用于网络时间序列数据的自适应的基于异常检测的预测器的制作方法

文档序号:13043196阅读:223来源:国知局
用于网络时间序列数据的自适应的基于异常检测的预测器的制作方法与工艺
相关申请的交叉引用本申请要求获得于2016年3月22日提交的题为“用于网络时间序列数据的自适应的基于异常检测的预测器”的15/077,762号美国非临时专利申请的优先权,而其要求获得于2015年3月24日提交的62/137,669号美国临时申请的优先权,其全部内容于此通过引用并入本申请。本发明涉及网络管理,并且在特定实施例中涉及用于网络时间序列数据的自适应的基于异常检测的预测器。
背景技术
:业务数据随时间变化。然而,这种随时间的变化常常具有潜在的模式,例如季节性,趋势,变量间相关性等。基于机器学习原理的算法能够进行强大的模式识别,并且因此是所期望的,因为它们可以自动揭示和利用历史数据内的结构以表征业务行为的性质,并在给定过去和当前的情况下预测未来的性能(kpi,业务等)。为此,时间序列预测算法在历史数据方面被“训练”(参数优化)并被在线应用以在给定数据变量的当前和刚刚经过的过去(例如,在窗口中)值的情况下预测之后的值。预测的准确性非常重要,因为潜在的应用基于关键性能指标的未来预测值做出决策选择(例如,无线网络自优化或son,例如,移动性负载平衡)。技术实现要素:在一个示例实施例中,一种用于预测未来网络时间序列数据的值的网络组件中的计算机实现的方法包括:用一个或更多个接收器接收网络时间序列数据;用一个或更多个处理器确定在所述网络时间序列数据中是否检测到异常;当在所述网络时间序列数据中没有检测到异常时,用所述一个或更多个处理器根据主预测器生成与所述网络数据相关联的预测;当检测到所述网络时间序列数据中的异常时,用所述一个或更多个处理器根据替代预测器来生成与所述网络数据相关联的所述预测;以及用一个或更多个发送器向网络控制器发送所述预测,其中所述网络控制器使用所述预测来调整网络参数。在一个示例实施例中,网络组件包括处理器和非暂时性计算机可读存储介质,其存储用于由所述处理器执行的程序,所述程序包括用于以下操作的指令:在所述网络组件处接收网络时间序列数据;用所述网络组件确定在所述网络时间序列数据中是否检测到异常;当在所述网络时间序列数据中没有检测到异常时,根据主预测器生成与所述网络数据相关联的预测;当检测到所述网络时间序列数据中的异常时,根据替代预测器来生成与所述网络数据相关联的所述预测;以及用所述网络组件向网络控制器发送所述预测,其中所述网络控制器使用所述预测来调整网络参数。在一个示例实施例中,一种非暂时性计算机可读介质,存储用于预测未来网络时间序列数据的值的计算机指令,所述计算机指令在由一个或更多个处理器执行时使得所述一个或更多个处理器执行以下步骤:用训练数据训练自适应的基于异常检测的预测器;接收网络时间序列数据;根据在所述网络时间序列数据中是否检测到异常来确定是使用主预测器还是替代预测器;当在所述网络时间序列数据中没有检测到异常时,根据主预测器生成与所述网络数据相关联的预测;当检测到所述网络时间序列数据中的异常时,根据替代预测器来生成与所述网络数据相关联的所述预测;以及将所述预测发送到网络控制器,其中所述网络控制器使用所述预测来调整网络参数。附图说明为了更全面地理解本发明及其优点,现在结合附图参考以下描述,其中:图1为示出自适应预测器方法的实施例的流程图;图2为示出与hmm预测器相关联的测试数据的图;图3为用于hmm预测的方法的实施例的流程图;图4为示出与hmm预测器相关联的电路交换(cs)业务的测试结果的图;图5为示出与hmm预测器相关联的分组交换(ps)业务的测试结果的图;图6为自适应预测器方法的实施例的流程图;图7为示出鲍姆·韦尔奇(baumwelch)(em)算法的框图;图8为示出基于来自中国gz的多个rnc的90天电路交换(cs)和分组交换(ps)业务数据(每1/2小时)的结果的图;图9是用于自适应的基于异常的网络时间序列数据预测的方法的实施例的流程图;图10为示出了用于传送数据的网络的实施例;图11示出了可以安装在主机设备中的用于执行本文所述的方法的实施例处理系统的框图;以及图12示出了适于通过电信网络发送和接收信令的收发器的框图。