一种轻质模块化防弹异形结构及制备方法与流程

文档序号:18082801发布日期:2019-07-06 10:14阅读:316来源:国知局
一种轻质模块化防弹异形结构及制备方法与流程

本发明涉及一种轻质模块化防弹异形结构及制备方法,属于装备材料技术领域。



背景技术:

目前随着军事化领域的不断发展,对于防护工程或地面军事设施中人员装备出入口及其他功能性通道口等特殊部件,主要采用的防护材料为钢筋混凝土/钢板和陶瓷/钢板材料。虽然这类材料具有优异的防弹性能,但是制备周期长、面密度大、产品形状单一,同时,在形成孔、口、井等结构件时,存在不利运输和组装、施工/连接复杂等问题,导致防护覆盖率低和重复使用效率差,严重影响到防护构件的使用可靠性和经济性。因此,如何在充分理解防弹抗爆机理基础上,开展轻质、高强模块化防弹板的研究,建立防弹异形结构力学构造及快速增强设计体系,突破异型结构型谱及制备关键技术,形成防护/承载一体化、低成本、快速成型的防弹异形构件成为必须解决的技术方向。

子弹接触并侵彻高性能纤维树脂基复合材料时,子弹携带的动能以冲击波的形式作用于复合材料,并导致复合材料出现不同程度的破坏。冲击波的传播表现为复合材料中质点的速度和相应的应力、应变状态的变化,冲击波传播速度越快,材料吸收子弹动能的速度越快,材料防弹性能越好。子弹在侵彻复合材料过程中,子弹作为扰动源,不停地向复合材料施加冲击波,冲击波以脉冲的形式通过纤维、树脂和纤维树脂间的界面在复合材料中传播。纤维作为各向异性材料,冲击波主要沿纤维轴向传播,纤维和树脂间的冲击波传播主要通过界面来实现。

防弹领域常用的增强体结构有ud结构、2d机织物结构、3d正交机织物结构、3d正交机织物结构、3d角联锁结构。其中ud结构纤维都伸直排列,无交织点,冲击波传播距离远,因而具有更高的弹道极限速度。相比二维或三维机织物以及针刺非织造结构增强材料,三维编织复合材料具有更高的抗侵彻性能以及结构的整体性。



技术实现要素:

基于uhmwpe纤维具有优异的防弹性能,本发明采用uhmwpe纤维增强聚烯烃类和水性聚氨酯类热塑性树脂,制备单向(ud)结构的防弹复合材料,再通过桥接的技术形成轻质、高强、模块化的“陶瓷/uhmwpe纤维树脂基复合材料”模块化防弹板,并且通过加筋补强、3d打印、真空辅助成型工艺等技术,形成涵盖编织止裂层、防弹抗爆层、轻质承载层的防弹异形结构。

本发明所要解决的第一个技术问题是提供一种轻质、高强、模块化的防弹板的制备方法,是以对位芳纶、碳纤维与玻璃纤维复合材料作为轻质承载层,以含有纤维树脂基复合材料和陶瓷的材料作为防弹爆破层,以纤维织物作为编织止裂层,依次固定在塑形模具上;所述纤维树脂基复合材料通过改性胶粘剂固定;所述改性粘合剂的制备方法如下:将60~80份环氧树脂、30~50份马来酞亚胺树脂和0.8~1份乙二胺加入反应釜中,在100~120°下搅拌1.5~3小时,冷却至90°以下,加入20~25份亚烷基缩水甘油醚,继续搅拌,0.5~1小时,加入1~2份甲基四氢苯醉和1~1.5份二苯基硫脉,充分混合均匀,从而获得改性胶粘剂。

在本发明的一种实施方式中,所述纤维树脂基复合材料为uhmwpe纤维树脂基复合材料。

在本发明的一种实施方式中,所述uhmwpe纤维树脂基复合材料按下述方法制备:

(1)将规格为3k-12k的纤维束按相同方向排列并均匀铺展,浸润基体树脂,使单丝连成一个整体,形成单ud片材;

(2)将n层(n为2~10)单ud片材按照垂直方向交叉铺层,通过复合机结合在一起,除去支撑膜,制成nud结构片材;

(3)将3-10片nud结构片材按表面纤维同方向排列方式铺层,通过热压成型工艺制备靶片面密度10~14kg/m2为ud结构的uhmwpe纤维树脂基复合材料。

在本发明的一种实施方式中,所述热压成型工艺是在70-120℃温度,压力为3-6mpa下,压制5-6h。

在本发明的一种实施方式中,所述编织止裂层是真空袋模压工艺制备的“口”字形构件。

在本发明的一种实施方式中,所述塑形模具通过3d打印制备获得。

在本发明的一种实施方式中,所述方法具体包括如下步骤:

