支持多优先级调度的控制信令的制作方法

文档序号:13081783阅读:277来源:国知局
支持多优先级调度的控制信令的制作方法与工艺

相关申请的交叉引用

本申请要求于2015年3月14日向美国专利商标局提交的临时专利申请no.62/133,339、于2015年3月15日向美国专利商标局提交的临时专利申请no.62/133,391、于2015年3月16日向美国专利商标局提交的临时专利申请no.62/133,555以及于2015年11月20日向美国专利商标局提交的非临时专利申请no.14/948,099的优先权和权益,它们的全部内容通过援引纳入于此。

背景

公开领域

本公开的各方面一般涉及无线通信,尤其但不排他地涉及控制信令和/或多优先级调度。

相关技术描述

无线通信网络被广泛部署以提供诸如电话、视频、数据、消息接发、广播等各种通信服务。通常为多址网络的此类网络通过共享可用的网络资源来支持多个用户的通信。

在此类无线网络内,可以提供各种数据服务,包括语音、视频和电子邮件。更近期来,无线通信网络正被用于甚至更宽范围的服务,包括任务关键型应用和远程控制应用(诸如远程手术,其中实时反馈是必需的)。随着对移动宽带接入的需求持续增长,研究和开发持续推进无线通信技术以便不仅满足增长的对移动宽带接入的需求,而且提高并增强用户体验。

在常规无线通信(例如,第三代伙伴项目(3gpp)长期演进(lte))中,控制信令通常以子帧周期性或某一固定周期性出现。该周期性可以是最小定期下行链路(dl)调度时间单元。不存在以更精细的周期性调度的相冲突的突发活动。

一些示例的简要概述

以下给出本公开的一些方面的简要概述以提供对这些方面的基本理解。此概述不是本公开的所有构想到的特征的详尽综览,并且既非旨在标识出本公开的所有方面的关键性或决定性要素亦非试图界定本公开的任何或所有方面的范围。其唯一目的是要以简化形式给出本公开的一些方面的各种概念以作为稍后给出的更详细描述之序。

在一方面,本公开提供了一种被配置成用于通信的装置,该装置包括存储器设备以及耦合到该存储器设备的处理电路。该处理电路被配置成:确定用于传达调度指示符的区间,其中该调度指示符是被映射到多个传输时间区间(tti)长度的多个调度指示符之一;以及根据该区间来传达该调度指示符。

本公开的另一方面提供了一种用于通信的方法,包括:确定用于传达调度指示符的区间,其中该调度指示符是被映射到多个传输时间区间(tti)长度的多个调度指示符之一;以及根据该区间来传达该调度指示符。

本公开的另一方面提供了一种被配置用于通信的装备。该装备包括:用于确定用于传达调度指示符的区间的装置,其中该调度指示符是被映射到多个传输时间区间(tti)长度的多个调度指示符之一;以及用于根据该区间来传达该调度指示符的装置。

本公开的另一方面提供了存储计算机可执行代码的非瞬态计算机可读介质,包括用于以下操作的代码:确定用于传达调度指示符的区间,其中该调度指示符是被映射到多个传输时间区间(tti)长度的多个调度指示符之一;以及根据该区间来传达该调度指示符。

本公开的这些和其他方面将在阅览以下详细描述后得到更全面的理解。在结合附图研读了下文对本公开的具体实现的描述之后,本公开的其他方面、特征和实现对于本领域普通技术人员将是明显的。尽管本公开的特征在以下可能是针对某些实现和附图来讨论的,但本公开的所有实现可包括本文所讨论的有利特征中的一个或多个。换言之,尽管可能讨论了一个或多个实现具有某些有利特征,但也可以根据本文讨论的本公开的各种实现使用此类特征中的一个或多个特征。以类似方式,尽管一些实现在下文可能是作为设备、系统或方法实现进行讨论的,但是应该理解,此类实现可以在各种设备、系统、和方法中实现。

附图简要说明

图1是解说根据本公开的一些方面的控制信令的示例的框图。

图2是解说本公开的各方面可在其中找到应用的多址无线通信系统的示例的示图。

图3是概念性地解说根据本公开的一些方面的调度实体与一个或多个下级实体通信的示例的框图。

图4是解说根据本公开的各方面的采用处理系统的调度实体的硬件实现的示例的框图。

图5是解说根据本公开的各方面的采用处理系统的下级实体的硬件实现的示例的框图。

图6是解说根据本公开的一些方面的复用式多优先级调度的示例的示图。

图7是解说根据本公开的一些方面的由于复用式多优先级调度而产生的潜在冲突的示例的示图。

图8是解说根据本公开的一些方面的用于控制信令的过程的示例的流程图。

图9是解说根据本公开的一些方面的被指派给具有不同调度优先级索引(spi)的设备的资源的信令分配的示例的示图。

图10是解说根据本公开的一些方面的基于spi的资源块(rb)指派的示例的示图。

图11是解说根据本公开的一些方面的用于dl准予解码的决策树的示例的流程图。

图12是解说根据本公开的一些方面的用于dl准予解码的决策树的另一示例的流程图。

图13是解说根据本公开的一些方面的用于检测基于spi的资源分配中的潜在冲突的操作的示例的流程图。

图14是解说根据本公开的一些方面的用于发信令通知spi信息和资源分配的操作的示例的流程图。

图15是根据本公开的一些方面的能支持控制信令的装备(例如,电子设备)的示例硬件实现的框图。

图16是解说根据本公开的一些方面的用于控制信令的过程的示例的框图。

图17是可以在其中实现本公开的一个或多个方面的无线通信网络的示意图。

详细描述

以下结合附图阐述的详细描述旨在作为各种配置的描述,而无意表示可实践本文所描述的概念的仅有配置。本详细描述包括具体细节以提供对各种概念的透彻理解。然而,对于本领域技术人员将显而易见的是,没有这些具体细节也可实践这些概念。在一些实例中,以框图形式示出众所周知的结构和组件以避免淡化此类概念。

随着无线应用的规模和类型的演变,处于各种服务质量(qos)水平和/或往返时间(rtt)等待时间的服务可共存,以使得旧式系统设计可陷入到难以支持这些服务的境地。更具体地,旧式系统设计可陷入到难以支持处于各种服务需求的在时间以及系统中的频谱资源区域上复用的用户信号的境地。本公开在一些方面涉及解决这些挑战以便在维持高系统效率的同时确保及时的动作的有效信令设计。

在一些方面,所公开的技术可以例如在其中具有不同优先级的多个设备共享用于dl传输的共用资源集的系统中应用。这些方面提供用于发信令通知调度优先级信息的新指示信道和规程。如将在下文中更详细地描述的,此类信息可用作可能的新dl准予的指示符。此类信息可附加地用作较高优先级的调度冲突(例如,导致被分配用于至较低优先级的设备的传输的资源的穿孔的调度冲突)的指示符。

本公开在一些方面涉及用于支持多优先级调度的双层信令设计。第一,在给定调度优先级指示符的定义的情况下,层1信令通过共用信道来操作以用于出于以下两个目的来检测调度优先级指示符:a)检测可能的新dl准予以及b)确认冲突的较高优先级的调度更新是否出现。第二,层2信令涉及检测专用d准予,其中灵活的下行链路控制信息(dci)设计进一步解决多优先级调度的信令特性。

本公开在一些方面涉及可携带用于无线通信的控制指示符和控制消息的控制信道。在一些示例中,嵌入式控制信道可携带关于穿孔检测的合适信息,以使得被调度成接收数据的下级实体可被通知所调度的资源正被穿孔。

图1解说了根据本文的教导的支持控制信令的通信系统100的示例。通信系统100包括可以彼此通信的第一设备102和第二设备104。通常,通信系统100将包括其它设备。然而,为了降低图1的复杂性,只示出了第一和第二设备102和104。在一些实现中,第一设备102是调度实体(例如,接入点(诸如enb)),而第二设备104是该调度实体的下级实体(例如,接入终端(诸如ue))。在一些实现中,第一设备102和第二设备104是对等设备。在某一时间点(例如,当第一设备102和第二设备104最初彼此关联时),第一设备102和第二设备104经由控制信道106通信以指示潜在准予是否是可用的(例如,经由spi)并且发送基于优先级的控制消息(例如,spi或显式命令)。例如,第一设备102可周期性地经由控制信道106向第二设备104发送spi。随后,第一设备102和第二设备104传达指示准予是否可用的准予控制消息108。例如,第一设备102可向第二设备104发送下行链路控制信息(dci)。