具体实施方式下面详述当前优选实施例的制造和使用。然而,应当理解,本发明提供了可以在多种多样的具体上下文中体现的许多可应用的创造性概念。所讨论的具体实施例仅仅是说明制造和使用本发明的具体方式,而不限制本发明的范围。在无线电网络控制器(rnc)级别和小区级别,网络数据(例如,业务,关键性能指示符(kpi)指标)时间序列预测,特别是针对无线网络的网络数据时间序列预测,是所公开的各种实施例系统和方法所解决的一个问题。业务数据随时间变化。然而,这种时间变化常常具有潜在的模式。例如,变化中的模式可能是季节性的,可能遵循趋势,可能具有变量间相关性等。基于机器学习原理的算法能够进行强大的模式识别,并且因此是所期望的,因为它们可以自动揭示和利用历史数据内的结构以表征业务行为的性质,并在给定过去和当前性能的情况下预测未来的性能(kpi,业务等)。为此,时间序列预测算法在历史数据方面被“训练”(参数优化)并被在线应用以在给定数据变量的当前和刚刚经过的过去(例如,在窗口中)值的情况下预测之后的值。预测的准确性非常重要,因为潜在的应用基于关键性能指标的未来预测值做出决策选择(例如,无线网络自优化,自组织网络(son),移动性负载平衡等)。预测是基于数据中的内在“自然”结构做出的,该结构是通过诸如无监督集群机制(包括隐藏变量或集群状态过渡))和监督时间序列模型之类的高级模型使用历史数据而习得的。然而,已经发现,有时,当预测器变得不太准确或者甚至作为未来状况的预测而无用时,所述内在自然结构就会突然崩溃。预测器暂时废弃的原因往往是未知的。在这种情况下产生的数据可能具有奇怪或随机的模式和不寻常的相关和演化行为。然而,仍然期望预测未来的值,但这因训练数据的稀缺而变得困难,这也是当内在自然结构突然崩溃时通常发生的情况。原始历史数据可能不会让这种不寻常的模式/行为的示例发挥作用。此外,线上可能没有足够的数据和资源来快速学习时间序列的新模式/行为。在这种情况下,希望能够回答以下问题。既然系统正在观察一个难以捕捉的不寻常序列,那么最好的预测是什么?所述变化是系统可以检测到的吗?坚持旧的“习得的”预测模型是否值得?本公开的实施例提供了一种自适应预测器,其以更高的精度为网络特性提供更好的预测并且适应于具有相对低复杂度的突发变化。在一个实施例中,对于没有内部结构(或习得的模型)崩溃的可预测数据,即在线数据与历史数据表现类似,可以使用主预测器。然而,对于在内部结构(或习得的模型)方面与历史数据显著不同的数据,可以使用适应于变化的替代的自适应预测器。在一个实施例中,替代的自适应预测器预测下一个值将等于或近似等于最近的值或几个最近的数据值的平均值。在内部结构(或习得的模型)崩溃的情况下,如果可以从最近的数据行为快速地自动感测(检测)改变,则(从精度角度)可能更好地恢复到简单的当前数据预测器,因为至少,当前数据符合“新的未知”结构,虽然具有时间滞后。在一个实施例中,一种用于网络时间序列数据的基于异常检测的预测的方法包括:确定网络数据是否可能是给定的历史数据;在确定所述网络数据可能是的情况下,用主预测器生成与所述网络数据相关联的预测;以及在确定所述网络数据不可能是的情况下,使用替代预测器来生成与所述网络数据相关联的预测。在实施例中,当主要预测模型不可能预测测试数据序列时,自适应预测器应用替代预测工具。-主预测器:多集群模型:隐马尔可夫模型(hmm),高斯混合模型(gmm)时间序列模型:var,arima-替代预测器:当前数据预测器-变化检测器:异常检测模型(尤其是涉及time变量的那些模型,例如gplsa,hmm)。