(1)使用纤维缠绕成型机制备单ud片材:用压辊将浸过基体树脂的纤维束均匀的铺展开,使树脂均匀铺展在纤维层表面,部分树脂浸润到单丝之间并将单丝连成一个整体,形成单ud片材;

(2)将n层(n为2-10层)单ud片材按照垂直方向交叉铺层,通过复合机结合在一起,除去支撑膜,制成nud结构片材;

(3)取3-10片ud结构片材,按表面纤维同方向排列方式铺层,通过热压成型工艺在70-120℃温度,压力为3-6mpa下,压制5-6h,制备ud结构的靶片面密度为12.5kg/m2的uhmwpe纤维树脂基复合材料板材;

(4)通过异氰酸酯化合物与聚合多元醇聚酯和(或)聚醚化合物配合,改性预聚为齐聚物,调整分子结构的软段-硬段结构和比例,调整-nco和-oh的比例为2:1,通过扩链剂调节聚合物结构,同时添加阻燃材料、耐热材料,得到与陶瓷、uhmwpe纤维树脂基复合材料具有优良界面性的胶粘剂;

(7)通过3d打印技术制备模块化的模具;

(8)采用手糊工艺,将密度为300g/m2-600g/m2高性能纤维铺层并与热固性树脂复合;

(9)采用条状防弹钢板对模块化防弹衔接处进行补强处理,通过胶粘剂将模块化的防弹板与支撑平台粘合固定,采用编织套进行二次固定;

(10)通过真空袋模压工艺将上述步骤制备的异形构件组装并固定。

在本发明的一种实施方式中,所述阻燃材料、耐热材料包括但不限于高玻璃纤维布、芳纶、碳纤维中的一种或两种以上的混合物。

在本发明的一种实施方式中,所述热压成型工艺通过液压机、热压罐实现。

在本发明的一种实施方式中,所述高性能纤维包括碳纤维、高强聚乙烯、芳纶、玻璃纤维中的至少一种。

在本发明的一种实施方式中,所述钢板的钢种型号为pro500,厚度2.5-20mm。

本发明的主要优点是:(1)采用陶瓷材料和高性能纤维树脂复合材料板制备的复合装甲板,具有优异的防弹性能并且可显著降低装甲板的面密度;(2)ud结构纤维都伸直排列,无交织点,冲击波传播距离远,利用ud增强的复合材料具有更高的弹道极限速度;(3)所用的三维编织复合材料具有更高的抗侵彻性能以及结构的整体性;(4)工艺成型不受产品尺寸和形状限制,适宜尺寸大、形状复杂的产品的生产,设备简单、投资少、见效快,且工艺简单、生产技术易掌握;(5)所设计的轻质防弹异形结构材料利于运输和组装、施工/连接复杂,防护覆盖率高和重复使用效率提高。

附图说明

图1是防弹异形构件的结构示意图和工艺流程图;其中,1,模块化塑形模具;2,轻质承载层;3,防弹抗爆层;4,编织止裂层。

具体实施方式

实施例1

如图1所示,本发明的防弹异形构件包括模块化塑形模具1、轻质承载层2、防弹抗爆层3和编织止裂层4;所述模块化塑性模具1通过3d打印制备,可根据待装备的结构自行设置形状;所述轻质承载层2为高玻璃纤维布、芳纶、碳纤维织物是顺序逐层铺排形成,采用手糊工艺,先在清理好且经过表面处理的模具成型表面上涂上脱模剂,待脱模剂充分干燥后,将e51树脂和固化剂按3:1的比例混合后涂刷在成型面上,铺放裁剪好的高玻璃纤维布、芳纶、碳纤维织物增强材料,同时要浸透树脂并排除气泡,然后进行固化脱模;所述防弹抗爆层3由uhmwpe纤维树脂基复合材料和陶瓷粘合形成的模块化结构经钢板强化固定后形成;所述编织止裂层4采用纤维织物制备。

实施例2

(1)乙烯基醋树脂与醇酸稀释剂、固化剂mekp、促进剂t-8a均匀混合,配制成树脂基体待用;乙烯基醋树脂与醇酸稀释剂质量比为1:3,乙烯基醋树脂与固化剂mekp、促进剂t-8a的质量比为80:1:1;

(2)将步骤(1)配制好的树脂基体倒入缠绕机胶槽,通过纤维缠绕成型机将浸过该树脂的纤维均匀的平行排列在支撑膜上,制成纤维单向预浸料;

(3)将两层单向预浸料按照0°/90°正交方式交叉铺层,通过230℃保温5小时热压结合在一起,除去支撑膜,制成2ud结构片材;

(4)将制备的2ud结构片材裁剪成40cm×40cm大小,取一定数量的2ud结构片材按表面纤维同方向排列方式铺层,置于平板压机中,闭模升温,在80℃温度下,压力为3mpa,压制5h,制成ud结构的uhmwpe纤维树脂基复合材料板材;

