联的CSI-RS(或用于信道测量的RS)的相同天线上的假设下行链路传送的推荐配置的预编码器矩阵指示符(PMI)、秩指示符(RI)和/或信道质量指示符(CQI)。更具体来说,可以采用与用于CSI信道测量的参考符号相同的方式将推荐的传送映射到物理天线。在特定实施例中,在CSI报告之间存在相互相关性。例如,它们可局限于具有相同的RI,即所谓的秩继承。通常,在CSI-RS和传送点之间存在一对一映射,在此情况下,每个CSI-RS资源反馈对应于每个传送点反馈。因此,为每个传送点报告独立的PMI/RI/CQI。eNodeB将所考虑的CSI-RS资源配置为CoMP测量集合。为了有效的CoMP操作,同样重要的是在确定CQI时捕获它将捕获合适的接收期望信号的合适的干扰假设。在不协调系统中,无线装置110可有效地测量从所有其它TP(或所有其它小区)观察的干扰,它将是即将到来的数据传送中的有关干扰等级。这些干扰测量通常通过在无线装置110减去CRS信号的影响之后分析CRS资源上的残余干扰来执行。在执行CoMP的协调系统中,这些干扰测量变得越来越不相干。最值得注意的是,在协调群集内,包括eNodeB的无线电网络节点115可在较大程度上控制在任何特定时间-频率资源元素(TFRE)中哪些TP会干扰无线装置110。因此,取决于哪些TP将数据传送到其它终端,可存在多个干扰假设。为了改善干扰测量,网络可将无线装置配置成测量标识即将用于对应干扰测量的时间和频率栅格中的特定资源元素集合的特定干扰测量资源(IMR)上的干扰。LTE规范中所使用的IMR的备选名称是CSI-IM。因此,网络可通过例如使IMR上的协调群集内的所有TP静默来控制在IMR上所见的干扰,在此情况下,无线装置110将有效地测量CoMP群集间干扰。此外,必不可少的是,给定不同CoMP传送假设,无线电网络节点115准确地评估无线装置110的性能,否则动态协调就毫无意义了。因此,系统可配置成还要跟踪/估计对应于不同传送和消隐假设的不同的群集内干扰等级。DLCoMP的一个基本性质是传送来自不同地理位置(点)的不同信号和/或信道的可能性。指导LTE系统的设计的原则之一是网络对无线装置110的透明性。换句话说,无线装置110能够在不具体知道其它无线装置110的调度指派或网络部署的情况下解调制并解码它的预计信道。基于参考信号(RS)的信道估计通常利用关于在其上传送不同RS(其中每个RS通常对应于称为天线端口的逻辑实体)的信道的类似性的假设。不同天线端口之间的类似信道性质的这些假设称为天线端口准共置(quasico-location)假设。将无线装置为某个信道类型(例如,为PDSCH或为ePDCCH)所做的总的共置假设收集到共置无线装置行为(或简称为“行为”)中。准共置的“准”部分是指共置不一定意味着关联到信道的天线端口的物理共置、而是关于列出的信道和信号性质的共置的事实。即使一般来说从每个天线端口到每个无线装置110接收端口的信道实质上是唯一的,一些统计性质和传播参数仍可能在不同天线端口中共同或类似,这取决于这些不同的天线端口是否源自相同点。这些性质包括例如每个端口的接收功率等级、延迟扩展、多普勒扩展、接收计时(即,第一显著信道抽头的计时)和频率偏移。通常,信道估计算法执行三步操作。第一步由估计信道的一些统计性质组成。第二步由基于这些参数生成估计滤波器组成。第三步由对接收信号应用估计滤波器以便获得信道估计值组成。滤波器可在时域或频域中等效应用。一些信道估计器实现可能不是明确地基于上述三步法,但是仍利用相同原理。在第一步中准确估计滤波器参数可导致改善的信道估计。即使无线装置110通过在单个子帧上对一个RS端口观察信道获得这些滤波器参数常常在原则上是可能的,但是通常可能的是无线装置110通过组合与共享类似统计性质的不同天线端口(即,不同RS传送)相关联的测量来提高滤波器参数估计精度。此外,信道估计精度可通过组合关联到多个物理资源块的RS来提高。网络可基于它对天线端口如何映射到物理点的了解来知道哪些RS端口与具有类似性质的信道相关联。但是,由于网络传送的透明性原则,无线装置110通常不知道这些信息。因此,可在LTE规范中引入天线端口准共置假设,以便确立无线装置110可假设哪些天线端口具有类似性质以及那些性质是什么。例如,在某些实施例中,在Rel-11中引入的新传送模式10支持利用在DL控制信道(如PDCCH或ePDCCH)上传送的DCI格式动态地发信号通知准共置信息。例如,与传送模式10相关联的DCI格式2D可用于发信号通知PDSCH的该DMRS并与特定CSI-RS资源和特定CRS共置。基本上,DCI格式中的消息状态可提供到用于定义消息状态的含义的CSI-RS资源的可配置表中的索引。在某些实施例中,可利用相同消息状态来发信号通知关于如何将PDSCH映射到资源元素栅格上的信息,包括在什么样的OFDM符号上开始PDSCH、围绕对应于CRS的哪些RE映射、假设什么样的MBSFN配置、和/或假设什么样的ZPCSI-RS配置。