在一个实施例中,当没有感测到变化(由于正常模式中没有异常变化)时,则主预测器继续照常输出高质量预测。在一个实施例中,自适应过程由在线数据的似然性自动驱动,其是基于由历史数据训练的主模型而计算得出的。因此,在一个实施例中,两种(或两个模式的)预测器被合成或有效地组合,使得两种(或两个模式的)预测器在适当的时间打开(和关闭)以产生可能的最佳质量(精度)预测。图1为示出自适应预测器方法100的实施例的流程图。方法100开始于框102,其中接收在线测试数据。在框104,执行异常检测。由历史数据训练所述异常检测。在框106,如果在数据中没有检测到异常,则使用由历史数据训练的主预测器。在框108,如果检测到异常,则使用替代预测器。在一个实施例中,使用hmm来检测异常。在一个实施例中,通过确定主预测器将准确地在预定误差范围内预测下一个观察的数据值的似然性来检测异常。换句话说,主预测器将与下一个观测的数据值相差小于预定误差范围的似然性。在一个实施例中,通过将根据主预测器确定的先前预测与观测值进行比较来确定异常,并且如果两者之间的差超过预定值,则确定异常已经发生。在一个实施例中,当在指定时间段或窗口内根据主预测器确定的与对应观测值相差超过阈值的预测值的数量超过预定数量时,检测到异常。在一个实施例中,确定是否检测到异常包括确定观察到的数据点的发生的似然性。在一个实施例中,当在指定时间段内低于阈值的计算出的似然性值的数量超过预定数量时,检测到异常。在一个实施例中,根据从历史数据构建的高斯混合模型(gmm)模型或隐马尔可夫模型(hmm)模型(即,习得的参数)来计算似然性。在一个实施例中,用于预测xt+1的数学公式如下:其中是使用主预测器预测的值,并且xt是使用替代预测器预测的值,其在该实施例中,使用x的最接近的先前值。注意:有几种方法可以选择替代预测器。为了简化说明,这里我们选择当前数据预测器,其使用先前的观察来进行预测。然而,在其他实施例中,可以使用其他替代预测器。此外,在一个实施例中,为了方便起见,我们可以对异常检测和主预测有效地重复使用相同的模型以及历史数据。在一个实施例中,隐马尔可夫模型(hmm)用于异常检测和主预测。在一个实施例中,使用适配的隐马尔可夫模型(hmm)预测器,其中使用训练的模型来预测hmm可能的序列,而通过替代的当前数据预测器来预测hmm不可能的序列。所公开的适配的hmm预测器的实施例可以解决由于训练数据的缺乏和异常的序列而引起的问题。图2为示出与hmm预测器相关联的测试数据200的图。图3为用于hmm预测的方法300的实施例的流程图。方法300开始于框302,其中将测试数据提供给经训练的hmm。在框304,方法300确定hmm是否可能。如果在框304处,方法300确定hmm是可能的,则方法300进行到框306,此处应用hmm预测器,之后,方法300可能结束。如果在框304处,方法300确定hmm不可能,则方法300进行到框308,此处应用当前数据预测器或gmm预测器,之后,方法300可能结束。图4为示出与hmm预测器相关联的电路交换(cs)业务的测试结果400的图。标记为402的线示出了针对各种似然性阈值的所公开的基于异常的自适应预测器的rmse。标记为404的线示出了hmm预测器的均方根误差(rmse),标记为406的线示出了当前数据预测器的rmse。图5为示出与hmm预测器相关联的分组交换(ps)业务的测试结果500的图。标记为502的线示出了针对各种似然性阈值的所公开的基于异常的自适应预测器的rmse。标记为504的线示出了hmm预测器的rmse。标记为506的线示出了当前数据预测器的rmse。在cs和ps情况下,阈值越高,则越不可能应用hmm预测器。在通过中值(似然性)设置阈值之后,经适配的hmm预测器总是比hmm和当前数据预测器都好,如图4和5所示。