防止在玉米根虫(根萤叶甲)中形成抗性的包括Cry34Ab/35Ab和Cry3Ba蛋白的组合的制作方法

文档序号:202374阅读:315来源:国知局
专利名称:防止在玉米根虫(根萤叶甲)中形成抗性的包括Cry34Ab/35Ab和Cry3Ba蛋白的组合的制作方法
防止在玉米根虫(根萤叶甲)中形成抗性的包括Cry34Ab/35Ab和Cry3Ba蛋白的组合
背景技术
人类为食物和能量应用而种植玉米。玉米是一种重要的作物。它在世界许多地区是食物、食品、和动物饲料的重要来源。昆虫进食和损害植物,并由此破坏这些人类努力。每年花费数十亿美元来控制昆虫害虫,并且它们造成的损害另外损失数十亿。昆虫害虫引起的损害是世界玉米作物损失的一个主要因素,尽管使用了保护措施诸如化学杀虫剂。鉴于这一点,已经通过遗传工程将昆虫抗性改造到作物诸如玉米中以控制昆虫损害和降低对传统化学杀虫剂的需要。在美国,每年有超过I千万英亩的玉米感染玉米根虫物种联合体(corn rootwormspecies complex)。玉米根虫物种联合体包括北方玉米根虫(Diabrotica barberi)、南方 玉米根虫(D. undecimpunctata howardi )、和西方玉米根虫(D. virgifera virgifera)。(其它物种包括 Diabrotica virgifera zeae (墨西哥玉米根虫)、Diabrotica balteata (巴西玉米根虫)、和巴西玉米根虫联合体(Diabrotica viridula和Diabrotica speciosa)。这些根萤叶甲物种(Diabrotica species)的土栖幼虫以玉米植物的根为食,引起倒伏。倒伏最终降低玉米产量,而且常常导致植物死亡。通过以玉米穗丝为食,成年甲虫降低授粉,并因此对每株植物的玉米产量产生有害影响。另外,根萤叶甲属的成虫和幼虫攻击葫芦科作物(cucurbit crops)(黄瓜、甜瓜(melons)、南瓜(squash)、等)和商业生产的许多蔬菜和田地作物以及宅园中种植的那些。合成有机化学杀虫剂已经成为用于控制昆虫害虫的主要工具,但是生物学杀虫剂(诸如自苏云金芽孢杆菌(Bacillus thruingiensis,Bt)衍生的杀虫蛋白)已经在一些地区发挥重要作用。经由用Bt杀虫蛋白基因转化来生成昆虫抗性植物的能力已经改革了现代农业,并且提高了杀虫蛋白及其基因的重要性和价值。来自一些苏云金芽孢杆菌(B. t.)菌株的杀虫晶体蛋白是本领域公知的。参见例如 Hofte 等人,Microbial Reviews, Vol. 53, No. 2, pp. 242-255 (1989)。这些蛋白质通常由细菌作为大约130kDa毒素原生成,然后在被昆虫摄取后受到昆虫中肠中的蛋白酶的切割以产生大致60kDa核心毒素。这些蛋白质称作晶体蛋白,因为用一些B. t菌株的孢子能观察到独特晶体内含物。这些晶体内含物常常由数种独特蛋白质构成。已经用于生成转基因昆虫抗性作物的一组基因是来自苏云金芽孢杆菌(B. t.)的德尔塔-内毒素。德尔塔-内毒素已经在作物植物(诸如棉花、马铃薯、稻、向日葵、以及玉米)中成功表达,而且已经证明对昆虫害虫提供卓越的控制。(Perlak,F. J.等人(1990)Bio/Technology 8,939-943 ;Perlak,F. J.等人(1993)Plant Mol. Biol. 22 :313-321 ;FujimotoH.等 A (1993) Bio/Technology 11 :1151-1155 ;Tu 等 A (2000) Nature Biotechnology18:1101-1104 ;PCT 申请号 WO 01/13731 ;及 Bing J W 等人(2000) Efficacy of CrylFTransgenic Maize,14th Biennial International Plant Resistance to InsectsWorkshop, Fort Collins, Colo. X迄今为止,已经使用数种Bt蛋白创建了昆虫抗性转基因植物,它们已经成功登记和商品化。这些包括玉米中的CrylAb、CrylAc、CrylF、Cry3Aa、和Cry3Bb,棉花中的CrylAc和Cry2Ab,及马铃薯中的Cry3A。还有玉米中的SMART STAX,它包含CrylA. 105和Cry2Ab。表达这些蛋白质的商业产品表达单一蛋白质,想要两种蛋白质的组合杀虫谱的情况(例如组合玉米中的CrylAb和Cry3Bb以分别提供对鳞翅目害虫和根虫的抗性)或蛋白质的独立作用使得它们作为用于延迟在易感昆虫群体中形成抗性的工具是有用的情况(例如组合棉花中的CrylAc和Cry2Ab以提供对烟草蚜虫的抗性管理)除外。导致快速和广泛采用这种技术的昆虫抗性转基因植物的一些性质也产生害虫群体会对由这些植物生成的杀虫蛋白形成抗性的担忧。已经提出数种策略来保持基于Bt的昆虫抗性性状的效用,包括以高剂量部署各蛋白质并与庇护(refuge)组合,及与不同 毒素交替或共同使用(McGaughey 等人(1998), “B. t. Resistance Management”,NatureBiotechnol. 16 :144_146)。为在昆虫抗性管理(IRM)堆叠中使用而选择的蛋白质应当是有活性的,使得对一种蛋白质形成的抗性不赋予对第二蛋白质的抗性(即没有对各蛋白质的交叉抗性)。例如,如果为对“蛋白A”的抗性选择的害虫群体对“蛋白B”敏感,那么会得出结论,没有交叉抗性且蛋白A和蛋白B的组合会有效延迟对单独的蛋白A的抗性。在抗性昆虫群体缺失下,可以基于假设涉及交叉抗性潜力的其它特征来进行评估。已经提出利用受体介导的结合来鉴定很可能不展现交叉抗性的杀虫蛋白(vanMellaert等人,1999)。这种办法中内在交叉抗性缺失的关键预示在于杀虫蛋白在敏感昆虫物种中不竞争受体。如果两种Bt毒素竞争同一受体,那么如果该受体在该昆虫中突变,使得毒素之一不再结合该受体并因此不再对昆虫有杀虫活性,那么情况可能是昆虫也会对第二毒素(其竞争性结合同一受体)有抗性。就是说,昆虫据说对两种Bt毒素有交叉抗性。然而,如果两种毒素结合两种不同受体,那么这可能指示昆虫不会同时对那两种毒素有抗性。在苏云金芽孢杆菌中发现了一种相对较新的杀虫蛋白系统,如WO 97/40162中公开的。