图2解说了其中可执行本公开的各方面的示例无线通信网络200。例如,本文给出的技术可用于在具有不同优先级的各种设备之间共享共用资源集。

在图2的示例中,基站(bs)201可包括多个天线群,一个群包括天线204和206,另一个群包括天线208和210,并且另外一个群包括天线212和214。在图2中,每个天线群仅示出了两个天线,然而,每个天线群可利用更多或更少的天线。无线节点216可以与天线212和214通信,其中天线212和214通过前向链路220向无线节点216传送信息并且通过反向链路218从无线节点216接收信息。无线节点222可以与天线204和206通信,其中天线204和206通过前向链路226向无线节点222传送信息并且通过反向链路224从无线节点222接收信息。bs201还可与其它无线节点通信,这些其它无线节点可以是例如万物联网(ioe)设备。ioe设备236可以与bs201的一个或多个其它天线通信,其中这些天线通过前向链路240向ioe设备236传送信息并且通过反向链路238从ioe设备236接收信息。ioe设备242可以与bs201的一个或多个其它天线通信,其中这些天线通过前向链路246向ioe设备242传送信息并且通过反向链路244从ioe设备242接收信息。在频分双工(fdd)系统中,通信链路218、220、224、226、238、240、244和246可使用不同的频率来通信。例如,前向链路220可使用与反向链路218所使用的频率不同的频率,且前向链路240可使用与反向链路238所使用的频率不同的频率。

本公开中通篇给出的各种概念可跨种类繁多的电信系统、网络架构、和通信标准来实现。例如,第三代伙伴项目(3gpp)是为涉及演进型分组系统(eps)的网络(常常被称为长期演进(lte)网络)定义若干无线通信标准的标准体。

lte网络可提供传送设备与接收设备之间在50ms量级上的端到端等待时间,其中特定分组的空中等待时间在10ms范围中。当前已知的lte功能性使用1ms的传输时间区间(tti)来为特定的反馈信令(即,混合自动重复请求(harq)信令)提供至少约8ms的往返时间(rtt)。在一些方面,tti对应于可被解码的信息单元的最小历时。对于时分双工(tdd)lte配置,上行链路/下行链路配置具有相对固定的配置,该配置要花费约10ms来作出改变。一般而言,lte提供了以不变应万变的办法,其中所有服务和分组依赖于这些相同的等待时间范围。

lte网络的演进版本(诸如第五代(5g)网络)可以提供许多不同类型的服务或应用,包括但不限于web浏览、视频流送、voip、任务关键型应用、多跳网络、具有实时反馈的远程操作(例如,远程手术)等。不同的服务集可以受益于具有彼此截然不同的多个等待时间目标。然而,以上描述的lte网络的以不变应万变的方面可能使得复用具有不同等待时间目标的话务变得非常困难。

系统的支持此类多样化等待时间目标的频谱兼容性可能是具有挑战性的。例如,常规话务与低等待时间或关键任务(micr)话务的时间复用可能违背micr分组的要求。此外,为低等待时间话务保留的频域资源可能限制峰值速率和中继效率。因此,对于下一代网络而言,需要新的途径来支持复用各种类型、种类和类别的话务和服务(包括但不限于具有截然不同的等待时间特性的话务)的能力。

为了解说在本公开中描述的实体或设备中的一些,图3是解说与多个下级实体304处于无线通信的示例性调度实体302的框图。调度实体302传送下行链路数据信道306和下行链路控制信道308,而下级实体传送上行链路数据信道310和上行链路控制信道312。当然,图3中解说的信道不一定是调度实体302与下级实体304之间可利用的全部信道,且本领域普通技术人员将认识到除了所解说的那些信道外还可利用其他信道,诸如其他数据、控制和反馈信道。

如图3中解说的,调度实体302可向一个或多个下级实体306广播下行链路数据304。根据本公开的各方面,术语下行链路可以指在调度实体302处发源的点到多点传输。广义地,调度实体302是负责在无线通信网络中调度话务(包括下行链路传输以及在一些示例中还包括从一个或多个下级实体304至调度实体302的上行链路数据310)的节点或设备。描述该方案的另一方式可以是使用术语广播信道复用。调度实体可以是或者可驻留在基站、网络节点、用户装备(ue)、接入终端或无线通信网络中的任何合适的节点内。

根据本公开的各方面,术语上行链路可以指在下级实体304处发源的点到点传输。广义地,下级实体304是接收来自无线通信网络中的另一实体(诸如调度实体302)的调度控制信息(包括但不限于调度准予、同步或定时信息)、或其他控制信息的节点或设备。下级实体可以是或者可驻留在基站、网络节点、ue、接入终端或无线通信网络中的任何合适的节点内。

图4是解说采用包括一个或多个处理器404的处理系统414的调度实体302的硬件实现的示例的概念图。根据本公开的各种方面,元素、或元素的任何部分、或者元素的任何组合可使用处理系统414来实现。

在本公开的各个方面,调度实体302可以是任何合适的无线电收发机装置,并且在一些示例中可以由基站(bs)、基收发机站(bts)、无线电基站、无线电收发机、收发机功能、基本服务集(bss)、扩展服务集(ess)、接入点(ap)、b节点、演进型b节点(enb)、网状节点、中继器或其他某个合适的术语来实施。在本文内,基站可被称为调度实体,从而指示基站向一个或多个下级实体提供调度信息。

在其它示例中,调度实体302可由无线用户装备(ue)来实现。ue的示例包括蜂窝电话、智能电话、会话发起协议(sip)电话、膝上型电脑、笔记本、上网本、智能本、个人数字助理(pda)、卫星无线电、全球定位系统(gps)设备、多媒体设备、视频设备、数字音频播放器(例如,mp3播放器)、相机、游戏控制台、娱乐设备、交通工具组件、可穿戴计算设备(例如,智能手表、健康或健身跟踪器等)、电器、传感器、自动售货机、或任何其他类似的功能设备。ue也可被本领域技术人员称为移动站(ms)、订户站、移动单元、订户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动订户站、接入终端(at)、移动终端、无线终端、远程终端、手持机、终端、用户代理、移动客户端、客户端、或其他某个合适的术语。在本文内,ue可被称为调度实体或下级实体。即,在本公开的各个方面,无线ue可以作为向一个或多个下级实体提供调度信息的调度实体来操作,或者可以作为下级实体根据由调度实体提供的调度信息来操作。

在这一示例中,处理系统414可被实现成具有由总线402一般地表示的总线架构。取决于处理系统414的具体应用和整体设计约束,总线402可包括任何数目的互连总线和网桥。总线402将包括一个或多个处理器(一般由处理器404表示)、存储器405和计算机可读介质(一般由计算机可读介质406表示)的各种电路链接在一起。总线402还可链接各种其他电路(诸如定时源、外围设备、稳压器和功率管理电路),这些电路在本领域中是众所周知的,并且因此将不再进一步描述。总线接口408提供总线402与收发机410之间的接口。收发机410提供用于在传输介质上与各种其他装置进行通信的手段。取决于该装置的本质,也可提供用户接口412(例如,按键板、显示器、扬声器、话筒、操纵杆)。

处理器404负责管理总线402和一般处理,包括执行存储在计算机可读介质406上的软件。软件在由处理器404执行时使处理系统414执行以下针对任何特定装置描述的各种功能。计算机可读介质406也可被用于存储由处理器404在执行软件时操纵的数据。

图5是解说采用包括一个或多个处理器504的处理系统514的示例性下级实体304的硬件实现的示例的概念图。根据本公开的各种方面,元素、或元素的任何部分、或者元素的任何组合可使用处理系统514来实现。

处理系统514可与图4中解说的处理系统414基本相同,包括总线接口508、总线502、存储器505、处理器504、以及计算机可读介质506。此外,下级实体304可包括与以上在图4中描述的那些用户接口和收发机基本相似的用户接口512和收发机510。如在下级实体304中利用的处理器504可用于实现以下描述的过程中的任一个或多个过程。