对于图4中的cs业务测试,当在似然性阈值上中值(似然性)的阈值为-200和-195之间的值时,经适配的hmm预测器总是表现得更好。如图5中的ps业务测试,在似然性阈值上,中值(似然性)阈值为大约-200的值时,经适配的hmm预测器总是比hmm或当前数据预测器表现得更好。自适应预测器不仅可以预测正常模式,例如,周期性(季节性)数据,而且可以预测不寻常模式,例如,使用正常历史模式不太可能被良好预测出的突然变化。在各种实施例中,优点可以包括以下的一个或更多个:1.当主预测模型不可能时,通过使用替代预测工具来获得提升的预测准确性。2.能够预测测试数据中的异常模式。适应于对未必具有训练数据中类似模式的数据的测试。在具有动态变化的实际系统中,历史模式由于各种原因而改变,这要求我们的新型自适应预测器在主预测器进行重新训练时鲁棒地管理情况。3。因为它很容易操作,所以更高效。本公开的实施例的实际益处预期是良好的,因为基于大数据模式(变量间相关性以及与过去和未来时间值的相关性)的预测正在逐渐成为未来网络管理决策制定的重要方面(离线和在线)。下一代蜂窝网络将是更大规模和自组织的(并且最终自主一切)-这样的能力被要求以满足基于超密集小蜂窝的异构网络的规模经济。除了其他方面,这种类型的网络智能还需要:(大)数据驱动自优化(son)和决策采取能力,其中预测(时间的或空间的)起关键作用。另一个例子是用于预测分析模型的数据点测试(用于kpi等)。显然,预测必须准确并且对突发变化敏感。所公开的自适应预测方法在全自动,数据驱动解决方案中以低实现复杂度提供了这些优点。所公开的自适应预测器以新颖的方式(由异常检测器触发)将主预测工具与替代预测器组合,或在其之间进行选择,因此优于其中任一个。它比先前的主预测器更适应于突变。此外,它比在所有时间简单地应用替代的当前数据预测器(即,当数据行为是预期的或可预测的时候使用主预测器)更有效。因此,只要我们能够检测到模式的变化和切换(通过复杂的异常检测算法的帮助),我们通过最大化任一操作模式的精度,实现两个方式(主要和替代的预测器模式)中最好的,以及最高的可能精度。图6为自适应预测器方法600的实施例的流程图。方法600开始于框602,其中预测单元从训练数据学习hmm参数。在框604,预测单元将hmm应用于测试数据。在框606,预测单元绘制或确定用于测试序列的对数似然性。在框608,预测单元根据对数似然性确定hmm是否可能产生准确的结果。如果在框608处,hmm是可能的,则方法600进行到框610,其中预测单元应用hmm预测器,之后,方法600可结束。如果在框608处hmm不可能,则方法600进行到框612,其中预测单元应用当前数据预测器或gmm预测器,在此之后,方法600可能结束。在没有经标记的数据的情况下,可以将多个基于集群的分析模型应用于业务数据以将其组织成若干组。然后,我们可以学习并洞察每个组的数学结构和与单个数据点的关系。隐马尔科夫模型(hmm)是一种强大而复杂的算法,它结合了时间序列预测的过去和当前。hmm在语音识别,机器人位置定位,生物信息学等中是众所周知的。hmm是dfi,动态业务图,小区中断(睡眠小区)检测等的良好候选者。高斯混合模型(gmm)是一个纯历史预测器,它不考虑相邻时间序列点之间的时间相关性。它是针对历史上一致的可预测模式的替代算法,其中数据值位于习得的集群的限定范围内。时间序列分析解释了随时间获得的数据点可能具有应该被考虑的内部结构(例如自相关,趋势或季节变化)的事实。时间序列预测是使用模型(通常是回归)来基于先前观察到的值预测未来值。时间序列模型的示例包括矢量自回归(var)和自回归求和移动平均(arima)。当前数据预测器是简单的方法,其简单地为未来步骤预测变量的最后观察值,并且因此其预测能力随着步骤增加而变得更差。以上所有这些复杂的预测器(除了简单的当前数据预测器)在具有潜在模型能够学习到的结构的数据上工作得相当好。