(5)改性胶粘剂的制备:各组分按重量份计,环氧树脂80份、马来酞亚胺树脂30份、亚烷基缩水甘油醚25份、乙二胺1份、甲基四氢苯酐1份,二苯基硫脲1.5份;将环氧树脂、马来酞亚胺树脂、乙二胺加入反应釜中,在120°下搅拌两小时冷却至90°以下,加入亚烷基缩水甘油醚,继续搅拌半小时,加入甲基四氢苯醉和二苯基硫脉,充分混合均匀,从而获得耐高温改性胶粘剂;

(6)选用对位芳纶平纹织物作为桥接主体材料,通过胶粘剂将陶瓷和uhmwpe纤维树脂基复合材料牢固的粘合在一起,再通过真空袋模压工艺固定,形成模块化防弹抗爆层;

(7)根据待防护部位的规格,通过3d打印技术制备模块化的模具;

(8)基于力学结构设计,采用手糊工艺,先在清理好且经过表面处理的模具成型表面上涂上脱模剂,待脱模剂充分干燥后,将e51树脂和固化剂按3:1的比例混合后涂刷在成型面上,铺放裁剪好的高玻璃纤维布、芳纶、碳纤维织物增强材料,同时要浸透树脂并排除气泡,然后进行固化脱模;

(9)采用钢种型号:pro500、厚度2.5-20mm的条状防弹钢板,对步骤(6)中的模块化防弹衔接处进行补强处理,将钢板设置于两个并排连接的防弹抗爆模块下方,通过胶粘剂将模块化的防弹板与钢板粘合固定,采用编织套进行二次固定;

(10)通过真空袋模压工艺制备“口”字形构件,从而形成编织止裂层。

(11)依据以上步骤制备的“口”字形构件,面密度为80g/cm3,可抵御7.62mm穿甲弹100m处射击不贯穿。依据《ga950-2011防弹材料及产品v50试验方法》标准,防弹性能好,面密度水平达到国内外平均水平,成本低。

实施例3

(1)乙烯基醋树脂与醇酸稀释剂质量比为1:4,乙烯基醋树脂与固化剂mekp、促进剂t-8a按质量比100:1:1均匀混合配置成树脂基体代用;

(2)将配制好的树脂基体倒入缠绕机胶槽,通过纤维缠绕成型机将浸过树脂的纤维均匀的平行排列在支撑膜上,制成纤维单向预浸料;

(3)随后将两层单向预浸料按照0°/90°正交方式交叉铺层,通过230℃保温5小时热压结合在一起,除去支撑膜,制成5ud结构片材;

(4)将制备的5ud结构片材裁剪成40cm×40cm大小,取一定数量的5ud结构片材按表面纤维同方向排列方式铺层,置于平板压机中,闭模升温,在100℃温度下,压力为5mpa,压制6h,制成ud结构的uhmwpe纤维树脂基复合材料板材;

(5)各组分按重量份计,环氧树脂80份、马来酞亚胺树脂50份、亚烷基缩水甘油醚20份、乙二胺0.8份、甲基四氢苯酐2份,二苯基硫脲1份将环氧树脂、马来酞亚胺树脂、乙二胺加入反应釜中,在120°下搅拌两小时冷却至90°以下,加入亚烷基缩水甘油醚,继续搅拌半小时,加入甲基四氢苯醉和二苯基硫脉,充分混合均匀,从而获得耐高温改性胶粘剂;

(6)选用对位芳纶平纹织物作为桥接主体材料,通过胶粘剂将陶瓷和uhmwpe纤维树脂基复合材料牢固的粘合在一起,再通过真空袋模压工艺固定,即构成了模块化防弹抗爆层;

(7)根据待防护部位的规格,通过3d打印技术制备模块化的模具;

(8)基于力学结构设计,采用手糊工艺,先在清理好且经过表面处理的模具成型表面上涂上脱模剂,待脱模剂充分干燥后,将e51树脂和固化剂按3:1的比例混合后涂刷在成型面上,铺放裁剪好的高玻璃纤维布、芳纶、碳纤维织物增强材料,同时要浸透树脂并排除气泡,然后进行固化脱模,获得轻质承载层;

(9)采用钢种型号:pro500、厚度2.5-20mm的条状防弹钢板对模块化防弹衔接处进行补强处理,将钢板设置于两个并排连接的防弹抗爆模块下方,通过胶粘剂将模块化的防弹板与支撑平台粘合固定,采用编织套进行二次固定;

(10)通过真空袋模压工艺制备梯形构件从而形成编织止裂层。

(11)依据以上步骤制备的梯形构件,面密度为71.7g/cm3,可抵御12.7mm机枪弹100m处射击不贯穿。依据《ga950-2011防弹材料及产品v50试验方法》标准,防弹性能好,面密度水平达到国内外平均水平,成本低。

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1