控制信道信令

如上所述,在具有多优先级调度的系统中,去往和来自具有不同优先级的设备的传输可以在时间和/或副载波资源的区域上复用。在此类情形中,较低优先级的用户可经受可能影响其资源(以tti穿孔的形式)的由较高优先级的用户作出的调度更新。

本公开的各方面可通过向具有不同优先级的移动设备提供允许它们检测潜在的资源分配冲突并相应地行动的某些信息来帮助解决该场景。例如,此类信息可经由用于发信令通知调度优先级信息的新指示信道和规程来提供。

在常规系统(例如,lte)中,控制信令通常以子帧或某一固定周期性出现,该周期性是最小常规dl调度时间单元,并且不存在以甚至更精细的周期性调度的相冲突的突发活动。然而,在被设计成用于多优先级调度的系统中,处于各种优先级(或qos)和/或rtt等待时间的服务可以在时间和odma系统中的频谱(即,副载波)资源的区域上以不同的传输时间区间(tti)复用。如本文所使用的,术语tti一般指的是无线电链路上的传输的历时并且一般等于物理层传递传输块集合的周期性(例如,tti一般与从较高网络层传递至无线电链路层的数据块的大小有关)。

参照图6,在一些示例中,可利用可变传输时间区间(tti)来容适不同设备、或不同应用、或将通过空中接口传达的不同种类的数据的不同优先级。在一个示例中,可利用多个tti,其中每一更短的tti分组具有比任何更长的tti分组更高的优先级。图6的示例示出了具有125μs时段的tti602(最高优先级)、具有250μs时段的tti604、具有500μs时段的tti606以及具有1ms时段的tti608(最低优先级)。在此,在任何给定tti内的正在进行的通信期间,如果将要传送更短的tti或者更高优先级的分组(例如,关键任务、低等待时间未受调度的数据),则该短tti传输可对正在进行的受调度数据传输进行穿孔。

相对较低优先级的用户可能经受由相对较高优先级的用户作出的突发但冲突的调度更新(以传输时间区间(tti)穿孔的形式)。例如,低等待时间或关键任务用户可取得高于标称用户的优先级。当tti长度可变得很小时,用于dci的旧式信令可能变得不必要地过多,因为信道状况变得改变较少。

冲突(穿孔)的若干示例在图7中解说。最初,图7示出了具有31.25μs时段的tti702(最高优先级)、具有62.5μs时段的tti704、具有125μs时段的tti706、具有250μs时段的tti708、具有500μs时段的tti770以及具有1ms时段的tti712(最低优先级)。在第一示例中,与准予一起指派给较高优先级设备(tti704,第二行)的tti714可导致对指派给具有较低优先级的设备(tti712,最下面一行)的较大tti716的穿孔。在第二示例中,与准予一起指派给较高优先级设备(tti702,最上面一行)的tti718可导致对指派给具有较低优先级的设备(tti706,第三行)的较大tti720的穿孔。类似地,tti718和720进而可导致对指派给甚至更低优先级的设备(tti712,最后一行)的较大tti716的穿孔。

然而,本公开的各方面可提供高效且可靠的信令设计以通过在突发调度更新的情况下支持处于更高和更低优先级两者的用户进行用户的及时动作来解决此类挑战。

在本公开的各个方面,可提供控制信道。在一些示例中,控制信道可以嵌入在帧或子帧的所分配的数据部分内。例如,调度实体可以利用ofdma空中接口来与一个或多个下级实体通信。在该空中接口上,时频资源可被划分到各帧或子帧中。在一些示例中,子帧可包括控制/准予部分和数据部分。在此,调度实体可利用控制/准予部分来提供在数据部分内指示所调度的时频资源的调度信息。在本公开的一些方面,嵌入式控制信道可以在子帧的数据部分内且在子帧的控制/准予部分外提供。

此类信道在此可被称为优先级指示信道(pich),该pich可用于指示向多优先级调度系统中的具有不同优先级的设备的资源分配。pich可以例如由基站或其它网络节点发送,并且可指示针对不同的调度优先级索引(spi)的资源指派。如以下更详细地讨论的,pich在不同实现中可采取不同形式。在一些实现中,pich是共用pich(cpich)。在一些实现中,pich是定向共用pich(dc-pich)。在一些实现中,pich是专用pich(dpich)。

在一些方面,spi指的是指派给设备的优先级,并且每一spi一般指具有该spi的用户的调度优先级。由此,每一spi值可对应于唯一性tti长度(例如,更高优先级的spi具有更短的tti,而更低优先级的tti具有更长的tti)。

每一用户可由网络指派至少一个spi,即“spi_user(spi_用户)”,每一spi_user对应于“tti_user(tti_用户)”,即该用户的相关联的tti。例如,如果用户具有单个承载,则可指派单个spi。替换地,如果用户具有多个承载,则这些承载可共享一个spi或者不同的spi可被指派给一个或多个承载(例如,不同的承载集合可共享不同的spi)。网络可以在用户的目标rtt改变时更新spi_user。另外,被称为“tti_min”或“tti_最小”的量可由网络发信令通知以指示所有活跃用户之中的最小tti_user值(例如,一般对应于这些用户之中的最高优先级spi)。

本公开在一些方面涉及用于支持多优先级调度(mps)的分层dl信令规程设计。出于解说目的,以下描述了双层示例。然而,应认识到可以在其它实现中使用不止两层。

mps层1:用于调度指示符的信令

网络经由pich(用于指示dl数据调度的资源块级(rb级)调度优先级的信道)发送调度指示符。该信道可以是对于所有用户而言是共用的,或者单独地专用于各用户。可以在其它实现中使用不同(例如,更粗略)的粒度。例如,调度指示符可指示子带级调度优先级。

在共用信道的一些实现中,spi在个体用户之间不进行区分。例如,spi通常不包括用户标识符。

在每一t_pich时间区间中在ofdm码元上传送一次调度指示符信息。t_pich值通常由网络发信令通知。

网络向每一用户指派唯一性地对应于tti长度“tti_user”的调度指示符(例如,“spi_user”)。在一些方面,给定用户的spi_user量化该用户的优先级。网络还向用户调度rb(例如,用spi调度rb)。

网络使用以下方案之一来每tti_min向用户发送一次调度指示。

第一方案使用共用(例如,多播)调度优先级指示符信道。在此,共用信道携带所有活跃用户的调度优先级指示符。

第二方案使用单播调度指示符信道。这是携带用户的调度指示符的专用信道。该信道可以例如指示“开始/继续”、“暂停”、“停止”之一以便在对应的tti_min内开始、暂停或停止接收物理下行链路共享信道(pdsch)。

每一活跃用户在调度指示信道上(在第一方案或第二方案中)监视可能的准予指示或者可能的调度冲突。

关于针对用户的新的可能准予,用户可以通过寻找spi_user来在共用信道上在每一tti_user中监视一次对用户可用的可能dl准予。这是“可能的”准予,因为给定spi可映射到多个用户(例如,具有相同的优先级的用户)。

关于可能的调度冲突,用户可以在tti_min内检测可能的更高优先级的调度冲突(穿孔)。例如,用户可以在检测到冲突(例如,接收到更高优先级的spi)的情况下暂停接收和/或解码。否则,用户可开始/继续接收和/或解码。作为另一示例,如果用户检测到“停止”指示符,则该用户可停止接收和/或解码直到tti_user结束。

当在当前tti_user中被指派dl准予时,每一活跃用户还通过寻找任何更高优先级的spi(高于spi_user)来在命令信道上在每一t_pich中监视一次spi以发现可能的更高优先级的调度更新(例如,tti穿孔)。由此,活跃用户可以更频繁地检查spi以查看是否指示更高优先级的spi(比用户更高的优先级)。如果存在与用户的正在进行的dl准予冲突的更高优先级的spi,则用户暂停对正在进行的准予的解码。

mps层2:dci中的用于专用准予的信令

在成功地解码和检测到来自共用调度优先级指示符信道的spi_user之际,存在可能的新dl准予。用户通过解码和检测关于可能的dl准予的专用下行链路控制信息(dci)来进一步寻求确认。由此,用户可通过监视专用信道信息来确定层1中指示的潜在准予是否是针对该特定用户的专用准予。