这种系统包含两种蛋白质一一种大约15kDa,另一种约45kDa。还可参见美国专利No. 6,083,499和No. 6,127,180。这些蛋白质现在已经分派到它们自己的类,而且相应地分别得到 Cry 名称 Cry34 和 Cry35。参见 Crickmore 等人的网站(biols. susx. ac. uk/home/Neil_Crickmore/Bt/)。现在已经公开了这种类型的系统的许多其它相关蛋白质。参见例如美国专利No. 6,372,480 ;W0 01/14417 ;和WO 00/66742。还已经公开了经过植物优化的编码此类蛋白质的基因,其中基因改造成使用植物中最优化表达的密码子。参见例如美国专利 No. 6,218,188。Cry34/35系统的确切作用模式还有待确定,但是它看来在昆虫肠细胞的膜中形成孔。参见 Moellenbeck 等人,Nature Biotechnology, vol. 19, p. 668 (July 2001) ;Masson等人,Biochemistry,43( 12349-12357)(2004)。确切作用机制仍然不清楚,尽管知道Cry34和Cry35蛋白的3D原子坐标和晶体结构。参见美国专利No. 7,524,810和No. 7,309,785。例如,不清楚这两种蛋白质之一或二者是否结合典型类型的受体,诸如碱性磷酸酶或氨肽酶。此外,因为昆虫对Cry蛋白形成抗性存在不同的机制(诸如通过改变受体的糖基化[参见Jurat-Fuentes等人(2002)68 AEM 5711-5717]、通过去除受体蛋白[参见Lee等人(1995)61 AEM 3836-3842]、通过突变受体、或通过其它机制[参见Heckel等人,J. Inv.Pathol. 95 (2007) 192-197]),所以不可能先验地预测Cry34/35与其它Cry蛋白之间是否会有交叉抗性。预测Cry34/35系统的竞争性结合还因Cry34/35 二元系统涉及两种蛋白质的事实而进一步复杂化。再次,不清楚这些蛋白质是否和如何有效结合昆虫肠/肠细胞,及它们是否和如何彼此相互作用或结合。用于控制鞘翅目的其它选择包括下述蛋白质Cry3Bb、Cry3C、Cry6B、ET29、ET33及 ET34、TIC407、TIC435、TIC417、TIC901、TIC1201、ET29 及 TIC810、ET70、ET76 及 ET80、TIC851、等等。还已经提出了 RNAi办法。参见例如Baum等人,Nature Biotechnology,vol. 25, no. 11 (Nov. 2007) pp.1322-1326。发明概述本发明部分涉及Cry34Ab/35Ab与Cry3Ba的组合。本发明部分涉及令人惊讶的发现,即Cry34Ab/Cry35Ab和Cry3Ba对于防止玉米根虫(根萤叶甲(Diabrotica spp.))群体 形成抗性(对单独的任一杀虫蛋白系统)是有用的。正如本领域技术人员借助此公开内容会认识到的,生成这些杀虫Cry蛋白的植物对减轻会形成对单独的任一这些杀虫蛋白系统有抗性的玉米根虫群体的担忧会是有用的。本发明部分得到下述发现的支持,即这些Cry蛋白系统的各成分没有彼此竞争对玉米根虫肠受体的结合。本发明还部分涉及三种(或更多种)毒素系统的三重堆叠或“金字塔”,其中Cry34Ab/Cry35Ab和Cry3Ba作为基础对。如此,生成这两种杀虫蛋白系统的植物(和种植此类植物的土地)包括在本发明的范围内。附图简述对图的详细描述特别指附图,其中


图1A。作为输入放射性标记的Cry毒素的函数,125I_Cry35Abl对自西方玉米根虫幼虫制备的BBMV的结合。特异性结合=总结合-非特异性结合,误差条=SEM(均值的标准误差)。
图1B。作为输入放射性标记的Cry毒素的函数,125I_Cry3BAal对自西方玉米根虫幼虫制备的BBMV的结合。特异性结合=总结合-非特异性结合,误差条=SEM(均值的标准误差)。图2。在不同浓度的未标记竞争者的情况中,125I_Cry3Abl对自西方玉米根虫幼虫制备的 BBMV 的结合(log 0. 1=-1. 0,IoglO=L 0,logl00=2. 0,logl, 000=3. 0)。图3A。在Cry34Abl缺失下,125I_Cry35Abl对自西方玉米根虫幼虫制备的BBMV的百分比结合。图3B。在Cry34Abl存在下,125I_Cry35Abl对自西方玉米根虫幼虫制备的BBMV的百分比结合。图4。在多个浓度的不同未标记竞争者存在下,125I_Cry3Bal对自西方玉米根虫幼虫制备的BBMV的百分比结合。序列简述SEQ ID NO: I :全长,天然 Cry35Abl 蛋白序列。SEQ ID NO:2 :胰凝乳蛋白酶截短的Cry35Abl核心蛋白序列。
SEQ ID NO:3 :全长,天然 Cry3Bal 蛋白序列。SEQ ID N0:4 :Cry3Bal胰蛋白酶核心蛋白序列。SEQ ID NO:5 :全长,天然 Cry34Abl 蛋白序列。发明详述Cry34Ab/35Ab蛋白的序列可以自例如苏云金芽孢杆菌隔离群PS149B1获得。对于依照本发明使用的其它基因、蛋白质序列、和来源隔离群,参见例如Crickmore等人的网站(lifesci. sussex. ac. uk/home/Neil_Crickmore/Bt/intro, html)。本发明包括Cry34Ab/35Ab杀虫蛋白与Cry3Ba毒素的组合保护玉米免于由可能对 单独的任一这些Cry蛋白系统形成抗性(对另一种则不形成抗性)的玉米根虫群体的玉米根虫进食引起的损害和产量损失的用途。如此,本发明教导昆虫抗性管理(IRM)堆叠以防止玉米根虫对Cry3Ba和/或Cry34Ab/35Ab 形成抗性。本发明提供用于控制根虫害虫的组合物,其包含生成Cry3Ba毒素蛋白和Cry34Ab/35Ab毒素系统的细胞。本发明进一步包含经过转化以生成Cry3Ba蛋白和Cry34Ab/35Ab 二元毒素的宿主,其中所述宿主为微生物或植物细胞。另外,本发明提供控制根虫害虫的方法,包括使所述害虫或所述害虫的环境与有效量的含有Cry3Ba蛋白且进一步含有Cry34Ab/35Ab 二元毒素的组合物接触。