定义每个相关联的消息的含义的RRC可配置表通俗地称为PQI表,其中PQI代表PDSCH映射和准共置信息。对应地,消息状态本身可称为PQI指示符。如上所述,干扰消除的过程可得到大大改善和/或变得更加有效,其中网络节点115将与一个或多个干扰信号相关联的特征数据提供给无线装置110。图13示出根据某些实施例由网络节点(例如,图9中所描绘的网络节点206)执行以便向第一无线装置110A提供信令以在执行干扰消除或抑制时使用的方法。一般来说,用信号通知的特征数据可告知无线装置110A关于干扰的某些特性。另外或备选地,信令可告知无线装置110A干扰不具有的某些特性。本文中所描述的方法减少了无线装置盲目且潜在错误地估计干扰的特性的需要。该方法在步骤1302开始,其中网络节点206A为位于与该网络节点相关联的小区覆盖区域内的第一无线装置提供电信服务。在步骤1304,网络节点206A标识与第二无线装置110B相关联的干扰信号的至少一个特性相关联的特性数据。尽管所述至少一个特性是干扰信号特有的,但是在一些实施例中,还将意识到,所述至少一个特性可与多个干扰信号相关联。在特定实施例中,所述至少一个特性可适用于与小区204B的小区标识符相关联的所有干扰信号。在某些实施例中,所述至少一个特性可捆绑到位于与网络节点206A相关联的小区覆盖区域204A之外的相邻小区204B的小区标识符。因此,第二无线装置110B可位于与第一无线装置110A的小区相邻的小区中。例如,在异构网络中,小区标识符可以是与第一无线装置110的小区相邻的微微小区的小区标识符。根据特定实施例,所述至少一个特性可包括捆绑到相邻微微小区的小区标识符的与多个干扰信号相关联的多个特性。在步骤1306,网络节点206A将与干扰信号相关联的特性数据传送给第一无线装置110A。在某些实施例中,特性数据的传送可通过利用诸如RRC或MAC报头元素的较高层信令传达的信令来进行。在其它实施例中,它可利用例如诸如PDCCH/ePDCCH的DL控制信道动态地传达。尽管在特定实施例中可经由只寻址到第一无线装置110A的专用信号将特性数据传送到第一无线装置110A,但是将意识到,可将特性数据一次性地广播给多个无线装置。尽管提供的示例包括传送是从网络节点206A到第一无线装置110A,但是也可在网络节点208和无线装置110A之间直接发信号通知该信息。还将意识到,可在两个或两个以上网络节点之间、例如在网络节点206A和206B之间或在网络节点208和网络节点206A之间发信号通知信息内容。在某些实施例中,可在诸如X2的标准化协议上或以专有方式执行这种节点间信令。因此,如果第一无线装置110A从无线电网络节点206A接收涉及源于其它节点的干扰传送的特性的信令,那么可在将信息发送到第一无线装置110A的无线电网络节点和那些其它无线电网络节点之间进行相关信息交换。或者,可在空中从与第一无线装置110A的干扰视角相关的每个无线电网络节点206B直接传送信令。这种节点间信令也符合本公开。由无线电网络节点206A传送到第一无线装置110A的特性数据可包括可供第一无线装置110A用于消除和/或抑制干扰信号的任何信息。一般来说,所传送的特性数据可告知第一无线装置110A关于干扰信号可能具有或可能不具有的某些特性。在某些实施例中,特性数据可包括以下类型的数据的任意之一或任意组合。干扰的传送模式信息在某些实施例中,特性数据可关于与第一无线装置206A相关联的小区204A或相邻小区204B的干扰信号的传送模式数据。当前,在3gppLTE的11版中有10种不同的传送模式(TM)(TM1-10),并且在未来版本中可预期会有更多传送模式。在某些实施例中,由无线电网络节点206A提供的特性数据可标识第一无线装置110A可假设相邻小区正在使用哪个或哪些传送模式。具体来说,特性数据可标识与同相邻小区相关联的一个或多个干扰信号相关联的传送模式。在特定实施例中,特性数据可传达使用中的一个或多个传送模式。例如,在最简单的情况下,特性数据可标识可在网络上或至少在一个或多个相邻小区中共同使用的单个传送模式。因此,无线电网络节点206A可对于与第一无线装置110A相邻的每个小区运送介于TM1和TM10之间的单个TM值。在某些其它实施例中,无线电网络节点206A可传送单个TM值并协调相邻小区之间的传送模式。在这种实施例中,第一无线装置110A可假设在所有小区中使用相同TM。在其它实施例中,无线电网络节点206A可传送多个信号,并且每个信号可指示在每个相邻小区中使用装置特定参考符号(RS)还是小区特定RS传送模式。例如,在特定实施例中,一个或多个消息可标识相邻小区的TM子集,例如TM1、TM2、TM3、TM4、TM6、TM8、TM9和TM10。在这些实施例的任何实施例中,第一无线装置110A能够检测网络对每个相邻小区使用的准确TM。在某些实施例中,特性数据可包括代表与由获得信号通知的相邻小区使用的小区特定参考信号相关联的天线端口的数量的参数。