如在下文中更详细地讨论的,用户可以在每一tti_user内通过物理下行链路控制信道(pdcch)检测和解码来推导出准予细节。第一,用户可以在专用信道上解码dci。连同用户dci一起,网络准备spi用户位映射以进一步向该用户指示针对dl准予的rb分配。第二,用户可推导出spi用户位映射的长度并构造spi序列。spi序列可基于来自共用优先级指示信道的已知spi_user来构造。第三,用户可推导出针对该准予的rb分配。在此,用户可以从dci中提取spi用户位映射并且用所构造的spi序列来对位映射进行掩码以推导出针对该准予的最终rb分配。用户可能在tti_min区间的开始处被穿孔时在tti_user内针对dl准予被调度。

在一些方面,给定准予(例如,与特定spi相关联)可以与一个或多个特定rb相关联。在一些方面,信令可以仅仅指示专门准予的rb(例如,而不是使用对应于所有rb的位映射)。在一些方面,一个或多个子带可被分配给给定用户(例如,spi可以按子带级而不是按rb来指定)。

示例过程

图8解说了根据本公开的一些方面的用于支持控制消息的信令的过程800。过程800可以至少部分地在至少一个处理电路(例如,图15的处理电路1510)内进行,该至少一个处理电路可位于接入终端、基站、某一其它合适的装置或这些装置的组合中。当然,在本公开的范围内的各个方面,过程800可以由能够支持控制相关操作的任何合适的一个或多个装置来实现。

在框802,由网络(例如,由网络运营商)预定义或发信令通知高优先级监视空间(hpms)。hpms可以是ofdm码元的整个资源块(rb)分配空间的子集。如本文所讨论的,hpms中的rb可以在网络决策时用更高优先级的调度更新来穿孔。

在复用式多优先级调度系统(mmpss)中定义供网络从其指派(例如,基于用户优先级)的有效tti长度集合。在一些方面,tti包括一个或多个相等历时ofdm码元,其中在任意两个相邻码元之间是一个cp历时。

在框804,将每一tti长度唯一性地映射到调度指示符(例如,spi)。另外,spi可被定义为标识“未被指派”的spi。在一些方面,用户的最小调度单元可以是一个资源块(rb)。由此,相应的比特数可用于表示属于ofdm码元的所有rb的每rbspi(以下更详细地讨论)。

在框806,向每一活跃用户指派唯一性地对应于tti长度(tti_user)的特定调度指示符(例如,spi_user)。网络还可以在其认为必要时更新用户的调度指示符。

在框808,由网络发信令通知所有活跃用户之中的最小tti(tti_min)。

在框810,网络在一ofdm码元处在pich上每tti_min(tpich)发送一次rb级调度指示符。

在框812,调度指示符指示rb未被指派或者指示正被活跃地调度(即,指派)用于下行链路(dl)传输的每一rb的所指派的调度指示符值(例如,spi值)。

在框814,每一活跃用户在当前未被指派准予的情况下每tti_user时间区间(tti长度)解码一次pich。另外,用户监视整个rb分配空间以发现指派给该用户的可能的新dl准予。例如,如果接收到与被指派给用户的spi相匹配的spi,则针对该用户的新dl准予是可能的。

在框816,如果在框814找到匹配的调度指示符,则给定用户可确认该准予是否是针对该用户的(例如,通过执行以上讨论的层2操作)。

在框818,已被指派准予的每一活跃用户每tti_min(tpich)解码一次pich以获得开始/停止指示。另外,在一些实现中,用户只在hpms中监视可能的调度更新直到所指派的dl准予期满。

对于采用专用信道的实现,开始/停止指示可以是对用户的显式命令。例如,该命令可指令用户在对应的tti_min内开始、继续、暂停或停止接收数据。

对于采用共用信道的实现,开始/停止指示可以是spi。如果在hpms中检测到与用户的正在进行的准予冲突的处于更高优先级(比spi用户更高)的spi,则可继续具有更高优先级穿孔的调度更新。这将导致用户暂停对指派给该用户的准予的正在进行的解码。相反,如果用户先前已经由于更高优先级的调度更新而暂停了对所指派的准予的正在进行的解码并且不再存在冲突(如由hpms中的spi指示的),则这将导致用户继续对暂停的所指派的准予的接收解码,只要该准予尚未期满。

在框820,用户在标识出spi冲突(例如,对于共用信道)或者接收到显式命令(例如,对于专用信道)的情况下开始/停止对待决准予的解码,如以上讨论的。

灵活的dci

在一些实现中,dci基于以下信息的相对变化率被分类成2个子集:半静态信息和动态信息。

半静态信息包括例如每多个tti变化一次的至少一个参数。此类信息的示例包括:{调制和编码方案(mcs)、rb分配}。半静态信息可在dci中被排除,因为它不如在每一tti中那样频繁地改变。

动态信息包括例如每tti变化一次的至少一个参数。此类信息的示例包括:{预编码矩阵索引(pmi)、新数据指示符(ndi)、冗余版本(rv)、harqid}。动态信息在每一dci中可以是强制性的。

包括半静态信息和动态信息两者的dci被定义为普通dci(n-dci)。不具有半静态信息的dci被定义为轻量级dci(l-dci)。

存在用于递送和解码dci的两个选项。在选项1(盲解码)中,网络决定要传送哪种类型(n-dci或l-dci),并且ue对于每一dci在这两种假设上进行盲解码。在选项2(相干解码)中,网络在tti子集(按作为设计选择的预定义策略)传送可由ue推断的n-dci,以使得网络和ue两者始终相干地传送/解码dci。在任一选项中,网络可假定未成功地接收到ue的n-dci,除非网络接收到关于对应于dci的dl数据(或pdsch)的harqack。

spi和rb示例

图9解说了可以在pich中传递的关于按spi资源分配的信息类型的示例。具有各种优先级和spi的tti可以在pich上指示。例如,对于rbi,指派spi值p0,对于rbi+1,指派spi值p1,以此类推。对于未被指派给任何用户的rb,“未指派”值可被用作spi。

对于rb分配空间(例如,hpms902)中的指派给用户的每一rb(针对dl准予),网络可提取对应的spi_user值并且在pich上每tti_smallest(tti_最小)发送一次这些spi_user值(例如,在更高优先级(最小)tti906的第一ofdm码元904中)。图9还解说了tpich时段908和更低优先级(更长)tti910的示例。

在pich中可以存在各种类型的spi分配类型。例如,可以存在“rb分配类型”(如在图9中解说的)或者“子带分配”类型(如以下讨论的)。

图10解说了spi序列1002、可变长度spi用户位映射1004以及rb指派1006的示例导出。在一些方面,处于spi_user优先级的用户可通过对与spi_user相匹配的spi的数目进行计数来从共用优先级指示信道(cpic)1008中确定“spi序列”和序列长度。例如,第一rb或子带的spi1010被映射1012到spi序列中的第一元素1014。通过将恰适的位映射1004应用于给定的spi序列1002,可确定结果得到的rb指派1006。如由虚线框(例如,框1016)指示的,位映射可导致rb指派的大小减小。

所构造的spi序列及其长度被用来在专用信道上检测和解码用户的dci以便最终推导出用户的针对dl准予的rb分配。在一些情形中,单独的可变长度dci设计可支持针对此类dci设计的检测和解码。

如上所述,cpic上的spi分配(由线1018表示)可以按rb或者按子带。在后一情形中,rb分配空间可被划分成各子带,并且可以为每一子带指示一个spi(例如,具有与如图9所示的用于rb分配的spi用户位映射相似的原理)。

示例处理规程

图11解说了供设备(例如,ue)监视pich的处理规程的示例。如本文所讨论的,较高优先级的监视空间(hpms)可以是整个rb分配空间的子集。较高优先级的调度更新可由网络在hpms中(例如,只在hpms中)做出。定义tti_min(通常通过网络发信令通知),并且由网络向用户指派spi_user(spi_用户)或tti_user(tti_用户)(框1102)。

在框1104-1110,已经在当前tti_user中被指派dl准予的每一活跃用户应附加地在每一tti_min中解码一次pich以监视可能的调度更新(以便检测可能的冲突)。如果检测到与用户正在进行的准予冲突(在rb分配方面)的更高优先级的spi(高于spi_user),则存在更高优先级的调度更新(穿孔)。用户可相应地采取行动。例如,用户可暂停正在进行的数据解码(至少已经由于分配给更高优先级而被穿孔的资源的解码)。如果用户已经暂停正在进行的数据解码并且不再存在更高优先级调度冲突(如由用户的所指派的rb中的spi指示的),则该用户可继续接收/解码被暂停的所指派的准予,只要该准予尚未期满。