本发明的一个实施方案包含玉蜀黍植物,其包含编码Cry34Ab/35Ab 二元毒素的植物可表达基因和编码Cry3Ba蛋白的植物可表达基因,及此类植物的种子。本发明的又一个实施方案包含玉蜀黍植物,其中编码Cry34Ab/35Ab 二元毒素的植物可表达基因和编码Cry3Ba蛋白的植物可表达基因已经渐渗入所述玉蜀黍植物中,及此类植物的种子。如实施例中描述的,使用放射性标记的Cry35Ab核心毒素蛋白的竞争性受体结合研究显示Cry3Ba核心毒素蛋白在CRW昆虫组织样品中不竞争结合Cry35Ab所结合的。参见图2。这些结果指示Cry3Ba和Cry34Ab/35Ab蛋白的组合是减轻CRW群体中对单独的任一蛋白质系统形成抗性的有效手段。如此,部分基于上文和本文中别处描述的数据,可使用Cry34Ab/35Ab和Cry3Ba蛋白生成IRM组合来防止或减轻CRW形成抗性。例如,可将其它蛋白质添加至这种组合以扩展昆虫控制谱。还可以在一些优选的“三重堆叠”或“金字塔”中与用于控制根虫的又一种蛋白质(诸如Cry3Aa和/或Cry6Aa)组合使用(Cry34Ab/35Ab和Cry3Ba蛋白的)主题组合;此类附加的组合如此会提供针对根虫的多重作用模式。针对根虫的RNAi又是另一种选择。参见例如 Baum 等人,Nature Biotechnology, vol. 25, No. 11 (Nov. 2007) pp. 1322-1326。根据USSN 61/327, 240 (2010 年 4 月 23 日提交)(涉及 Cry34Ab/35Ab 和 Cry3Aa蛋白的组合)、USSN 61/388,273(2010 年 9 月 30 日提交)(涉及 Cry34Ab/35Ab 和 Cry6Aa 蛋白的组合)、和USSN 61/477,447 (2011年9月20日提交)(涉及Cry3Aa和Cry6Aa蛋白的组合)的公开内容,本发明的一些优选的“三重堆叠”或“多重作用模式堆叠”包括Cry3Ba蛋白,其与Cry34Ab/35Ab蛋白组合,又与Cry6Aa蛋白和/或Cry3Aa蛋白一起。包含cry3Ba基因、cry34Ab/35Ab基因、和第三或第四毒素系统(例如cry3Aa和/或cry6Aa基因)的转基因植物(包括玉米)包括在本发明的范围内。如此,此类实施方案以至少三种作用模式靶向昆虫。本发明的部署选项包括在根萤叶甲成问题的玉米种植地区使用Cry3Ba和Cry34Ab/35Ab蛋白。另一个部署选择会是使用Cry3Ba和Cry34Ab/35Ab蛋白之一或二者,与其它性状组合。 本领域技术人员会领会,Bt毒素(即使在某一类内,诸如Cry3Ba和Cry34Ab/35Ab)可以有一定程度的变化。基因和毒素。术语“分离的”指非天然发生构建体中的多核苷酸,或纯化的或其它非天然发生状态的蛋白质。依照本发明有用的基因和毒素不仅包括公开的全长序列,而且包括这些序列的片段、变体、突变体、和融合蛋白,它们保留本文中具体示例的毒素的特征性杀虫活性。如本文中使用的,术语基因的“变体”或“变异”指编码相同毒素或编码具有杀虫活性的等同毒素的核苷酸序列。如本文中使用的,术语“等同毒素”指针对靶害虫与要求保护的毒素具有相同或本质上相同的生物学活性的毒素。依照本发明,这适用于Cry3和Cry34/35,以及Cry6(如果在三重/多重堆叠中使用的话)。可以交换这些蛋白质的域/亚域以生成嵌合蛋白。关于Cry34/35蛋白,参见例如美国专利No. 7,309, 785和7,524,810。’ 785专利还教导截短的Cry35蛋白。本文中也示例截短的毒素。如本文中使用的,遵照“Revision of the Nomenclature for the Bacillusthuringiensis Pesticidal Crystal Proteins,,,N. Crickmore, D. R. Zeigler,J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum,和 D. H. Dean. Microbiology andMolecular Biology Reviews (1998)Vol 62 :807-813,边界代表表不大约 95% (Cry3Ba 和Cry34Ab 和 Cry35Ab)、78% (Cry3B 和 Cry34A 和 Cry35A)、和 45% (Cry6 和 Cry34 和 Cry35)序列同一性。依照本发明,同样适用于Cry3A和/或Cry6,如果例如在三重/多重堆叠中使用的话。对本领域技术人员应当显然的是,编码活性毒素的基因可以经由数种手段来鉴定和获得。本文中示例的具体基因或基因部分可以自保藏于培养物保藏机构的隔离群获得。这些基因或其部分或变体也可以合成构建,例如通过使用基因合成仪。基因的变异可以使用用于生成点突变的标准技术容易地构建。还有,这些基因的片段可以使用商品化外切核酸酶或内切核酸酶依照标准规程生成。例如,可以使用酶(诸如Bal31)或定点诱变自这些基因的末端系统切除核苷酸。编码活性片段的基因也可以使用多种限制性酶来获得。可以使用蛋白酶直接获得这些蛋白质毒素的活性片段。保留示例毒素的杀虫活性的片段和等同物会在本发明的范围内。还有,由于遗传密码的冗余,多种不同DNA序列可编码本文中公开的氨基酸序列。创建这些编码相同或本质上相同的毒素的备选DNA序列完全在本领域技术人员的技术内。这些变体DNA序列在本发明的范围内。如本文中使用的,提到“本质上相同的”序列指具有对杀虫活性没有实质影响的氨基酸替代、删除、添加、或插入的序列。编码保留杀虫活性的蛋白质的基因片段也包括在此定乂中。用于鉴定依照本发明有用的编码毒素的基因和基因部分的又一种方法是经由使用寡核苷酸探针。这些探针是可检测核苷酸序列。这些序列可以借助适宜的标记物来检测,或者可以制成内在发荧光的,如记载于国际申请号W093/16094。如本领域公知的,如果探针分子和核酸样品通过在两分子间形成强键而杂交,那么可以合理假设探针和样品具有实质性同源性。优选地,通过本领域公知的技术在严格条件下进行杂交,如记载于例如Keller,G. H. , M. M. Manak (1987) DNA Probes, Stockton Press, New York, N. Y. , pp. 169-170。