然而,当涉及变量(及其接下来的值)的潜在结构崩溃(通常是由于未知和未预期的原因)时,这些复杂的预测器会惨败,导致严重的预测误差。在实施例中,当主要预测模型不可能预测测试数据序列时,所公开的自适应预测器应用替代预测工具。换句话说,首先基于相似性对在线数据的结构变化(作为异常)来检测。所公开的自适应过程由在线数据的似然性自动驱动(即,由异常检测触发),其是基于由历史数据训练的主模型计算的。特别地,用于训练预测器的参数的相同历史数据也可用于训练似然性模型(之后在线使用以检测异常)。在内部结构(或被训练的模型)崩溃的情况下,如果可以从最近的数据行为快速地自动感测(检测)变化,则(从精度角度来讲)恢复到简单的当前数据预测器可能是更好的,因为至少,当前数据符合“新的未知”结构,虽然具有时间滞后。在一个实施例中,隐马尔可夫模型(hmm)用作主预测器,并且在一些实施例中也用作异常检测器。hmm是用于时间序列数据的强大且复杂的算法。使用最大化历史训练数据似然性的鲍姆·韦尔奇(baumwelch)(em)算法来训练hmm参数。图7为示出鲍姆·韦尔奇(em)算法的框图。框702是在时间t1,t2,...,tn-1和tn的可观测量。框704是在时间t1,t2,...,tn-1和tn的对应状态。可观察量702通过e与状态704相关,并且未来状态(例如,状态t2)通过q与先前状态(例如,状态t1)相关。鲍姆·韦尔奇(em)算法是本领域普通技术人员周知的。图8为示出基于来自中国gz的多个rnc的90天电路交换(cs)和分组交换(ps)业务数据(每1/2小时)的结果800的图。焦点在rnc#6上。可以分析该数据以学习潜在模式。在一个实施例中,这种学习用于检测不寻常或异常模式并且在给定过去和现在的情况下预测未来。在一个实施例中,焦点在于利用无监督学习(不需要标记历史数据)来进行的“时间序列”分析,其利用时间签名(波形形状)来确定异常。无监督学习通过最大似然性(em算法)训练hmm。下表中图8提供了90天的cs和ps业务数据结果的汇总表。结果汇总表rnc_6hmm.05.10.25.50.75.90.95currntest=184-207.6-204.5-199.2-196.2-190.7-178.1-175.0>-170rmse(cs)96.595.196.092.489.183.381.684.589.6rmse(ps)97729857.49507.28567.28407.98362.48680.68640.48871.1图9是用于网络时间序列数据的自适应的基于异常预测的方法900的实施例的流程图。方法900开始于框902,在此处预测器接收网络时间序列数据。预测器包括异常检测器,其可能已经使用历史数据进行了训练。在框904,异常检测器确定网络时间序列数据904中是否存在异常。如果在框904处,在网络时间序列数据中未检测到异常,则方法900进行到框906,其中预测器使用主预测器生成与数据相关联的预测。主预测器可能已经使用历史或测试数据进行了训练。如果在块904检测到异常,则方法900进行到块908,其中预测器使用替代预测器生成与数据相关联的预测。替代预测器可能是当前数据预测器。在完成框906或框908的步骤之后,方法900进行到框910,其中预测器将预测发送到网络控制器,其中网络控制器使用预测来做出网络资源分配决策或其他网络管理决策。在完成框910的步骤之后,方法900结束。图10示出了用于传送数据的网络1000。网络1000包括具有覆盖区域1012的多个接入点(ap)1010,多个用户设备(ue)1020,回程网络1030,rnc1040,网络控制器1050和预测器1060。如本文所使用的,术语ap还可以被称为tp,并且这两个术语可以贯穿本公开被互换使用。