例如,参数n1可标识一个天线端口与相邻小区的小区特定参考信号相关联。同样地,n2可标识两个天线端口与相邻小区的小区特定参考信号相关联。在特定实施例中,传送模式的信令可包括1个位或标识传送模式是基于DM-RS还是基于CRS的至少一些代码点。在标识多个TM的情况下,信令可包括每个TM一个位或代码。另外或备选地,特性数据可标识使用什么类型的DMRS模式。例如,在特定实施例中,特性数据可标识DMRS模式是与TM7还是与TM8-10相关联的模式。在其它实施例中,特性数据可包括对于特定数量的天线端口特有的传送模式数据。例如,在特定实施例中,特性数据可对应于具有2个天线端口的TM3或具有4个天线端口的TM3。这些特性数据允许第一无线装置110A区分2个和4个端口,由此可有助于第一无线装置110A,因为TM3的2个天线端口的情况比具有4个天线端口的TM3更普遍。在特定实施例中,提供标识传送模式的特性数据可帮助第一无线装置110A确定使用的是基于DM-RS的传送还是基于CRS的传送。传送模式数据还可使得第一无线装置110A能够确定第一无线装置110A应当假设传送分集还是闭环预编码,并且从而减少第一无线装置110A中的盲目假设检验的量。因此,尽管意识到在必要时第一无线装置110A可盲目地估计传送模式,但是提供传送模式数据的特性数据可降低对第一无线装置110A的计算要求。即使在特性数据标识可适用于干扰信号的多个传送模式的情况下,仍可减少第一无线装置110A的计算工作量。尽管特性数据可包括标识可能在使用中的一个或多个传送模式的数据,但是还将意识到,特性数据可包括标识不在使用中的一个或多个传送模式的数据。向第一无线装置110A提供这类数据减少了在执行干扰信号的特性数据的盲目检测时第一无线装置必须搜索的搜索空间。因此,第一无线装置110A可利用这些数据以便接着根据有限集合检测网络对每个相邻小区使用的传送模式。提供这类数据还可具有限制第一无线装置110A所需的计算复杂度的效应,并且可增加检测过程的可靠性。这类数据的传送可与上文所提供的过程类似。干扰的功率/能量等级在某些实施例中,特性数据可关于与第一无线装置206A相关联的小区204A或相邻小区204B的干扰信号的功率或能量等级。干扰消除技术通常依赖于对传送干扰符号的信道的了解,以便正确地估计干扰对接收信号的影响。在某些实施例中,特性数据可包括指示相关联小区或相邻小区的功率偏移的有限子集的第一参数PA。例如,功率偏移的有限子集可以针对相关联小区或相邻小区的QPSK、16QAM和64QAMPDSCH传送。有限子集可通过网络来设置,并且值可选自预先选择的值的群组。例如,在特定实施例中,功率偏移值可选自值-12、-9、-6、-4.77、-3、-1.77、0、1、2和3,其中-12和-9只适用于QPSK。在某些实施例中,特征数据可包括有限子集中的功率偏移值的最大数字。例如,在某些实施例中,功率偏移值的最大数字可以是3。在某些实施例中,信道可至少部分地从与感兴趣的干扰信号相关联的参考信号获得。可以用与对应数据相同的方式传送装置特定RS,因此可从RS确定完整信道。但是,当干扰信号关联到CRS时,这可能并非如此,因为传送数据符号的信道可能与CRS所看到的信道不同比例。等效地,所传送的数据符号的功率/能量可能不同于对应于CRS的传送符号的功率/能量。因此,在某些实施例中,特性数据可包括感兴趣的PDSCH的第二参数PB。例如,在一个特定实施例中,特性数据可包括值dB-6以便对应于-6dB。另外或备选地,在特定实施例中,值dB-4.77可对应于4.77dB。在特定实施例中,第一无线装置110可确定从CRS估计的信道和用于干扰信号的数据解调制的信道之间的比例因子。为了避免完全盲目地估计比例因子,网络节点206A可发送用于确定比例因子或至少帮助确定比例因子的特性数据。例如,在某些实施例中,网络节点206A可发送为第一无线装置110A提供数据和CRS之间的传送功率/能量比的消息。对于第一无线装置110A的感兴趣的PDSCH,已经存在这类参数信令。现有参数通过RRC发信号通知,并且称为PA和PB。前一参数涉及相对于没有携带CRS的OFDM符号中的数据符号的比,而后一参数确定携带CRS的OFDM符号中的数据符号和没有携带CRS的OFDM符号中的数据符号之间的能量比。但是,这类参数信令当前不仅可用于干扰信号,而且还可再用于描述干扰信号的特性。因此,在某些实施例中,在基于CRS的信道和用于数据解调制的信道之间的实际比例因子方面,上述信令会是显式的。与上述信令相比,特定实施例可包括覆盖QPSK调制情形的信令。例如,感兴趣的PDSCH的PA和PB可覆盖QPSK调制,以使得第一无线装置110A可确定或鉴别不同接收信号之间的功率平衡。在某些实施例中,功率比可不断改变。为了限制信令开销,在特定实施例中,网络节点206A可告知第一无线装置110A可在所有相邻小区204B-C和服务小区204A中假设相同功率/能量等级信令(例如,PA和PB或等效)。