盐浓度和温度组合的一些例子如下(以严格性升高的次序)2X SSPE或SSC,于室温;1X SSPE或 SSC,于 42°C ;0. IX SSPE 或 SSC,于 42°C ;0. IX SSPE 或 SSC,于 65°C。探针的检测提供用于以已知方式确定是否发生杂交的手段。此类探针分析提供用于鉴定本发明的毒素编码基因的快速方法。依照本发明用作探针的核苷酸区段可使用DNA合成仪和标准规程来合成。这些核苷酸序列还可作为PCR引物用于扩增本发明的基因。变体毒素。本文中已经具体示例了本发明的某些毒素。由于这些毒素仅仅是本发明毒素的示例,应当显而易见的是,本发明包含与示例毒素具有相同或相似杀虫活性的变体或等同毒素(和编码等同毒素的核苷酸序列)。等同毒素会与示例毒素具有氨基酸同源性。在一些实施方案中,这种氨基酸同一性通常会大于75%、或优选大于85%、优选大于90%、 优选大于95%、优选大于96%、优选大于97%、优选大于98%、或优选大于99%。氨基酸同一性通常会在毒素的关键区中最高,关键区负责生物学活性或涉及决定最终负责生物学活性的三维构型。在这点上,某些氨基酸替代是可接受的且可预期的,如果这些替代在对活性不是至关重要的区域中或是不影响分子三维构型的保守氨基酸替代的话。例如,可以将氨基酸归入下述类别非极性的,不带电荷的极性的,碱性的,和酸性的。其中一个类别的氨基酸用同一类型的另一种氨基酸替换的保守替代落在本发明的范围内,只要该替代没有实质性改变化合物的生物学活性。表I提供属于每一个类别的氨基酸实例的列表。表I :氨基酸的类别及属于每一个类别的氨基酸的例子
氨基酸的类别氨基酸的例子
非极性Ala, Val, Leu, He, Pro, Met, Phe, Trp
不带电荷的极性<51y,Ser, Thr, Cys, Tyr, Asn, Gln
酸性Asp,Glu
碱性Lys,Arg,His在一些情况中,也可以进行非保守替代。关键因素是这些替代不能显著降低毒素的生物学活性。重组宿主。可以将编码本发明的毒素的基因导入极其多种微生物或植物宿主。毒素基因的表达直接或间接导致杀虫剂的胞内生成和维持。可以使用接合转移和重组转移来创建表达本发明两种毒素的Bt菌株。也可以用两种毒素基因之一或二者转化其它宿主生物体,然后用于实现协同效应。凭借合适的微生物宿主,例如假单胞菌属(Pseudomonas),可以将微生物应用于害虫的地点,在那里它们会繁殖和被摄取。结果是控制害虫。或者,可以在延长毒素活性和稳定细胞的条件下处理包含毒素基因的微生物。然后可以将经过处理的保留毒素活性的细胞应用于靶害虫的环境。来自本发明植物的不可再生/非全能植物细胞(包含至少一种主题IRM基因)包括在本发明内。
植物转化。本发明的一个优选实施方案是用编码主题杀虫蛋白或其变体的基因转化植物。依靠经转化植物的细胞中控制量的主题杀虫蛋白或其变体的存在,经转化植物对昆虫靶害虫的攻击有抗性。通过将编码B. t.杀虫毒素的杀虫特性的遗传材料并入特定昆虫害虫吃的植物的基因组中,成虫或幼虫会在食用植物食物之后死亡。已经转化了单子叶植物和双子叶植物分类的众多成员。转基因农作物以及水果和蔬菜是商业上感兴趣的。此类作物包括但不限于玉蜀黍、稻、大豆、芸苔、向日葵、苜蓿、高粱、小麦、棉花、花生、番茄、马铃薯、等等。存在数种技术用于将外来遗传材料导入植物细胞中,及用于获得稳定维持并表达导入的基因的植物。此类技术包括加速包被到微粒上的遗传材料直接进入细胞中(美国专利No. 4,945,050及美国专利No. 5,141,131)。可以使用土壤杆菌技术来转化植物,参见美国专利No. 5,177,010 ;美国专利No. 5,104, 310 ;欧洲专利申请No. 0131624B1 ;欧洲专利申请No. 120516 ;欧洲专利申请No. 159418B1 ;欧洲专利申请No. 176112 ;美国专利 No. 5,149,645 ;美国专利 No. 5,469,976 ;美国专利 No. 5,464,763 ;美国专利No. 4,940, 838 ;美国专利No. 4,693,976 ;欧洲专利申请No. 116718 ;欧洲专利申请No. 290799 ;欧洲专利申请No. 320500 ;欧洲专利申请No. 604662 ;欧洲专利申请No. 627752 ;欧洲专利申请No. 0267159 ;欧洲专利申请No. 0292435 ;美国专利No. 5,231,019 ;美国专利No. 5,463,174 ;美国专利No. 4,762,785 ;美国专利No. 5,004,863 ;及美国专利 No. 5,159,135。其它转化技术包括WHISKERS 技术,参见美国专利No. 5,302,523及美国专利No. 5,464,765。还已经使用电穿孔技术来转化植物,参见WO 87/06614 ;美国专利No. 5,472,869 ;美国专利 No. 5,384,253 ;W0 9209696 ;及 WO 9321335。通过述及收录所有这些转化专利和出版物。在用于转化植物的众多技术之外,与外来基因接触的组织的类型同样可以变化。此类组织会包括但不限于胚胎发生组织、愈伤组织I和II型、下胚轴、分生组织、等等。可以使用技术人员技术之内的适宜技术在去分化期间转化几乎所有植物组织。可以使用本领域公知的多种技术将编码任何主题毒素的基因插入植物细胞中,如上文公开的。例如,包含容许选择经转化微生物细胞的标志物和在大肠埃希氏菌/大肠杆菌(Escherichia coli)中有功能的复制系统的多种克隆载体可用于制备和修饰外来基因,用于插入高等植物中。此类操作可包括例如计划用途期望的插入突变、截短、添加、或替代。载体包括例如pBR322、pUC系列、M13mp系列、pACYC184、等。因而,可以在合适限制性位点处将编码Cry蛋白或变体的序列插入载体中。将所得质粒用于转化大肠杆菌细胞,在合适的营养培养基中培养其细胞,然后收获并裂解,从而回收可工作数量的质粒。一般进行序列分析、限制性片段分析、电穿孔、和其它生物化学-分子生物学方法作为分析方法。在每次操作之后,可以切割使用的DNA序列,并连接至下一种DNA序列。可以在相同或不同的质粒中克隆每种操作的DNA序列。含有T-DNA的载体用于转化植物细胞的用途已经在EP 120516 ;Lee和Gelvin(2008) ;Fraley等人(1986);及An等人(1985)中深入研究及充分记载,而且是本领域完善