由此,如果用户在当前tti_user中被指派(被暂停或未被暂停)dl准予,则操作流程继续至框1106。在此,用户每tti_min解码一次指示信道以检查是否需要暂停/停止接收。若否(框1110),则用户开始/继续接收和解码。若是(框1108),则用户根据调度指示符来暂停/停止正在进行的解码。

在框1112-1124,当未被指派dl准予时,每一活跃用户可以每tti_user解码一次cpich以监视可能的新准予。例如,如果检测到匹配的spi_user,则给该用户的新dl准予是可能的。如果在框1104确定dl准予未被指派,则操作流程继续至框1112。在此,用户每tti_user解码一次指示信道以检测是否存在spi_user。若否(框1114),则不采取动作,因为没有检测到dl准予。若是,则操作流程继续至框1116。在此情形中,可能存在给用户的dl准予。由此,用户尝试在专用信道上解码dci。如果未检测到dci(框1118),则不采取动作,因为没有检测到dl准予。否则,dl准予存在。由此,用户使用spi_user来推导出spi用户位映射的长度,并且使用dci中的spi用户位映射来推导出针对该准予的rb分配,如以上在图10中讨论的(框1120)。可采用灵活的dci选项,如以上讨论的。由此,用户可推导出半静态信息并提取动态信息(框1122)。此刻,推导出整个dl准予,并且用户准备好解码dl数据(例如,从pdsch)。

图12解说了供设备(例如,ue)支持多优先级调度的处理规程的另一示例。该示例解说了自调度信令模式(sssm)和因spi而异的办法。在sssm中,合并dci和数据以用于编码和传输。

例如,存在供网络基于因用户而异的状况来在dci中发信令通知dl准予的两种办法。在第一办法中,经由pdcch来发信令通知dci(sssm非活跃)。在第二办法中,经由pdsch来发信令通知dci(sssm活跃)。

在框1202,定义tpich(通常通过网络来发信令通知),在pich上发信令通知hpms(通常通过网络来发信令通知),并且由网络向每一用户指派spi_user。

在框1204,确定用户是否在当前tti中被指派(被暂停或未被暂停)dl准予。如果是,则操作流程继续至框1206。在此,用户每tpich解码一次pich以检查任何更高优先级spi是否与用户的正在进行的dl准予冲突。如果存在冲突(更高优先级的调度更新(tti穿孔)出现),则用户暂停当前tti_user中的正在进行的解码(框1208)。相反(在框1206没有冲突),如果用户先前已经暂停正在进行的dl准予,则用户检查以查明先前的spi冲突是否已被解除(框1210)。如果冲突尚未被解除(框1212),则用户继续正在进行的数据解码(即,不存在用户操作的变化)。如果冲突已被解除,则用户继续对dl准予的被暂停的解码(框1214)。

如果在框1204确定dl准予未被指派,则操作流程继续至框1216。在此,用户每tti_user解码一次pich以查明在hpms中是否存在spi_user。如果否(框1218),则不采取动作。如果是,则操作流程继续至框1220。用户然后确定sssm是否活跃。如果否(框1222),则用户确定是否在dci中检测到准予(例如,经由pdcch)。如果未检测到准予(框1226),则不采取动作,因为没有检测到dl准予。否则,找到新dl准予(框1224)并且用户解码dl数据(例如,在pdsch上)。

如果在框1220sssm是活跃的,则操作流程继续至框1228。用户在dci中的半静态信息未改变的假设下解码所接收到的数据(例如,pdsch)。由此,数据解码是成功的(框1230)或者是不成功的(框1232)。如果数据解码不成功(例如,pdsch解码失败),则用户可以在上行链路(ul)上发送nack。

潜在效果和益处

以下是分层控制信令设计的潜在效果和/或益处的示例。在具有共用调度优先级指示符的层1控制信令中,用户出于两个目的解码共用调度优先级指示符。第一个目的是检查可能的新dl准予是否对用户可用(例如,每tti_user检查一次)。第二个目的是在用户具有正在进行的dl准予时确认冲突的更高优先级的调度更新是否出现(例如,当在当前tti_user内被指派dl准予时每tpich确认一次)。

在具有专用dl准予的层2控制信令中,一旦层1信令确认可能的新dl准予可用,用户就进一步解码dci以确认此类新dl准予。此外,如果sssm(自调度信令模式)是活跃的,则连同dl数据一起发信令通知dci(即,“合并”以用于解码和传输,这进一步减少接收机处的处理开销)。否则,如果sssm不是活跃的,则使用旧式信令(即,将dci和dl数据分开)。

以下是灵活的dci设计的潜在效果和/或益处的示例。定义两种类型的dci,即n-dci和l-dci,这实现了包括半静态信息和动态信息两者或者只包括动态信息方面的灵活性。要被包括在n-dci和l-dci中的参数的确切选择是通过设计选择作出的。已经描述了用于信令/解码的两个选项(例如,由设计者选择)。在任一选项中,可消除dci的子集中的不必要的过多信令,这在多优先级调度系统中实现了进一步的节省。

作为对比,常规无线通信(例如,lte)采用定期pdcch调度并且在每一单个dci中配置数据解码,这对于较短的tti长度而言可能是太过繁重的(例如,处理强度太大)。sps(半持久调度)则不然,它不涉及配置之间的pdcch。另外,定期pdcch和sps未被专门设计成用于具有动态更新的多优先级调度。例如,rb分配通常表示整个dci的30-60%。在用于20mhz的ltepdcch格式1/1c中,rb分配占用60%的dci。

定向控制信道

在配备有较大量的发射天线的无线系统(例如,大规模多输入多输出(mimo)系统)中,可实现信号传输(即,波束成形)中的相对更精细的空间分辨率。通常,此类高级传输能力被用于专用(或因ue而异的)信令,诸如因ue而异的参考信号(uers)和专用控制信号(例如,ltepdcch)。

为了附加地在对于多个用户或所有用户而言共用的信令中利用此类高级传输能力,本公开在一些方面涉及使用定向共用信道(dcc,其中术语“共用”在一些方面指的是旨在给多个用户的共用有效载荷),以便通过至各个用户的波束成形传输来利用较大量的发射天线的可用能力来波束成形至多个用户的共用有效载荷。

为了使每一个体用户正确地在ofdma系统中的这种类型的dcc上接收和解码信号,可以伴随相同的多天线系统传送恰当地设计的副载波模式的参考信号。以此方式,用户可通过等同的天线和mimo传播信道来接收dcc有效载荷信号和参考信号两者,并且将此类参考信号用作估计(例如,信道估计和干扰估计)的源以辅助检测和解码dcc有效载荷信号。

共用物理信道的若干实例可适于所提议类型的dcc技术。此类共用信道包括共用广播信道、导频信道和共用指示符信道。

由此,pich可以定向发送(例如,用波束成形)。这可涉及重用相同的副载波资源集,以及通过正确地使用个体用户的空间特性经由定向信令来单播传输经信道化的共用有效载荷。为了辅助每一预期用户的接收和解码,因ue而异的参考信号可通过正确地使用个体用户的空间特性(与用于共用有效载荷信号的那些特性相同的特性)来与共用有效载荷信号一起传送。

以下是可通过使用定向波束成形共用信道来达成的益处的示例。

频谱效率、功率效率和链路性能:旧式(广播/非定向/非波束成形)共用信道通常由于链路预算限制(诸如针对蜂窝小区边缘用户)而只可使用较低的调制阶数(例如,ltepdcch中的qpsk)来进行传输。然而,dcc打破这些限制并使得能够在发射机处进行空间处理以用于朝向各个用户的波束成形并由此可使用较高的调制阶数。

副载波资源效率:由于相同的有效载荷作为共用信道以多个用户(接收机)为目标,因此以多个接收方用户为目标的后调制频域星座码元可以在传输(tx)处理期间在天线系统处加权并线性地叠加在相同的(重用的)副载波集上(由于共同的有效载荷)。