在备选实施例中,功率/能量等级信令可区分干扰信号和服务小区。在某些实施例中,特性数据可区分天线端口的数量。因此,例如,涉及具有2个CRS天线端口的小区的功率等级的指示可不同于例如具有4个CRS天线端口的小区的功率等级的指示。在某些其它实施例中,网络节点206A可局限于缓慢地改变功率等级有关的参数。例如,可每个小区204发信号通知PA和PB的集合,其中每x个子帧具有特定报告比。干扰的资源分配信息在某些实施例中,特征数据可包括关于与第一无线装置206A相关联的小区204A或相邻小区204B的干扰信号的资源分配的数据。当想起调度时,LTE提供较大灵活性。运输块可映射到如单个资源块对那么细的粒度上的资源。另外,资源块对的观念也带有一定的灵活性。这是真的,因为资源块对中的这两个资源块由于分布式和局部化虚拟资源块的支持而不一定跨越相同副载波。这种灵活性可使得第一无线装置110A更难可靠地估计参数,因为最多保证干扰信号对于单个资源块对是固定的。为了缓解这个问题,在某些实施例中,网络节点206A可告知第一无线装置110A关于调度的粒度。另外,网络节点206A可告知第一无线装置110A关于对于在相同时间/频率资源上到其它无线装置110的干扰传送使用分布式还是局部化虚拟资源块(例如,在其它小区中或在相同小区中,但是对于在第一无线装置110A所使用的相同时间-频率资源上的传送,如同在MU-MIMO/共享-小区中)。在某些实施例中,频域中的信令资源粒度可包括告知第一无线装置110A其它干扰无线装置110B可假设调度的一个或多个可能的资源块集合。在一个特定实施例中,系统带宽可分成频率连续资源块的集合。网络节点206A可告知第一无线装置110A它可假设在整数个这样的集合上调度干扰。例如,在对于20MHzLTE系统在频率上存在100个资源块的情况下,可将连续资源块分组成四加四的集合。可告知第一无线装置110A可假设在这样的群组等级上调度干扰。这就像下行链路指派中利用资源分配类型0的LTE的典型操作,其中位图告知第一无线装置110A可将PDSCH映射到哪个资源块群组(RBG)。在其它实施例中,可通过诸如类型1和类型2的其它资源分配类型将资源块划分成集合。因此,可通过只发送第一无线装置110A应当假设干扰传送正在使用的资源分配类型来大量压缩给第一无线装置110A的信令消息。这种信令方案的变型包括将资源分组建立在资源分配类型的基础上,只是通过例如缩放RBG大小而以特定方式进行修改。在其它实施例中,网络节点206A可发信号通知无线装置110A接着假设没有使用哪些资源分配类型。在特定实施例中,特征数据可以是小区特定的,以便赋予网络在不同小区中使用不同资源分配类型的机会。在某些实施例中,提供给第一无线装置110A的特征数据可另外或备选地包括应当假设干扰传送使用局部化还是分布式虚拟资源块。这可表示操作LTE的典型方式,其中资源块对的两个块覆盖相同副载波。干扰信号的传送秩信息在某些实施例中,特征数据可标识与第一无线装置206A相关联的小区204A或相邻小区204B的干扰信号的传送秩。当前,LTE支持传送到单个无线装置的多达8个层的空间复用。传送的层的数量通常称为传送秩。大多数干扰消除技术需要知道干扰信号的传送秩。因此,第一无线装置110A可得益于从网络节点206A接收标识可从干扰传送预期的传送秩的信息。如上所述,第一无线装置110A可经由RRC、mac报头元素、或来自例如PDCCH/ePDCCH的动态信令接收特征数据。在各种实施例中,特征数据可采用范围(例如,1-2)、最大秩(例如,2)或8位位图的形式,其中在8位位图中,每个位代表8个可能的秩中的一个特定秩。在其它实施例中,特征数据可指示预期干扰信号不使用哪个或哪些秩。在某些实施例中,秩相关的特征数据可以是每个小区(小区-id)或起到小区-id的作用的参数值或参数特有的。特征数据仍可以是无线装置特有的。例如,特征数据可包括用于控制DM-RS的伪随机序列生成器的初始化的RRC可配置参数。在其它实施例中,秩相关的特征数据可适用于所有小区或所有DM-RS,并且因此可适用于所有干扰传送。另外或备选地,秩相关的特征数据可考虑在不同小区中或在不同CSI-RS资源中使用的天线端口的数量。许多无线装置110不支持8的最大传送秩。实际上,在撰写本文时,商用无线装置支持最大两个层。因此,在许多情况下,与秩限制有关的特征数据并不意味着对网络的任何实际限制,因为当前没有使用更高秩传送。干扰的预编码器操作信息在某些实施例中,特征数据可包括与第一无线装置206A相关联的小区204A或相邻小区204B的预编码器操作信息。从Rel-12开始,LTE支持具有四个传送器的传送模式10的两个不同预编码器码本,其中可为4个CSI-RS天线端口配置CSI反馈。预编码器的选择是接收的干扰信号的特性的重要部分。因此,在某些实施例中,特征数据可包括标识预期干扰使用哪些预编码器将有用的信息。