建立的。一旦插入的DNA整合入植物基因组中,它在整个后续世代中是相对稳定的。用于转化植物细胞的载体通常含有编码赋予经转化植物细胞以对除草剂或抗生素诸如双丙氨憐(bialaphos)、卡那霉素、G418、博来霉素、或潮霉素、等等的抗性的蛋白质的选择标记基因。各个采用的选择标记基因因而应当容许选择经转化细胞,而不含插入的DNA的细胞的生长受到选择化合物的阻抑。多种技术可用于将DNA插入宿主植物细胞中。那些技术包括用通过根癌土壤杆菌或发根土壤杆菌(Agrobacterium rhizogenes)作为转化剂投递的T-DNA进行的转化。另夕卜,可采用植物原生质体与含有要投递的DNA的脂质体的融合、DNA直接注射、生物射弹转化(微粒轰击)、或电穿孔,以及其它可能的方法。在本发明的一个优选实施方案中,会用其中蛋白质编码区的密码子选择已经为植物优化的基因转化植物。参见例如美国专利No. 5380831,通过述及将其收入本文。还有,有利地,会使用编码截短型毒素的植物。截短型毒素通常会编码全长毒素的约55%至约80%。用于创建合成B. t.基因以用于植物的方法是本领域已知的(Stewart,2007) 。不管转化技术,优选将基因并入通过在载体中包括植物启动子而适合于在植物细胞中表达B. t.杀虫毒素基因和变体的基因转移载体中。在植物启动子之外,可以在植物细胞中有效使用来自多种来源的启动子来表达外来基因。例如,可以使用细菌起源的启动子,诸如章鱼碱合酶启动子、胭脂碱合酶启动子、和甘露碱合酶启动子。在一些优选的实施方案中可以使用非苏云金芽孢杆菌启动子。可以使用植物病毒起源的启动子,例如花椰菜花叶病毒的35S和19S启动子、来自木薯叶脉花叶病毒的启动子、等等。植物启动子包括但不限于核酮糖-1,6_ 二磷酸(RUBP)羧化酶小亚基(ssu)、^ -伴球蛋白(conglycinin)启动子、菜豆蛋白启动子、ADH (醇脱氢酶)启动子、热休克启动子、ADF (肌动蛋白解聚因子)启动子、遍在蛋白启动子、肌动蛋白启动子、和组织特异性启动子。启动子也可以含有某些可改善转录效率的增强子序列元件。典型的增强子包括但不限于ADHl-内含子I和ADHl-内含子
6。可使用组成型启动子。组成型启动子指导几乎所有细胞类型中及几乎所有时间时的连续基因表达(例如肌动蛋白、遍在蛋白、CaMV 35S)。组织特异性启动子负责特定细胞或组织类型,诸如叶或种子中的基因表达(例如玉米醇溶蛋白、油质蛋白、油菜籽蛋白(napin)、ACP(酰基载体蛋白)启动子),而且也可以使用这些启动子。也可以使用在植物发育的某些阶段期间有活性的以及在特定植物组织和器官中有活性的启动子。此类启动子的实例包括但不限于根特异性的、花粉特异性的、胚特异性的、玉米穗丝特异性的、棉纤维特异性的、种子胚乳特异性的、韧皮部特异性的启动子、等等。在某些情况下,可能希望使用诱导型启动子。诱导型启动子负责基因响应特定信号的表达,所述信号诸如物理刺激(例如热休克基因);光(例如RUBP羧化酶);激素(例如糖皮质激素);抗生素(例如四环素);代谢产物;和应激(例如干旱)。可以使用在植物中发挥功能的其它期望的转录和翻译元件,诸如5'非翻译前导序列、RNA转录终止序列和聚腺苷酸添加信号序列。众多植物特异性基因转移载体是本领域已知的。含有昆虫抗性(IR)性状的转基因作物遍及北美洲流行于玉米和棉花植物,而且这些性状的使用正在全球扩大。多家种子公司已经开发了组合IR和除草剂耐受(HT)性状的商业转基因作物。这些包括由B.t.杀虫蛋白赋予的IR性状和HT性状的组合,所述HT性状诸如对乙酰乳酸合酶(ALS)抑制剂诸如磺脲类、咪唑啉酮类、三唑并嘧啶、磺酰苯胺类、等等,谷氨酰胺合成酶(GS)抑制剂诸如双丙氨磷、草铵膦(glufosinate)、等等,4-轻基苯基丙酮酸酯双加氧酶(HPPD)抑制剂诸如甲基磺草酮(mesotrione)、异口恶唑草酮(isoxaf Iutole)、等等,5_烯醇丙酮莽草酸_3_磷酸合酶(EPSPS)抑制剂诸如草甘磷(glyphosate)等等,和乙酰辅酶A羧化酶(ACCase)抑制剂诸如氟卩比氯禾灵/氟卩比甲禾灵(haloxyfop)、喹禾灵(quizalofop)、氯甲草/禾草灵(diclofop)、等等的耐受。知道其它实例,其中转基因提供的蛋白质给植物提供对除草剂化学类别诸如苯氧基酸除草剂和吡啶基氧乙酸酯生长素除草剂(参见WO 2007/053482 A2),或苯氧基酸除草剂和芳基氧苯氧基丙酸酯除草剂(参见WO 2005/107437 A2,A3)的耐受。经由IR性状控制多种害虫问题的能力是一个有价值的商业产品概念,而且如果在同一植物中组合昆虫控制性状和杂草控制性状的话,这个产品概念的便利得到增强。另外,可以经由B.t.杀虫蛋白(诸如本发明的)赋予的IR性状与一种或多种别的HT性状(诸如上文提到的),加上一种或多种别的输入性状(例如由B. t.衍生的或其它的杀虫蛋白赋予的其它昆虫抗性、由诸如RNAi等等机制赋予的昆虫抗性、线虫抗性、疾病抗性、应激耐受、改善的氮利用、等等)或输出性状(例如高油含量、健康油组成、营养改善、等等)的单一植物组合获得提高的价值。可以或者经由常规育种(育种堆叠)或者共同作为涉及同时导入多种基因的一个新颖转化事件(分子堆叠)获得此类组合。好处包括作物植物中管理昆虫害虫的能力和改善的杂草控制,这给生产者和/或消费者提供次级好处。如此,本发明可用于与其它性状组合以提供作物品质改善的完整农业包,其具有灵活且划算地控制任何数目的农业问题的能力。