以下是可通过使用定向共用优先级指示信道(dc-pich)来达成的益处的示例。

副载波资源效率-o(n)对o(logn):为了向多个用户递送dl准予(调度)信息,dc-pich使用共用调度优先级指示符来向所有活跃用户提供对所需动作的“顶级”指示,而不是完全依赖ue专用信令(例如,ltepdcch)。具体而言,在ltepdcch中,rbg位映射信息的一个副本与准予指派一起被传送到每一活跃用户,而在dc-pich中,只传送共用spi,从而导致副载波资源的显著节省。以下是复杂性量级比较。

ltepdcch(分配类型0):假设rbg表大小是“t”比特。对于“n”个活跃用户,针对用于传送的副载波资源需要总共“t*n”比特。

具有另一专用指示符的dc-pdch:假设“n”个活跃用户被分成“m=n”个优先级。对于关于所有“n”个活跃用户的相同量的准予调度信息,针对用于将调度信息递送到所有“n”个活跃用户的副载波资源只需要“t*log2(n)”比特。

链路性能效率:常规地,dl准予调度信息通过非定向传输(例如,ltepdcch)来传送,相比于波束成形dc-pich(例如,与另一专用信道相组合,如本文描述的),这不如波束成形dc-pich那样频谱和功率高效且不如波束成形dc-pich那样链路性能高效。

示例过程

虽然网络测设备(诸如基站)可以在每一最小tti中传送cpich,但ue可监视cpich以检测潜在的准予和可能的冲突。图13和14解说了与传送和监视cpich相对应的示例操作。

图13解说了根据本公开的一些方面的用于由移动设备(例如,ue)基于spi信息和资源分配来监视冲突的过程1300。过程1300可以在处理电路(例如,图15的处理电路1510)内进行,该处理电路可位于接入终端、基站或某一其它合适的装置中。当然,在本公开的范围内的各个方面,过程1300可由能够支持控制相关操作的任何合适的装置来实现。

过程1300通过确定移动设备的调度优先级索引(spi)、对应于spi的移动设备的传输时间区间(tti)以及网络中的与该移动设备共享共用资源空间的活跃移动设备的最短tti来在框1302开始。在一些方面,该确定可涉及接收指示移动设备的spi和最短tti的信令或者可以是接收该信令的结果。

在框1304,移动设备在该移动设备的每一tti中监视可能的下行链路准予至少一次。在一些方面,在该移动设备的每一tti中监视可能的下行链路准予至少一次可涉及监视指示按spi指派的资源的共用优先级指示信道(cpich)。在一些方面,cpich可以按一个或多个资源块(rb)的整数值的粒度来指示资源。在一些方面,cpich可以按子带的整数值的粒度来指示资源。在一些方面,cpich可以在每一最短tti的第一码元中传送。

在框1306,移动设备在监视期间检测针对该移动设备的下行链路准予。在一些方面,检测针对移动设备的下行链路准予可涉及检测具有针对与该移动设备的spi相匹配的spi的资源指派的cpich。

在框1308,移动设备响应于框1306处的检测来在每一最短tti中监视给其它移动设备的dl准予至少一次。在一些方面,在每一最短tti中监视给其它移动设备的dl准予至少一次可涉及监视指示按spi指派的资源的共用优先级指示信道(cpich)。

在框1310,移动设备响应于检测到用于给移动设备的dl准予的资源与用于给具有比该移动设备更高的优先级spi和更低的对应tti的另一移动设备的dl准予的资源之间的冲突而采取动作。在一些方面,采取动作涉及在触及冲突的资源时暂停对dl准予的正在进行的数据解码。在该情形中,数据解码可以针对其余非冲突资源继续。

图14解说了根据本公开的一些方面的用于由网络节点(例如,基站)发信令通知spi信息和资源分配的过程1400。过程1400可以在处理电路(例如,图15的处理电路1510)内进行,该处理电路可位于接入终端、基站或某一其它合适的装置中。当然,在本公开的范围内的各方面中,过程1400可由能够支持控制相关操作的任何合适的装置来实现。

过程1400通过向网络中的移动设备发信令通知该移动设备的调度优先级索引(spi)以及网络中的与该移动设备共享共用资源空间的活跃移动设备的最短传输时间区间(tti)来在框1402开始。

在框1404,网络接口在每一最短tti中传送指示按spi指派的用于下行链路(dl)准予的资源的共用优先级指示信道(cpich)。在一些方面,cpich可以按一个或多个资源块(rb)的整数值的粒度来指示资源。在一些方面,cpich可以按子带的整数值的粒度来指示资源。在一些方面,cpich可以在每一最短tti的第一码元中传送。在一些方面,该cpich可经由以下至少一者来发送:经波束成形的传输或定向传输。在一些方面,cpich可使用各个用户的空间特性来发送。在一些方面,cpich可以与因个体用户而异的参考信号一起发送。

示例装置

图15是根据本公开的一个或多个方面的可支持调度的装置1500的解说。装置1500可实施或实现在移动设备、接入点或者支持无线通信的某一其它类型的设备中。在各种实现中,装置1500可实施或实现在接入终端(例如,ue)、基站(bs)或某种其它类型的设备中。在各种实现中,装置1500可以实施移动电话、智能电话、平板设备、便携式计算机、服务器、个人计算机、传感器、娱乐设备、医疗设备或具有电路系统的任何其他电子设备或在其中实现。装置1500包括通信接口(例如,至少一个收发机)1502、存储介质1504、用户接口1506、存储器设备1508以及处理电路1510。

这些组件可以经由信令总线或其他合适的组件(由图15中的连接线一般化地表示)彼此耦合和/或彼此进行电通信。取决于处理电路1510的具体应用和整体设计约束,信令总线可包括任何数目的互连总线和桥接器。信令总线将各种电路链接在一起以使得通信接口1502、存储介质1504、用户接口1506和存储器设备1508中的每一者耦合到处理电路1510和/或与处理电路1510进行电通信。信令总线还可链接各种其他电路(未示出),诸如定时源、外围设备、稳压器和功率管理电路,这些电路在本领域中是众所周知的,且因此将不再进一步描述。

通信接口1502可被适配成促成装置1500的无线通信。例如,通信接口1502可包括被适配成促成相对于网络中的一个或多个通信设备进行双向信息通信的电路系统和/或编程。在一些实现中,通信接口1502可被配置成用于基于有线的通信。在一些实现中,通信接口1502可耦合到一个或多个天线1512以用于在无线通信系统内进行无线通信。通信接口1502可以配置有一个或多个自立接收机和/或发射机以及一个或多个收发机。在所解说的示例中,通信接口1502包括发射机1514和接收机1516。

存储器设备1508可表示一个或多个存储器设备。如所指示的,存储器设备1508可维护调度相关信息1518连同装置1500所使用的其他信息。在一些实现中,存储器设备1508和存储介质1504被实现为共用存储器组件。存储器设备1508还可被用于存储由处理电路1510或由装置1500的某个其他组件操纵的数据。

存储介质1504可表示用于存储编程(诸如处理器可执行代码或指令(例如,软件、固件))、电子数据、数据库、或其他数字信息的一个或多个计算机可读、机器可读、和/或处理器可读设备。存储介质1504还可被用于存储由处理电路1510在执行编程时操纵的数据。存储介质1504可以是能被通用或专用处理器访问的任何可用介质,包括便携式或固定存储设备、光学存储设备、以及能够存储、包含或携带编程的各种其他介质。

作为示例而非限制,存储介质1504可包括:磁存储设备(例如,硬盘、软盘、磁条)、光盘(例如,压缩碟(cd)或数字多功能碟(dvd))、智能卡、闪存设备(例如,记忆卡、记忆棒、或钥匙驱动器)、随机存取存储器(ram)、只读存储器(rom)、可编程rom(prom)、可擦式prom(eprom)、电可擦式prom(eeprom)、寄存器、可移动盘、以及任何其他用于存储可由计算机访问和读取的软件和/或指令的合适介质。存储介质1504可以在制品(例如,计算机程序产品)中实施。作为示例,计算机程序产品可包括封装材料中的计算机可读介质。鉴于上述内容,在一些实现中,存储介质1504可以是非瞬态(例如,有形)存储介质。

存储介质1504可被耦合至处理电路1510以使得处理电路1510能从存储介质1504读取信息和向存储介质1504写入信息。即,存储介质1504可耦合到处理电路1510,以使得存储介质1504至少能由处理电路1510访问,包括其中至少一个存储介质被集成到处理电路1510的示例和/或其中至少一个存储介质与处理电路1510分开(例如,驻留在装置1500中、在装置1500外部、跨多个实体分布等)的示例。