具体来说,如果干扰信号依靠CRS来解调制,那么知道可能的预编码器对于第一无线装置110A变成是必不可少的。因此,特征数据可标识预编码器码本的选择。特征数据还可包括可假设将使用码本内的哪些预编码器的限制。例如,可假设干扰只使用码本内可用的预编码器的子集。在特定实施例中,可通过告知第一无线装置110A它应当假设与由第一无线装置110A传送的CSI反馈报告允许的预编码器相同的干扰信号的预编码器子集来压缩特征数据。在某些实施例中,包括预编码器限制的特征数据还可标识在干扰信号的所有调度的资源块上使用相同预编码器。另外或备选地,特征数据可标识可配置的频率粒度。这种信息可减轻第一无线装置110A必须只基于从一个或少数几个资源块接收的信号估计使用的预编码器的负担。另外或备选地,这类信令甚至可捆绑到对于预计到第一无线装置110A的传送使用哪种预编码。例如,配置的CSI反馈模式可影响干扰信号的假设。因此,如果例如第一无线装置110A配置有在(可调度的)系统带宽上涉及单个预编码器(所谓的宽带预编码)的CSI反馈模式,那么第一无线装置110A可假设宽带预编码也适用于干扰传送。干扰的PDSCH映射/控制区域大小信息在某些实施例中,特征数据可包括关于与第一无线装置206A相关联的小区204A或相邻小区204B的PDSCH映射和/或控制区域大小的数据。如上文所详细描述,可意识到,一个子帧中有多达前三个或前四个OFDM符号致力于下行链路控制(PDCCH、PCFFCH、PHICH)。传送分集通常用作具有控制区域的传送方案。因此,下行链路控制信号的特性通常广泛不同于在PDSCH上发送的信号的特性。为干扰消除而配备的无线装置110必须恰当地处理控制区域和数据区域之间的干扰特性的差异,以便使性能最大化。但是,可意识到,控制区域大小可从一个小区到另一个小区改变,并且无线装置110A只知道它自己的小区的控制区域大小。因此,在某些实施例中,网络节点206A可通过提供标识第一无线装置110A可关于干扰信号的控制区域大小所做的一个或多个假设的特征数据来帮助第一无线装置110A进行干扰消除。例如,在特定实施例中,这类消息可指示控制区域大小是0、1、2、3或4个OFDM符号。另外或备选地,特征数据可包括告知第一无线装置110A它应当假设干扰信号的控制区域是与服务小区相同的控制区域的代码点。或者,特征数据可提供对于干扰PDSCH传送开始OFDM符号而不是控制区域大小。一般来说,如何将PDSCH映射到资源栅格上的信息对于第一无线装置110A是有用的,并且是值得包含在由网络节点206A提供的特征数据中的。这不仅包括OFDM开始符号,而且还包括省略的资源元素,因为这些资源元素包含诸如CRS(它可随小区-ID频率偏移)、非零功率或零功率CSI-RS和定位参考信号的参考信号。在备选实施例中,特征数据可标识干扰信号不具有的性质。例如,特征数据可指示不应预期哪些控制区域大小和/或不应预期PDSCH的哪些OFDM开始符号。干扰的ePDCCH/rPDCCH信息在某些实施例中,特征数据可包括与第一无线装置206A相关联的小区204A或相邻小区204B的ePDCCH/rPDCCH信息。LTE支持称为ePDCCH的备选DL控制信道。ePDCCH可在数据区域中利用DM-RS进行传送,并且可干扰预计给第一无线装置110A的PDSCH。但是,执行干扰ePDCCH的消除实质上不同于执行PDSCH的消除。例如,除非网络提供辅助信令,否则执行干扰ePDCCH的消除可能需要在第一无线装置110A的部分上进行另外的盲目假设检验。在特定实施例中,这些辅助信令可包括包含标识可在哪些资源块上潜在地调度干扰ePDCCH的信息的特征数据。提供这类特征数据可减轻第一无线装置110A执行不必要的假设检验的负担。在某些实施例中,特征数据可以采用与用于告知第一无线装置110它自己的ePDCCH的方式类似的方式明确指出资源块。在其它实施例中,特征数据可通过指示第一无线装置110A应当假设用于干扰ePDCCH的资源块与它自己的ePDCCH的资源块相同来隐含地标识资源块。在某些实施例中,与ePDCCH或rPDCCH有关的特征数据可以是一个或多个小区特有的。在其它实施例中,特征数据可关于所有小区。在其它实施例中,特征数据可指示不对ePDCCH使用哪些资源块或第一无线装置110A可假设由于PDSCH干扰是哪些资源块。辅助信令可提供对于干扰信号是否使用ePDCCH的指示,并且可在无线装置假设方面进行规划。在网络中不使用ePDCCH的情况下,这类数据可减少所需的盲目假设检验的量。尽管描述了特征数据可提供与ePDCCH控制信道有关的信息,但是意识到,在某些实施例中,特征数据可关于用于延迟的下行链路控制信道(rPDCCH)。与上文所描述的辅助信令类似的辅助信令同样适用于rPDCCH使用。非零功率CSI-RS特性在某些实施例中,特征数据可包括与第一无线装置206A相关联的小区204A或相邻小区204B的ePDCCH/rPDCCH信息。在LTE中,可利用无线电资源控制(RRC)来配置非零功率CSI-RS。