经过转化的细胞以通常的方式在植物内部生长。它们能形成生殖细胞并将转化的性状传递给后代植物。此类植物可以以正常方式种植并与具有相同转化遗传因子或其它遗传因子的植物杂交。所得杂种个体具有相应的表型特性。在本发明的一个优选实施方案中,会用已经为植物优化了密码子选择的基因转化植物。参见例如美国专利No. 5,380,831。另外,用于创建供植物中使用的合成Bt基因的方法是本领域已知的(Stewart和Burgin, 2007)。优选的经过转化的植物的一个非限制性例子是包含编码Cry3Ba蛋白的植物可表达基因且进一步包含编码Cry34Ab/35Ab蛋白的第二组植物可表达基因的能育玉蜀黍植物。Cry3Ba和Cry34Ab/35Ab决定性状进入近交玉蜀黍系的转移(或渐渗)可通过轮回选择育种来实现,例如通过回交。在这种情况中,首先将期望的轮回亲本与携带Cry决定性状的适宜基因的供体近交系(非轮回亲本)杂交。然后将这次杂交的后代与轮回亲本回交,接着在所得后代中选择要自非轮回亲本转移的期望性状。在与轮回亲本三、优选四、更优选五或更多代回交及选择期望性状后,后代对控制所转移性状的基因座会是杂合的,但是对大多数或几乎所有其它基因会像轮回亲本(参见例如Poehlman和Skper (1995)BreedingField Crops,第4版,172-175 ;Fehr( 1987)Principles of Cultivar Development,Vol. I Theory and Technique,360-376)。昆虫抗件管理(IRM)策略。例如,Roush等人概述了用于管理杀虫转基因作物的两毒素策略,也称作“堆金字塔”或“堆叠” (The Royal Society. Phil. Trans. R. Soc. Lond.B. (1998) 353,1777-1786)。在他们的网站上,美国环境保护局(epa.gov/oppbppdl/biopesticides/pips/bt_corn_refuge_2006. htm)公布了提供非转基因(即非B. t.)庇护(一片非Bt作物/玉米)与生成针对靶害虫有活性的单一 Bt蛋白的转基因作物一起使用的下述要求。“玉米姓虫防护Bt (CrylAb或CrylF)玉米产品的具体结构化要求如下
结构化庇护玉米带中20%非鳞翅目Bt玉米庇护;棉花带中50%非鳞翅目Bt庇护片内部(SP,在Bt田地内)外部卿,距Bt田地1/2英里(1/4英里,如果可能的话)内的分开田地以使随机交配最大化)田地中的条条必须宽至少4行(优选6行)以降低幼虫移动的影响”另外,国家玉米种植者联合会在他们的网站上(ncga. com/insect-resistance-ma nagement-fact-sheet-bt-corn)也提供了关于庇护要求的类似指导。例如“玉米蛀虫IRM的要求-种植你们玉米耕地的至少20%以庇护杂种-在棉花生产区,庇护必须为50%-必须距庇护杂种1/2英里内种植-庇护可以在Bt田地内种植成条;庇护条必须宽至少4行-只有当对于靶昆虫达到经济阈值时,可以用常规杀虫剂处理庇护-基于Bt的可喷洒杀虫剂不得用于庇护玉米-必须在每一块有Bt玉米的农田上种植适宜庇护”如Roush等人所述(例如第1780页和第1784页右栏),用各自针对靶害虫有效且没有或几乎没有交叉抗性的两种不同蛋白质堆叠或堆金字塔可容许使用更小的庇护。Roush提出,对于成功的堆叠,少于10%庇护的庇护尺寸能提供与单一(非堆金字塔型)性状的约50%庇护相当的抗性管理。对于当前可得的堆金字塔型Bt玉米产品,美国环境保护局要求比单一性状产品(一般20%)显著更少的(一般5%)种植非Bt玉米的结构化庇护。有多种方式来提供IRM庇护效应,包括田地中的各种几何种植样式(如上文提到的)和袋中种子混合物,如Roush等人(见上文),和美国专利No. 6, 551, 962进一步讨论的。上述百分比或类似的庇护比率可用于主题双重或三重堆叠或金字塔。因为本发明提供针对根虫靶昆虫的多重、非竞争性作用模式,所以本发明能提供“零庇护”,就是说,没有庇护植物(因为不需要它们)的田地。超出约10英亩的典型B.t.转基因田地通常需要许可。因此,本发明包括具有“零庇护”或没有Bt植物的10英亩或更大的田地;这种尺寸的田地先前会要求具有显著的非Bt庇护。通过述及完整收录本文中提到或引用的所有专利、专利申请、临时申请、和出版物,到它们与本说明书中的清楚教导不矛盾的程度。下文是例示用于实施本发明的规程的实施例。这些实施例不应解释为限制。除非另外注明,所有百分比以重量计,而且所有溶剂混合比例以体积计。所有温度以摄氏度计。除非明确指明或暗示,术语“一个”、“一种”、和“所述”表示“至少一个/种”,如本文中使用的。
实施例实施例I-编码Cry34Abl> Cry35Abl、和Cry3Bal全长毒素的表达质粒的构建
使用标准克隆方法来构建改造成分别生成全长Cry34Abl、Cry35Abl、和Cry3BalCry蛋白的突光假单胞菌(Pf)表达质粒。使用来自New England BioLabs (NEB ;Ipswich,MA)的限制性内切核酸酶进行DNA消化,并且使用来自Invitrogen的T4 DNA连接酶进行DNA连接。使用质粒Midi试剂盒(Qiagen)遵循供应商的说明书实施质粒制备。琼脂糖Tris-乙酸盐凝胶电泳后使用Millipore Ultrafree⑩-DA筒(Billerica,MA)纯化DNA片段。基本克隆策略使得分别将全长Cry34Abl和Cry35Abl蛋白的编码序列(⑶S)亚克隆入PMYC1803中,在SpeI和XhoI(或XbaI)限制性位点处,并将全长Cry3Bal蛋白的CDS亚克隆A PMYC1050中,在KpnI和XbaI限制性位点处,由此分别将它们置于来自质粒pKK223_3(PLPharmacia,Milwaukee,WI)的Ptac启动子和rrnBTlT2终止子的表达控制之下。pMYC1803为中拷贝质粒,在可引入含有蛋白编码区的DNA片段的限制酶识别位点前面有RSF1010复制起点、四环素抗性基因、和核糖体结合位点(美国专利申请No. 2008/0193974)。通过电穿孔将表达质粒转化入荧光假单胞菌菌株MB214中,在SOC-大豆水解产物培养基中恢复,并在含有20 ii g/ml四环素的Lysogeny肉汤(LB)培养基上涂板。微生物操作的详情 可见美国专利申请No. 2006/0008877 ;美国专利申请No. 2008/0193974 ;和美国专利申请No. 2008/0058262,通过述及收入本文。通过微量制备质粒DNA的限制性消化来筛选菌落。通过与商业测序商诸如MWG Biotech (Huntsville, AL)的合同对含有插入物的选定克隆的质粒 DNA 测序。使用 Sequencher 软件(Gene Codes Corp. ,Ann Arbor,MI)装配和分析序列数据。实施例2-牛长和表汰通过摇瓶培养的包含表达构建体(例如Cry34Abl的克隆pMYC2593、Cry35Abl的PMYC3122、和Cry3Bal的pMYC1177)的荧光假单胞菌菌株实现了供表征(包括Bt受体结合和昆虫生物测定法)用的Cry34Abl、Cry35Abl、和Cry3Bal毒素的摇瓶生产中的生长和表达分析。使用在补充有20 ii g/ml四环素的LB培养基中培养的种子培养物来接种200mL含20 ii g/ml四环素的相同培养基。于30°C在摇动中初始温育24小时后通过添加异丙基-0-D-I-硫代吡喃型半乳糖苷(IPTG)来诱导Cry34Abl、Cry35Abl、和Cry3Bal毒素经Ptac启动子的表达。在诱导时及在诱导后的多个时间对培养物取样。通过600nm光密度(0D_)来测量细胞密度。实施例3-摇瓶样品的细胞分级和SDS-PAGE分析在每一个取样时间,将样品的细胞密度调节至0D_=20并将ImL等分试样以