由存储介质1504存储的编程在由处理电路1510执行时使处理电路1510执行本文描述的各种功能和/或过程操作中的一者或多者。例如,存储介质1504可包括被配置用于以下动作的操作:管控处理电路1510的一个或多个硬件块处的操作以及利用通信接口1502通过利用其相应通信协议进行无线通信。

处理电路1510一般适配成用于处理,包括执行存储在存储介质1504上的此类编程。如本文中使用的,术语“代码”或“编程”应当被宽泛地解释成不构成限定地包括指令、指令集、数据、代码、代码段、程序代码、程序、编程、子程序、软件模块、应用、软件应用、软件包、例程、子例程、对象、可执行件、执行的线程、规程、函数等,无论其被称为软件、固件、中间件、微代码、硬件描述语言、还是其他术语。

处理电路1510被安排成获得、处理和/或发送数据、控制数据的访问与存储、发布命令,以及控制其他期望操作。在至少一个示例中,处理电路1510可包括被配置成实现由适当的介质提供的期望编程的电路系统。例如,处理电路1510可被实现为一个或多个处理器、一个或多个控制器、和/或配置成执行可执行编程的其他结构。处理电路1510的示例可包括被设计成执行本文所描述的功能的通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现场可编程门阵列(fpga)或其他可编程逻辑组件、分立的门或晶体管逻辑、分立的硬件组件、或者其任何组合。通用处理器可包括微处理器,以及任何常规处理器、控制器、微控制器、或状态机。处理电路1510还可实现为计算组件的组合,诸如dsp与微处理器的组合、数个微处理器、与dsp核协作的一个或多个微处理器、asic和微处理器、或任何其他数目的变化配置。处理电路1510的这些示例是为了解说,并且还设想了落在本公开范围内的其他合适的配置。

根据本公开的一个或多个方面,处理电路1510可适配成执行用于本文中描述的任何或所有装置的特征、过程、功能、操作和/或例程中的任一者或全部。例如,处理电路1510可被配置成执行关于图1、8-14和16描述的步骤、功能和/或过程中的任一者。如本文所使用的,涉及处理电路1510的术语“适配”可指处理电路1510被配置、采用、实现和/或编程(以上一者或多者)为执行根据本文描述的各种特征的特定过程、功能、操作和/或例程。

处理电路1510可以是用作用于执行结合图1、8-14和16描述的任一操作的装置(例如,结构)的专用处理器,诸如专用集成电路(asic)。处理电路1510可用作传送装置和/或接收装置的一个示例。

根据装置1500的至少一个示例,处理电路1510可包括用于确定区间的电路/模块1520、用于传达的电路/模块1522、用于解码的电路/模块1524、用于确定长度的电路/模块1526或者用于确定资源块分配的电路/模块1528中的一者或多者。

用于确定区间的电路/模块1520可包括被适配成执行与例如确定用于传达调度指示符的区间相关的若干功能的电路系统和/或编程(例如,存储在存储介质1504上的用于确定区间的代码1530)。在各场景中,确定区间可涉及以下一者或多者:定义区间、接收区间(例如,从另一装置或另一组件接收区间的指示)、获取区间(例如,从存储器设备或某一其它组件检索区间的指示)等。在一些实现中,用于确定区间的电路/模块1520确定区间是否匹配与设备(例如,ue)相关联的承载。例如,对于给定ue,用于确定区间的电路/模块1520可标识与该ue相关联的承载并且然后标识映射到该承载的区间(例如,如图7所示)。这些确定可以例如基于从存储器设备1508检索到或者以某种其它方式获取的映射。用于确定区间的电路/模块1520然后可以向装置1500的组件(例如,存储器设备1508或某一其它组件)输出区间的指示。

用于传达的电路/模块1522可包括被适配成执行与例如发送和/或接收信息相关的若干功能的电路系统和/或编程(例如,存储在存储介质1504上的用于传达的代码1534)。在一些实现中,信息是调度指示符并且用于传达的电路/模块1522根据区间(例如,从用于确定区间的电路/模块1520接收到、从存储器设备1508中检索到或者以某种其它方式获取)来传达调度指示符。在一些实现中,通信接口1502包括用于传达的电路/模块1522和/或用于传达的代码1534。

在一些场景中,传达涉及用于传达的电路/模块1522直接从传送该数据的设备接收信息或者从装置1500的组件(例如,接收机1516、存储器设备1508或某一其它组件)接收信息。在该情形中,用于传达的电路/模块1522可处理(例如,解码)所接收到的信息。用于传达的电路/模块1522然后将所接收到的信息输出到装置1500的组件(例如,存储器设备1508或某一其他组件)。

在一些场景中,传达涉及向装置1500的另一组件(例如,发射机1514)发送信息以供传送到另一设备或者直接向最终目的地发送信息(例如,如果用于传达的电路/模块1522包括发射机)。在该情形中,用于传达的电路/模块1522最初获得要传达的信息(例如,从存储器设备1508或某一其它组件)。用于传达的电路/模块1522可处理(例如,编码)要传送的信息。用于传达的电路/模块1522然后传送该信息。例如,用于传达的电路/模块1522可以直接传送信息或者将信息传递至发射机1514以供后续的射频(rf)传输。

在一些实现中,用于传达的电路/模块1522获得下行链路控制信息(例如,从存储器设备1508)并向ue发送该下行链路控制信息。该信息的发送可通过从用于确定区间的电路/模块1520接收到指示区间匹配与ue设备相关联的承载的指示来触发。

用于解码的电路/模块1524可包括被适配成执行与例如解码信息相关的若干功能的电路系统和/或编程(例如,存储在存储介质1504上的用于解码的代码1534)。在一些实现中,该信息是下行链路控制信息(dci)。在一些实现中,该信息与正在进行的准予相关联。用于解码的电路/模块1524从装置1500的组件(例如,存储器设备1508或某一其他组件)获取要解码的信息。解码可以是有条件的。例如,在一些实现中,用于解码的电路/模块1524在调度指示符指示准予可以是可用的(例如,对ue可用)的情况下解码下行链路控制信息。在一些实现中,用于解码的电路/模块1524在调度指示符指示比与准予相关联的优先级更高的优先级的情况下暂时停止对正在进行的准予的解码。在一些实现中,用于解码的电路/模块1524根据与特定设备(例如,ue)相关联的spi区间来解码下行链路控制信息。例如,用于解码的电路/模块1524可以尝试在每一spi区间中解码一次来自指定信道的下行链路控制信息。

用于解码的电路/模块1524可采用不同类型的解码。在一些实现中,解码涉及对dci的每一实例的盲解码。在此,盲解码可使用关于动态参数的假设以及关于半静态参数的假设。在一些实现中,解码涉及对dci的子集的相干解码。在该情形中,相干解码可使用关于半静态参数的假设。

用于确定长度的电路/模块1526可包括被适配成执行与例如确定用于调度指示符的位映射的长度相关的的若干功能的电路系统和/或编程(例如,存储在存储介质1504上的用于确定长度的代码1536)。用于确定长度的电路/模块1526获取关于调度指示符的信息(例如,从存储器设备1508或装置1500的某一其它组件)。用于确定长度的电路/模块1526然后可使用例如以上结合图10描述的操作来确定长度。用于确定长度的电路/模块1526然后可以向装置1500的组件(例如,用于确定资源块分配的电路/模块1528、存储器设备1508或某一其它组件)输出长度的指示。

用于确定资源块分配的电路/模块1528可包括被适配成执行与例如确定针对准予的资源块分配相关的的若干功能的电路系统和/或编程(例如,存储在存储介质1504上的用于确定资源块分配的代码1538)。

在一些实现中,用于确定资源块分配的电路/模块1528基于位映射的长度来确定资源块分配。在该情形中,用于确定资源块分配的电路/模块1528获取位映射的长度的指示(例如,从用于确定长度的电路/模块1526、存储器设备1508或某一其它组件)。用于确定资源块分配的电路/模块1528然后可使用例如以上结合图10描述的操作来确定资源块分配。用于确定资源块分配的电路/模块1528然后可以向装置1500的组件(例如,存储器设备1508或某一其它组件)输出资源块分配的指示。