这表示第一无线装置110A可试图抑制的另一个干扰源。但是,完全盲目的估计方法可能过于复杂,并且可导致低于标准的性能。因此,有益的是网络节点206A提供辅助信令,辅助信令告知第一无线装置110A关于可潜在地造成显著干扰的非零功率CSI-RS传送。在特定实施例中,特征数据可指示CSI-RS占据哪些资源元素。例如,在特定实施例中,特征数据可指示子帧偏移、周期和CSI-RS配置。特征数据还可至少指示参考信号序列,其中参考信号序列不是由小区id确定的。CSI-RS的参考信号序列的指示可包括规定如何初始化所涉及的伪随机序列生成器,具体来说是如果没有以其它方式通过更高层配置,那么用信号通知对应于小区-id的潜在RRC可配置的参数。在某些实施例中,可支持包括以上非零功率CSI-RS相关信令的多个不同指示的特征数据以便向第一无线装置110A提供对潜在干扰的CSI-RS传送的良好了解。在其它实施例中,特征数据可指示第一无线装置110A无需担心非零功率CSI-RS消除。如果网络根本没有配置任何CSI-RS,或者在网络配置足够少的CSI-RS的情况下,可能是这种情况。在网络配置非零功率CSI-RS但是确信它与相邻小区中的零功率CSI-RS冲突的情况下,这也是合适的。干扰的循环前缀特性在某些实施例中,特征数据可包括与第一无线装置206A相关联的小区204A或相邻小区204B的循环前缀特性。原则上,不同小区可利用不同的循环前缀长度,它可以是正常的或是延长的。循环前缀长度应当为第一无线装置110A所知,以便正确解调制OFDM符号。因此,在某些实施例中,特征数据可指示哪个循环前缀在所有相邻小区中使用,以使得第一无线装置110A能够解调制和/或解码相邻小区信息。根据一个实施例,网络节点206A发信号通知与每个相邻小区相关联的循环前缀长度信息。在另一个实施例中,网络节点206A发送单个循环前缀长度,并且第一无线装置110A可假设所有相邻小区使用相同循环前缀。在这后一情形中,网络协调特定循环前缀长度在相邻小区内的使用。尽管在一些实施例中特征数据可指示使用中的循环前缀,但是一般意识到,在其它实施例中,特征数据可改为标识不在使用中的循环前缀长度。干扰的调制顺序特性在某些实施例中,特征数据可包括与第一无线装置206A相关联的小区204A或相邻小区204B的调制顺序特性。调制顺序并且一般来说是调制和编码方案可根据网络的调度特性改变。网络节点206A或206B中的调制编码方案(MCS)定义可遵照信道质量指示符报告。因此,MCS定义可指示可以用特定块错误率接收的最佳MCS。在一个特定示例中,粒度可以像与PDSCH资源分配类似的单个资源块对那么细。出于干扰消除的目的,对于某些类型的无线装置,可能需要调制顺序信息。例如,调制顺序可能对于进行操作以便解码相邻小区干扰的第一无线装置110A是必不可少的。在码字级高级接收器中,需要准确的MCS顺序。这类信息对于作为进行操作以便解调制干扰小区信号的符号级接收器的无线装置110A也是有用的。在某些实施例中,特征数据可向第一无线装置110A标识可假设干扰使用哪个或哪些调制顺序。特征数据可适用于整个网络,并且因此可适用于所有干扰PDSCH信号。在其它实施例中,特征数据可适用于一个或多个特定小区。这种类型的特征数据帮助可适于由PDSCH传送引起的干扰,因为它是支持除了QPSK调制以外的任何事物的当前唯一的物理信道。调制顺序指示实际上意味着对网络中或特定小区中的调制顺序的某种限制。对于源自到小区边缘无线装置的PDSCH传送的干扰信号,更高阶调制的可能性降低,并且可能限制网络灵活性。可意识到,由于调制顺序做出改变时所依据的精细资源分配和非常细的粒度,显式动态信令是昂贵的。因此,在特定实施例中,特征数据可告知对于某个相邻干扰源调制顺序恒定的连续资源块的集合。在其它实施例中,资源块的分组可基于子带或子带的缩放版本进行。根据其它实施例中,资源块的分组可基于资源块粒度。在备选实施例下,网络告知对于整个PDSCH分配使用恒定的调制顺序。在备选示例实施例下,网络通过考虑之前实施例中的分组明确地发信号通知每个邻居小区的所述一个或多个调制顺序。干扰的同步化特性在某些实施例中,特征数据可包括与第一无线装置206A相关联的小区204A或相邻小区204B的同步化特性。一般来说,可假设高级无线装置在同步化网络的假设下良好地工作。在特定实施例中,网络节点206A可发信号通知第一无线装置110A关于它是否应当将所有相邻小区视为是同步化的。根据另一个实施例,网络节点206A发信号通知第一无线装置110A关于相邻小区中哪个或哪些小区没有同步化。或者,网络节点206A可告知第一无线装置110A网络没有同步化。然后,第一无线装置110A可确定不尝试高级干扰抑制,并且因此潜在地节省电池功率。返回到图13,该方法在将特征数据从网络节点206A传送到第一无线装置110A之后继续。在步骤1308,第一无线装置110A接收标识预计给第二无线装置110B的干扰信号的至少一个特性的特性数据。