ap1010可以包括能够通过尤其是与ue1020建立上行链路(虚线)和/或下行链路(点线)连接来提供无线接入的任何组件,诸如基站收发器(bst),增强型基站(enb),毫微微小区和其他无线启用的设备。ue1020可能包括能够与ap1010建立无线连接的任何组件。回程网络1030可能是允许数据在ap1010和远程端(未示出)之间交换的任何组件或组件的集合。在一些实施例中,网络1000可以包括各种其他无线设备,例如中继,毫微微小区等。rnc1040执行无线电资源管理和一些移动性管理功能,并且还是在将用户数据向和从ue1020发送之前进行加密的点。ap1010连接到回程网络1030并由rnc1040控制。预测器1060提供各种网络时间序列数据的预测,并将其预测发送到网络控制器1050和/或rnc1040。预测器1060实现如上述所公开的用于自适应的基于异常的预测的方法的实施例。网络控制器1050使用该预测来基于关键性能指标的未来预测值做出决策选择(例如,网络资源的分配)。决策选择的示例包括,例如,无线网络自优化或son,例如,移动性负载平衡。预测器可能与其他网络管理设备合并,并且可以与网络控制器1050或rnc1040位于同一位置。上述方法和组件可以在任何通用计算设备上实现,诸如具有足够的处理能力,存储器资源和网络吞吐能力以处理其上必要工作量的计算机或网络组件。图11示出了可以安装在主机设备中的用于执行本文所述的方法的实施例处理系统1100的框图。如图所示,处理系统1100包括处理器1104,存储器1106和接口1110-1114,其可能(或可能不)如图11所示进行布置。处理器1104可能是适于执行计算和/或其他处理相关任务的任何组件或组件的集合,并且存储器1106可能是适于存储由处理器1104执行的程序和/或指令的任何组件或组件的集合。在实施例中,存储器1106包括非暂时性计算机可读介质。接口1110,1112,1114可能是允许处理系统1100与其他设备/组件和/或用户通信的任何组件或组件集合。例如,接口1110,1112,1114中的一个或更多个可能适于将数据,控制或管理消息从处理器1104传送到安装在主机设备和/或远程设备上的应用。作为另一示例,接口1110,1112,1114中的一个或更多个可能适于允许用户或用户设备(例如,个人计算机(pc)等)与处理系统1100交互/通信。处理系统1100可能包括图11中未示出的附加组件,诸如长期存储(例如,非易失性存储器等)。在一些实施例中,处理系统1100包括在网络设备中,该网络设备正在接入电信网络或者是电信网络的部分。在一个示例中,处理系统1100在无线或有线电信网络中的网络侧设备中,诸如基站,中继站,调度器,控制器,网关,路由器,应用服务器或电信网络中的任何其他设备。在其他实施例中,处理系统1100在访问无线或有线电信网络的用户侧设备中,诸如移动站,用户设备(ue),个人计算机(pc),平板电脑,可穿戴通信设备(例如,智能手表等)或适于接入电信网络的任何其它设备。在一些实施例中,接口1110,1112,1114中的一个或更多个将处理系统1100连接到适于通过电信网络发送和接收信令的收发器。图12示出了适于通过电信网络发送和接收信令的收发器1200的框图。收发器1200可以安装在主机设备中。如图所示,收发器1200包括网络侧接口1202,耦合器1204,发送器1206,接收器1208,信号处理器1210和设备侧接口1212。网络侧接口1202可包括适于通过无线或有线电信网络发送或接收信令的任何组件或组件的集合。耦合器1204可以包括适于促进通过网络侧接口1202的双向通信的任何组件或组件的集合。发送器1206可以包括适于将基带信号转换成适合于通过网络侧接口1202传输的调制载波信号的任何组件或组件集合(例如,上变频器,功率放大器等)。接收器1208可以包括适于将通过网络侧接口1202接收的载波信号转换为基带信号的任何组件或组件的集合(例如,下变频器,低噪声放大器等)。