14,OOOx g离心5分钟。将细胞团粒冷冻于_80°C。使用EasyLyse 细菌蛋白质提取解决方案(EPICENTRE Biotechnologies,Madison, WI)自冷冻摇瓶细胞团粒样品生成可溶性和不溶性级分。将每一份细胞团粒在ImL EasyLyse 溶液中重悬并在裂解缓冲液中进一步1:4稀释并在摇动中于室温温育30分钟。将裂解物于4°C以14,OOOrpm离心20分钟并作为可溶性级分回收上清液。然后将团粒(不溶性级分)在等体积的磷酸盐缓冲盐水(PBS ;
11.9mM Na2HPO4,137mM NaCl,2. 7mM KC1,pH7. 4)中重悬。将样品与含有P _巯基乙醇的2X Laemmli样品缓冲液I: I混合并煮沸5分钟,之后加载到NuPAGE Novex 4-20%Bis-Tris凝胶(Invitrogen, Carlsbad, CA)上。在推荐的XT MOPS缓冲液中实施电泳。将凝胶用SimplyBlue 安全染料依照制造商(Invitrogen)的方案染色并使用Typhoon成像系统(GEHealthcare Life Sciences, Pittsburgh, PA)成像。_6] 实施例4-包含体制备对来自生成不溶性B. t.杀虫蛋白(通过SDS-PAGE和MALDI-MS (基质辅助激光解吸/电离质谱术)证明)的荧光假单胞菌发酵的细胞实施了 Cry蛋白包含体(IB)制备。在37°C水浴中融化荧光假单胞菌发酵团粒。将细胞在裂解缓冲液[50mM Tris pH 7. 5,200mMNaCl,20mM EDTA 二钠盐(乙二胺四乙酸),l%Triton X-100,和5mM 二硫苏糖醇(DIT)]中重悬至25%w/v ;并在临使用前添加5mL/L细菌蛋白酶抑制剂混合物(P8465 Sigma-Aldrich,St. Louis, MO)。使用勻衆器以最低设置(Tissue Tearor, BioSpec Products, Inc.,Bartlesville,OK)使细胞悬浮。通过用金属刮刀混合,将溶菌酶(25mg的Sigma L7651,来自鸡蛋清)添加至细胞悬浮液,并将悬浮液于室温温育I小时。将悬浮液在冰上冷却15分钟,然后使用Branson Sonifier 250进行超声处理(I分钟时间,两次,50%工作循环,30%输出)。通过显微术来检查细胞裂解。在必要时另添加25mg溶菌酶,并重复温育和超声处理。当经显微术确认了细胞裂解时,裂解物以11,500x g离心25分钟(4°C)以形成IB团粒,并丢弃上清液。将IB团粒用IOOmL裂解缓冲液重悬,用手持式混合仪匀浆并如上所述离心。 将IB团粒反复清洗,即重悬(在50mL裂解缓冲液中)、匀浆、超声处理、并离心,直至上清液变成无色且IB团粒变得坚实且颜色为灰白色(off-white)。对于最后一次清洗,将IB团粒在含有2mM EDTA的无菌过滤(0. 22 u m)蒸馏水中重悬,并离心。将最终的团粒在含有2mMEDTA的无菌过滤蒸馏水中重悬,并以ImL等分试样保存于_80°C。实施例5-SDS-PAGE分析和定量进行IB制备物中蛋白质的SDS-PAGE分析和定量,即融化IB团粒的ImL等分试样并用无菌过滤蒸馏水1:20稀释。然后将稀释样品与4X还原样品缓冲液[250mM Tris,pH6. 8,40% 甘油(v/v),0. 4% 溴酚蓝(w/v),8%SDS (w/v)和 8%3 -巯基乙醇(v/v)] —起煮沸并加载到用IX Tris/甘氨酸/SDS缓冲液(Invitrogen)运行的Novex⑩4-20%Tris-甘氨酸12+2孔凝胶(Invitrogen)上。将凝胶以200伏运行大约60分钟,然后遵循SimplyBlue 安全染料(Invitrogen)规程染色并脱色。进行祀条带的定量,即将条带的密度测定值与同一凝胶上运行、以生成标准曲线的牛血清清蛋白(BSA)样品比较,使用Bio-Rad QuantityOne⑩软件进行。实施例6-包含体的溶解将IOmL来自荧光假单胞菌克隆MR1253、MR1636、和MR816的包含体悬浮液(分别含有 50_70mg/mL Cry34Abl、Cry35Abl、和 Cry3Bal 蛋白)以 Eppendorf 5415C型微量离心机的最高设置(大约14,OOOx g)离心以使内含物成团粒。除去贮存缓冲液上清液并分别在50mL锥形管中用25mL IOOmM乙酸钠缓冲液pH 3. 0 (用于Cry34Abl和Cry35Abl 二者)和IOOmM碳酸钠缓冲液PHll (用于Cry3Bal)替换。使用移液器将内含物重悬并涡旋振荡以彻底混合。将管在温和摇动的平台上于4°C放置过夜以提取全长Cry34Abl、Cry35Abl、和Cry3Bal蛋白。将提取物于4°C以30,OOOx g离心30分钟,并保存所得(含有溶解的全长Cry蛋白的)上清液。实施例7-全长毒素原的截短将全长Cry35Abl和Cry3Bal用胰凝乳蛋白酶或胰蛋白酶消化或截短以生成胰凝乳蛋白酶或胰蛋白酶核心片段(它们是该蛋白质的活性形式)。具体地,将溶解的全长Cry35Abl与胰凝乳蛋白酶(牛胰)(Sigma, St. MO)一起(以50: I=Cry蛋白酶,w/w)在IOOmM乙酸钠缓冲液pH 3. O中(实施例6)于4°C在温和摇动中温育2-3天,而将全长Cry3Bal与胰蛋白酶(牛胰)(Sigma, St. MO)—起(以20: I=Cry蛋白酶,w/w)在IOOmM碳酸钠缓冲液PHll中(实施例6)于室温温育1-3小时。