如上所述,可从向位于与网络节点206A或208相关联的小区覆盖区域内的第一无线装置110A提供电信服务的诸如网络节点206A或208的网络节点接收特性数据。在步骤1310,第一无线装置110A可利用包括所述至少一个特性的特性数据来形成干扰信号的估计。在步骤1312,基于干扰信号的估计,第一无线装置110A可接着基于干扰信号的估计抑制由预计给第二无线装置110B的干扰信号造成的干扰。然后,该方法可结束。图14是示出无线电网络节点115的某些实施例的框图。无线电网络节点115的示例包括eNodeB、节点B、基站、无线接入点(例如,Wi-Fi接入点)、低功率节点、基站收发器(BTS)、传送点、传送节点、远程RF单元(RRU)、远程无线电头端(RRH)等。无线电网络节点115可作为同构部署、异构部署或混合部署部署在整个网络100中。同构部署一般可描述由相同(或类似)类型的无线电网络节点115和/或类似的覆盖与小区大小和站点间距离构成的部署。异构部署一般可描述利用具有不同小区大小、传送功率、容量和站点间距离的各种类型的无线电网络节点115的部署。例如,异构部署可包括放置在整个宏小区布局中的多个低功率节点。混合部署可包括同构部分和异构部分的混合。无线电网络节点115可包括收发器1410、处理器1420、存储器1430和网络接口1440中的一个或多个。在一些实施例中,收发器1410利于(例如,经由天线)向无线装置110传送无线信号以及从无线装置110接收无线信号,处理器1420执行指令以便提供上文描述为由无线电网络节点115提供的一些或所有功能性,存储器1430存储由处理器1420执行的指令,并且网络接口1440将信号传送到后端网络组件,例如网关、交换机、路由器、互联网、公共交换电话网络(PSTN)、核心网络节点130、无线电网络控制器120等。处理器1420可包括在一个或多个模块中实现以便执行指令并操纵数据以执行所描述的无线电网络节点115的一些或所有功能的硬件和软件的任何合适的组合。在一些实施例中,处理器1420可包括例如一个或多个计算机、一个或多个中央处理单元(CPU)、一个或多个微处理器、一个或多个应用、和/或其它逻辑。存储器1430一般可进行操作以便存储指令,例如计算机程序、软件、包括逻辑、规则、算法、代码、表等中的一个或多个的应用、和/或能够由处理器执行的其它指令。存储器1430的示例包括计算机存储器(例如,随机存取存储器(RAM)或只读存储器(ROM))、大容量存储介质(例如,硬盘)、可移动存储介质(例如,致密盘(CD)或数字视频盘(DVD))、和/或存储信息的任何其它易失性或非易失性、非暂时性计算机可读和/或计算机可执行存储器装置。在一些实施例中,网络接口1440在通信上耦合到处理器1420,并且可以指可进行操作以便接收无线电网络节点115的输入、发送来自无线电网络节点115的输出、执行输入或输出或两者的合适处理、传送到其它装置、或预编码的任何组合的任何合适的装置。网络接口1440可包括具有协议转换和数据处理能力以便通过网络通信的合适的硬件(例如,端口、调制解调器、网络接口卡等)和软件。无线电网络节点115的其它实施例可包括图14中示出的组件以外的另外组件,它们可负责提供无线电网络节点的功能性的某些方面,包括上述任何功能性和/或任何另外的功能性(包括支持上述解决方案必需的任何功能性)。各种不同类型的无线电网络节点可包括具有相同物理硬件但(例如,经由编程)配置成支持不同无线电接入技术的组件,或者可代表部分或整体不同的物理组件。图15是示出无线装置110的某些实施例的框图。无线装置110的示例包括移动电话、智能电话、PDA(个人数字助理)、便携式计算机(例如,膝上型、平板)、传感器、调制解调器、机器型(MTC)装置/机器到机器(M2M)装置、膝上型嵌入式设备(LEE)、膝上型安装式设备(LME)、USB电子狗、具有装置到装置能力的装置、或可提供无线通信的其它装置。在一些实施例中,无线装置110又可称为用户设备(UE)、站点(STA)、装置或终端。无线装置110包括收发器1510、处理器1520和存储器1530。在一些实施例中,收发器1510便于(例如,经由天线)向无线电网络节点115传送无线信号以及从无线电网络节点115接收无线信号,处理器1520执行指令以便提供上文描述为由无线装置110提供的一些或所有功能性,并且存储器1530存储由处理器1520执行的指令。处理器1520可包括在一个或多个模块中实现以便执行指令并操纵数据以执行所描述的无线装置110的一些或所有功能的硬件和软件的任何合适的组合。在一些实施例中,处理器1520可包括例如一个或多个计算机、一个或多个中央处理单元(CPU)、一个或多个微处理器、一个或多个应用、和/或其它逻辑。存储器1530一般可进行操作以便存储指令,例如计算机程序、软件、包括逻辑、规则、算法、代码、表等中的一个或多个的应用、和/或能够由处理器执行的其它指令。