信号处理器1210可以包括适于将基带信号转换成适合于通过(一个或多个)设备侧接口1212进行通信的数据信号的任何组件或组件集合,反之亦然。(一个或多个)设备侧接口1212可以包括适于在信号处理器1210和主机设备内的各组件(例如,处理系统1100,局域网(lan)端口等)之间传送数据信号的任何组件或组件集合。收发器1200可以通过任何类型的通信介质来发送和接收信令。在一些实施例中,收发器1200通过无线介质发送和接收信令。例如,收发器1200可能是适于根据无线电信协议,诸如蜂窝协议(例如长期演进(lte)等),无线局域网(wlan)协议(例如wi-fi等)或任何其它类型的无线协议(例如蓝牙,近场通讯(nfc)等)进行通信的无线收发器。在这样的实施例中,网络侧接口1202包括一个或更多个天线/辐射元件。例如,网络侧接口1202可能包括被配置用于多层通信的单个天线、多个分离的天线或多天线阵列,多层通信例如单输入多输出(simo),多输入单输出(miso),多输入多输出(mimo)等。在其他实施例中,收发器1200通过有线介质,例如,双绞线电缆,同轴电缆,光纤等发送和接收信令。具体的处理系统和/或收发器可利用所示的所有组件,或者仅仅组件的子集,并且集成水平可以随设备而变化。计算机可读非暂时性介质包括所有类型的计算机可读介质,包括磁存储介质,光存储介质,闪存介质和固态存储介质。应当理解,软件可以安装在设备中并与设备一起销售。可替代地,可以获得软件并将其加载到设备中,包括通过物理介质或分发系统获得软件,包括例如从软件创建者拥有的服务器或者不由软件创建者拥有但由其使用的服务器中获得。例如,软件可以存储在服务器上以通过因特网分发。一种用于预测未来网络时间序列数据的值的网络组件中的计算机实现的实施例方法,包括:用一个或更多个接收器接收网络时间序列数据;用一个或更多个处理器确定在所述网络时间序列数据中是否检测到异常;当在所述网络时间序列数据中没有检测到异常时,用所述一个或更多个处理器根据主预测器生成与所述网络数据相关联的预测;当检测到所述网络时间序列数据中的异常时,用所述一个或更多个处理器根据替代预测器来生成与所述网络数据相关联的所述预测;以及用一个或更多个发送器向网络控制器发送所述预测,其中所述网络控制器使用所述预测来调整网络参数。在一个实施例中,主预测器根据历史数据训练。在一个实施例中,所述确定是否检测到异常包括将根据主预测器确定的先前预测与观测值进行比较。在一个实施例中,当根据主预测器确定的预测值与观察值相差大于阈值时,检测到异常。在一个实施例中,当在指定时间段内根据主预测器确定的与相应的观察值相差大于阈值的预测值的数量超过预定数量时,检测到异常。在实施例中,主预测器包括隐马尔可夫模型。在一个实施例中,确定在网络时间序列数据中是否检测到异常包括根据隐马尔科夫模型确定异常。在一个实施例中,替代预测器包括当前数据预测器或高斯混合模型(gmm)。在一个实施例中,确定是否检测到异常包括确定观察到的数据点的发生的似然性。在一个实施例中,当在指定时间段内计算出的低于阈值的似然性值的数量超过预定数量时,检测到异常。在一个实施例中,根据从所述历史数据构建的高斯混合模型(gmm)模型计算所述似然性。在一个实施例中,gmm模型包括从历史数据习得的参数。在一个实施例中,根据从历史数据构建的隐马尔可夫模型(hmm)模型计算似然性。在一个实施例中,hmm模型包括从历史数据习得的参数。实施例网络组件包括处理器和非暂时性计算机可读存储介质,其存储用于由所述处理器执行的程序,所述程序包括用于以下操作的指令:在所述网络组件处接收网络时间序列数据;用所述网络组件确定在所述网络时间序列数据中是否检测到异常;当在所述网络时间序列数据中没有检测到异常时,根据主预测器生成与所述网络数据相关联的预测;当检测到所述网络时间序列数据中的异常时,根据替代预测器来生成与所述网络数据相关联的所述预测;以及,用所述网络组件向网络控制器发送所述预测,其中所述网络控制器使用所述预测来调整网络参数。