如上所述,由存储介质1504存储的编程在由处理电路1510执行时使得处理电路1510执行本文描述的各种功能和/或过程操作中的一者或多者。例如,存储介质1504可包括用于确定区间的代码1530、用于传达的代码1532、用于解码的代码1534、用于确定长度1536的代码或者用于确定资源块分配的代码1538。

示例过程

图16解说了根据本公开的一些方面的用于支持控制信令的过程1600。过程1600可以在处理电路(例如,图15的处理电路1510)内进行,该处理电路可位于接入终端、基站或某一其它合适的装置中。当然,在本公开的范围内的各方面中,过程1600可由能够支持控制相关操作的任何合适的装置来实现。

在框1602,装置(例如,接入终端或基站)确定用于传达调度指示符的区间。在此,调度指示符可以是被映射到多个传输时间区间(tti)长度的多个调度指示符之一。在一些方面,调度指示符指示准予是否可供被指派各tti长度中的一个特定tti长度的用户使用。

在一些场景中,调度指示符是在每资源块的基础上分配的。在一些场景中,调度指示符是在每子带的基础上分配的。在一些场景中,调度指示符在对于多个用户而言共用的信道上传达。在一些场景中,调度指示符经由波束成形传达。在一些场景中,调度指示符在专用于特定用户的信道上传达。

在框1604,该装置根据区间来传达调度指示符。该传达可涉及传送和/或接收,这取决于例如过程1600由调度实体或下级实体执行。

在一些场景中,调度指示符包括指示tti长度的对应的调度优先级的多个调度优先级指示符。在一些方面,调度指示符的传达可涉及接收调度指示符(例如,在ue处)。在该情形中,过程1600可进一步包括在调度指示符指示比与准予相关联的优先级更高的优先级的情况下暂时停止对正在进行的准予的解码。

在可任选框1606,在一些场景中,装置(例如,ue)在调度指示符指示准予可以是可用的情况下解码下行链路控制信息(dci)。在一些方面,dci可包括:有时在每一tti中都不同的动态参数;以及在多个tti中只变化一次的半静态参数。在一些方面,解码可包括对dci的每一实例的盲解码。盲解码可使用关于动态参数的假设以及关于半静态参数的假设。在一些方面,解码可包括对dci的子集的相干解码。相干解码可使用关于半静态参数的假设。在一些方面,dci可以与数据合并以用于编码和传输。

在可任选框1608,在一些场景中,该装置根据与ue相关联的spi区间来解码下行链路控制信息(dci)。例如,ue可以在基于指派给ue的spi区间的时间监视下行链路控制信息。

在可任选框1610,在一些场景中,该装置(例如,基站)确定用于调度指示符的位映射的长度。在可任选框1612,在一些场景中,该装置基于如在框1610确定的位映射的长度来确定针对准予的资源块分配。在一些方面,框1610和1612的操作可对应于以上结合图10讨论的操作。

在可任选框1614,在一些场景中,该装置确定区间(例如,框1602的区间)是否匹配与ue相关联的承载。例如,对于给定的ue,基站可标识与该ue相关联的承载并且然后标识映射到该承载的区间(例如,如图7所示)。在可任选框1616,在一些场景中,该装置在框1614处的确定指示区间匹配与ue设备相关联的承载的情况下向ue发送下行链路控制信息。例如,基站可以在基于根据给定ue所使用的承载来指派给该ue的区间的时间传送关于该ue的dci。

在一些场景中,过程1600还可包括确定用于传达另一调度指示符的另一区间并且根据该另一区间来传达该另一调度指示符。在此,该另一调度指示符可指示停止还是开始对活跃准予的解码。

示例网络

图17是包括如可出现在本公开的一些方面中的多个通信实体的无线通信网络1700的示意性解说。如本文描述的,调度实体或被调度的实体(例如,如在图3-5中解说的)可以驻留在基站、智能电话、小型蜂窝小区或另一实体中或者是其一部分。下级实体或网格节点可驻留在智能警报器、远程传感器、智能电话、电话、智能仪表、pda、个人计算机、网格节点和/或平板计算机中或者是其一部分。当然,所解说的设备和组件仅仅是示例,并且任何合适的节点或设备可出现在本公开的范围内的无线通信网络内。

其它方面

当然,提供这些示例仅是用于解说本公开的某些概念。本领域普通技术人员将理解,这些示例在本质上仅仅是示例性的,且其他示例可落在本公开和所附权利要求的范围内。

如本领域技术人员将容易领会的那样,贯穿本公开描述的各种方面可扩展到任何合适的电信系统、网络架构和通信标准。作为示例,各方面可被应用于umts系统,诸如w-cdma、td-scdma、和td-cdma。各个方面还可应用于采用长期演进(lte)(在fdd、tdd或这两种模式下)、高级lte(lte-a)(在fdd、tdd或这两种模式下)、cdma2000、演进数据最优化(ev-do)、超移动宽带(umb)、ieee802.11(wi-fi)、ieee802.16(wimax)、ieee802.20、超宽带(uwb)、蓝牙的系统和/或其他合适的系统,包括由待定义的广域网标准所描述的那些系统。所采用的实际的电信标准、网络架构和/或通信标准将取决于具体应用以及加诸于该系统的整体设计约束。

在本公开内,措辞“示例性”用于表示“用作示例、实例或解说”。本文中描述为“示例性”的任何实现或方面不必被解释为优于或胜过本公开的其他方面。同样,术语“方面”不要求本公开的所有方面都包括所讨论的特征、优点或操作模式。术语“耦合”在本文中用于指两个对象之间的直接或间接耦合。例如,如果对象a物理地接触对象b,且对象b接触对象c,则对象a和c可仍被认为是彼此耦合的——即便它们并非彼此直接物理接触。例如,第一管芯可以在封装中耦合至第二管芯,即便第一管芯从不直接与第二管芯物理接触。术语“电路”和“电路系统”被宽泛地使用且意在包括电子器件和导体的硬件实现以及信息和指令的软件实现两者,这些电子器件和导体在被连接和配置时使得能执行本公开中描述的功能而在电子电路的类型上没有限制,这些信息和指令在由处理器执行时使得能执行本公开中描述的功能。

以上解说的组件、步骤、特征和/或功能中的一者或更多者可以被重新安排和/或组合成单个组件、步骤、特征或功能,或者可以实施在若干组件、步骤、或功能中。也可添加附加的元件、组件、步骤、和/或功能而不会脱离本文中所公开的新颖性特征。以上解说的装置、设备和/或组件可以被配置成执行本文所描述的一个或多个方法、特征、或步骤。本文中描述的新颖算法还可以高效地实现在软件中和/或嵌入到硬件中。

应理解,所公开的方法中各步骤的具体次序或阶层是示例性过程的解说。基于设计偏好,应理解,可以重新编排这些方法中各步骤的具体次序或阶层。所附方法权利要求以样本次序呈现各种步骤的要素,且并不意味着被限定于所呈现的具体次序或阶层,除非在本文中有特别叙述。

提供先前描述是为了使本领域任何技术人员均能够实践本文中所述的各种方面。对这些方面的各种修改将容易为本领域技术人员所明白,并且在本文中所定义的普适原理可被应用于其他方面。因此,权利要求并非旨在被限定于本文中所示出的各方面,而是应被授予与权利要求的语言相一致的全部范围,其中对要素的单数形式的引述并非旨在表示“有且仅有一个”——除非特别如此声明,而是旨在表示“一个或多个”。除非特别另外声明,否则术语“某个”指的是“一个或多个”。引述一列项目中的“至少一个”的短语是指这些项目的任何组合,包括单个成员。作为示例,“a、b或c中的至少一者”旨在涵盖:a;b;c;a和b;a和c;b和c;以及a、b和c。本公开通篇描述的各种方面的要素为本领域普通技术人员当前或今后所知的所有结构上和功能上的等效方案通过引述被明确纳入于此,且旨在被权利要求所涵盖。此外,本文中所公开的任何内容都并非旨在贡献给公众,无论这样的公开是否在权利要求书中被显式地叙述。权利要求的任何要素都不应当在35u.s.c.§112(f)的规定下来解释,除非该要素是使用短语“用于……的装置”来明确叙述的或者在方法权利要求情形中该要素是使用短语“用于……的步骤”来叙述的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1