存储器1530的示例包括计算机存储器(例如,随机存取存储器(RAM)或只读存储器(ROM))、大容量存储介质(例如,硬盘)、可移动存储介质(例如,致密盘(CD)或数字视频盘(DVD))、和/或存储信息的任何其它易失性或非易失性、非暂时性计算机可读和/或计算机可执行存储器装置。无线装置110的其它实施例可包括图15中示出的组件以外的另外组件,它们可负责提供无线装置的功能性的某些方面,包括上述任何功能性和/或任何另外的功能性(包括支持上述解决方案必需的任何功能性)。图16是示出无线电网络控制器120或核心网络节点130的某些实施例的框图。网络节点的示例可包括移动交换中心(MSC)、服务GPRS支持节点(SGSN)、移动管理实体(MME)、无线电网络控制器(RNC)、基站控制器(BSC)等。网络节点包括处理器1620、存储器1630和网络接口1640。在一些实施例中,处理器1620执行指令以便提供上文描述为由网络节点提供的一些或所有功能性,存储器1630存储由处理器1620执行的指令,并且网络接口1640将信号传送到合适节点,例如网关、交换机、路由器、互联网、公共交换电话网络(PSTN)、无线电网络节点115、无线电网络控制器120、核心网络节点130等。处理器1620可包括在一个或多个模块中实现以便执行指令并操纵数据以执行所描述的网络节点的一些或所有功能的硬件和软件的任何合适的组合。在一些实施例中,处理器1620可包括例如一个或多个计算机、一个或多个中央处理单元(CPU)、一个或多个微处理器、一个或多个应用、和/或其它逻辑。存储器1630一般可进行操作以便存储指令,例如计算机程序、软件、包括逻辑、规则、算法、代码、表等中的一个或多个的应用、和/或能够由处理器执行的其它指令。存储器1630的示例包括计算机存储器(例如,随机存取存储器(RAM)或只读存储器(ROM))、大容量存储介质(例如,硬盘)、可移动存储介质(例如,致密盘(CD)或数字视频盘(DVD))、和/或存储信息的任何其它易失性或非易失性、非暂时性计算机可读和/或计算机可执行存储器装置。在一些实施例中,网络接口1640在通信上耦合到处理器1620,并且可以指可进行操作以便接收网络节点的输入、发送来自网络节点的输出、执行输入或输出或两者的合适处理、传送到其它装置、或预编码的任何组合的任何合适的装置。网络接口1640可包括具有协议转换和数据处理能力以便通过网络通信的合适的硬件(例如,端口、调制解调器、网络接口卡等)和软件。网络节点的其它实施例可包括图16中示出的组件以外的另外组件,它们可负责提供网络节点的功能性的某些方面,包括上述任何功能性和/或任何另外的功能性(包括支持上述解决方案必需的任何功能性)。本公开的一些实施例可提供一个或多个技术优点。例如,在某些实施例中,系统和方法允许无线装置在执行各种形式的干扰消除和/或抑制技术时在盲目估计和检测干扰的各种特性上花费较少精力。因此,一个技术优点是,无线装置所做的努力的减少降低了装置复杂度。另外一个技术优点是增加了性能,因为所提供的特征数据减少了无线装置必须考虑的搜索空间。因此,降低了做出错误估计和检测的风险。还有一个优点是,可降低无线装置的电池消耗。再有一个优点是,无线装置的设计者可对各种盲目估计和检测技术应用更紧的公差和/或阈值。一些实施例可得益于这些优点中的一些或所有优点,或不得益于这些优点中任何一个优点。本领域技术人员可容易地弄清其它技术优点。在不偏离本发明的范围的情况下,可对本文中所公开的系统和设备进行修改、增加或省略。系统和设备的组件可以是集成的或是独立的。此外,可通过更多的、更少的或其它组件来执行系统和设备的操作。另外,可利用包括软件、硬件和/或其它逻辑的任何合适的逻辑来执行系统和设备的操作。如本文中所使用,“每个”是指集合的每个成员或集合的子集的每个成员。在不偏离本发明的范围的情况下,可对本文中所公开的方法进行修改、增加或省略。这些方法可包括更多的、更少的或其它步骤。另外,可按任何合适的顺序执行步骤。尽管本公开中使用了来自3GPPLTE的术语来举例说明本发明,但是这不应视为是将本发明的范围只局限于上述系统。包括WCDMA、WiMax、UMB和GSM的其它无线系统也可得益于采用本公开内所覆盖的想法。诸如eNodeB和UE的术语应视为是非限制性的,并且具体来说不意味着这两者之间的特定层级关系;一般来说,“eNodeB”可视为是装置1,而“UE”可视为是装置2,并且这两个装置通过某个无线电信道彼此通信。本文中,还集中在下行链路中的无线传送上,但是本发明在上行链路中同样适用。尽管根据某些实施例描述了本公开,但是这些实施例的改变和置换对于本领域技术人员来说将是显而易见的。因此,这些实施例的以上描述不是约束本公开。在不偏离如随附权利要求所定义的本公开的精神和范围的情况下,其它改变、替换和变更都是可能的。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1