在一个实施例中,主预测器根据历史数据训练。在一个实施例中,确定是否检测到异常包括将根据主预测器确定的先前预测与观测值进行比较。在一个实施例中,当根据主预测器确定的预测值与观察值相差大于阈值时,检测到异常。在一个实施例中,当在指定时间段内根据主预测器确定的与相应的观察值相差大于阈值的预测值的数量超过预定数量时,检测到异常。在一个实施例中,主预测器包括隐马尔可夫模型。在一个实施例中,确定在网络时间序列数据中是否检测到异常包括根据隐马尔科夫模型确定异常。在一个实施例中,替代预测器包括当前数据预测器或高斯混合模型(gmm)中的一个。在一个实施例中,确定是否检测到异常包括确定主预测器将在指定的可接受值范围内准确地预测下一个观察到的数据值的似然性。在一个实施例中,确定是否检测到异常包括确定观察到的数据点的发生的似然性。在一个实施例中,当在指定时间段内计算出的低于阈值的似然性值的数量超过预定数量时,检测到异常。在一个实施例中,根据从所述历史数据构建的高斯混合模型(gmm)模型计算所述似然性。在一个实施例中,gmm模型包括从历史数据习得的参数。在一个实施例中,根据从历史数据构建的隐马尔可夫模型(hmm)模型计算似然性。在一个实施例中,hmm模型包括从历史数据习得的参数。一个实施例包括存储计算机指令的非暂时性计算机可读介质,所述计算机指令在由一个或更多个处理器执行时用于预测未来网络时间序列数据的值,使得所述一个或更多个处理器执行以下步骤:用训练数据训练自适应的基于异常检测的预测器;接收网络时间序列数据;根据在所述网络时间序列数据中是否检测到异常来确定是使用主预测器还是替代预测器;当在所述网络时间序列数据中没有检测到异常时,根据主预测器生成与所述网络数据相关联的预测;当检测到所述网络时间序列数据中的异常时,根据替代预测器来生成与所述网络数据相关联的所述预测;以及,将所述预测发送到网络控制器,其中所述网络控制器使用所述预测来调整网络参数。在一个实施例中,确定是使用主预测器还是替代的预测的步骤包括将对数似然函数应用于网络时间序列数据。在一个实施例中,确定是使用主预测器还是替代预测器的步骤包括将隐马尔可夫模型应用于网络时间序列数据。在一个实施例中,主预测器包括隐马尔可夫模型。在一个实施例中,替代预测器包括当前数据预测器和高斯混合模型(gmm)中的一个。在本发明的一个实施例中,网络组件包括用于接收网络时间序列数据的接收装置和用于确定在网络时间序列数据中是否检测到异常的确定装置。该实施例还包括生成装置,其用于当在网络时间序列数据中没有检测到异常时根据主预测器生成与网络数据相关联的预测,并且当在网络时间序列数据中检测到异常时,根据替代预测器生成与网络数据相关联的预测。本实施例还包括发送装置,其用于使用所述网络组件向网络控制器发送所述预测,其中所述网络控制器使用所述预测来调整网络参数。一个实施例中生成装置还包括主预测器装置,其基于观察值和历史数据中的至少一个进行预测。在一个实施例中,当主预测器与观察值相差大于阈值时,生成装置确定异常。在一个实施例中,当在指定时间段内根据主预测器确定的与相应的观察值相差大于阈值的预测值的数量超过预定数量时,所述生成装置确定异常。在一个实施例中,主预测器使用隐马尔可夫模型。在另一实施例中,主预测器根据隐马尔科夫模型确定异常。虽然已经参考示例性实施例描述了本发明,但是该描述并不旨在以限制的意义来解释。参考该描述,说明性实施例的各种修改和组合以及本发明的其它实施例对于本领域技术人员将是显而易见的。因此,所附权利要求旨在涵盖任何这样的修改或实施例。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1