通过SDS-PAGE分析确认了完全蛋白水解加工。全长Cry35Abl和Cry3Bal的分子量约等于44和约等于73kDa,而它们的胰凝乳蛋白酶或胰蛋白酶核心分别约等于40和约等于55kDa。Cry35Abl的全长和胰凝乳蛋白酶核心的氨基酸序列作为SEQ ID NO: I和SEQ ID NO:2提供,而Cry3Bal的全长和胰蛋白酶核心的氨基酸序列作为SEQ ID NO:3和SEQ ID N0:4提供。Cry34Abl的胰凝乳蛋白酶或胰蛋白酶核心均不可得,并因此使用全长Cry34Abl进行结合测定法。全长Cry34Abl的氨基酸序列作为SEQ ID NO:5 提供。实施例8-截短的毒素的纯化纯化胰凝乳蛋白酶消化的Cry35Abl和胰蛋白酶消化的Cry3Bal核心片段。具体 地,将消化反应物于4°C以30,OOOx g离心30分钟以去除脂质,并使用Amicon Ultra-15再生纤维素离心过滤装置(10,000分子量截留;Millip0re)将所得上清液浓缩5倍。然后使用一次性F1D-IO柱(GE Healthcare, Piscataway, NJ)或透析来将样品缓冲液换成20mM乙酸钠缓冲液pH 3. 5 (用于Cry34Abl和Cry35Abl 二者)和IOmM CAPS [3-(环己氨基)I-丙磺酸]pH 10. 5(用于Cry3Bal)。使用相应缓冲液将终体积调节至15ml,以使用ATKA Explorer液相层析系统(Amersham Biosciences)进行纯化。对于Cry35Abl,缓冲液A为20mM乙酸钠缓冲液pH 3. 5且缓冲液B为缓冲液A+1M NaCl pH 3.5。使用HiTrap SP(5ml)柱(GE)。使用缓冲液A使柱完全平衡后,以流速5ml/min将Cry35Abl溶液注射入柱中。使用缓冲液B的梯度0-100%以5ml/min实施洗脱,Iml/级分。对于Cry3Bal,缓冲液A为IOmM CAPS缓冲液 pH 10. 5 且缓冲液 B 为 IOmM CAPS 缓冲液 pH 10. 5+1M NaCl0 使用 Capto Q,5ml(5ml)柱(GE),而且所有其它规程与用于Cry35Abl的类似。SDS-PAGE分析选定级分以进一步选择含有质量最好的靶蛋白的级分后,合并那些级分。对于纯化的Cry35Abl胰凝乳蛋白酶核心,如上所述,将缓冲液换成20mM Bist-Tris,pH 6.0。对于纯化的Cry3Bal胰蛋白酶核心,使用一次性PD-10柱(GEHealthcare, Piscataway, NJ)或透析来去除盐。使用SDS-PAGE和Typhoon成像系统(GE)分析定量(BSA作为标准品)后,将样品保存于4°C,用于稍后的结合测定法。实施例9-BBMV制备物昆虫的刷状缘膜囊(BBMV)制备物已经广泛用于Cry毒素受体结合测定法。本发明中使用的BBMV制备物是使用Wolferberger等人(1987)描述的方法自第三龄西方玉米根虫(Diabrotica virgifera virgifera LeConte)的分离中肠制备的。使用亮氨酸氨肽酶作为制备物中膜蛋白的标志物,而且如先前所述(Li等人,2004a)测定粗制匀浆物和BBMV制备物的亮氨酸氨肽酶活性。使用Bradford方法(1976)测量BBMV制备物的蛋白质浓度。实施例IO-mI标记使用125I标记纯化的全长Cry34Abl、胰凝乳蛋白酶消化的Cry35Abl、和胰蛋白酶消化的Cry3Bal供饱和和同源竞争结合测定法用。为了确保放射性标记不消除Cry毒素的生物学活性,使用 NaI 遵循 Pierce 碘化珠(Pierce Biotechnology, Thermo Scientific,Rockford IL)的说明书进行冷碘化。生物测定法结果指示碘化的Cry35Abl胰凝乳蛋白酶核心保持了针对西方玉米根虫的幼虫的活性,但是碘化灭活了 Cry34Abl。没能检测到放射性标记的125I-Cry34Abl对昆虫BBMV的特异性结合,因此需要另一种标记方法来评估Cry34Abl的膜受体结合。由于胰蛋白酶消化的Cry3Bal针对西方玉米根虫具有有限的活性,因此认为使用冷碘化的Cry3Bal胰蛋白酶核心用玉米根虫进行的生物测定法难以评估活性变化。另外,检测到125I_Cry3Bal对BBMV的特异性结合,尽管水平较低。忽略Cry3Bal的冷碘化及其毒性测定法。经由碘化用Pierce 碘化珠(Pierce)和Na125I获得了放射性标记的125I_Cry35Abl和125I_Cry3Bal。使用Zeba 脱盐旋转柱(Pierce)自碘化的蛋白质去除未掺入的或游离的Na125L碘化的Cry蛋白的比放射性范围为l_5uCi/ug。进行了多批标记和结合测定法。实施例11-饱和结合测定法如先前所述(Li等人,2004b)使用125I标记的Cry毒素实施特异性或饱和结合测定法。为了测定Cry35Abl和Cry3Bal对昆虫BBMV的特异性结合及评估结合亲和力(解离 常数,Kd)和结合位点浓度(Bmax),将一系列渐增浓度的125I_Cry35Abl或125I_Cry3Bal分别与给定浓度(0. lmg/ml)的昆虫BBMV —起在150ul补充有0. 1%BSA的20mM Bis-Tris pH
6.0、150mM KCl中于室温在温和摇动中温育I小时。通过以20,000 x g于室温离心8分钟将悬浮液中结合至BBMV的毒素与游离的毒素分开。将团粒用(冰冷的)900ul含有0. 1%BSA的相同缓冲液清洗2次。用C0BRAII自动伽马计数器(Packard, a Canberra company)测量团粒中保留的放射性并作为总结合。并排设置另一系列结合反应,并在每一个结合反应中包括500-1,000倍过量的未标记的相应毒素以完全占据BBMV上的所有特异性结合位点,这用于测定非特异性结合。通过总结合减去非特异性结合来估算特异性结合。通过运行 GraphPad Prism 5. 01 (GraphPad Software, San Diego, CA)使用特异性结合针对所使用的经标记毒素浓度来估算这些毒素的Kd和Bmax值。使用Microsoft Excel或GraphPad Prism软件制作图表。实验重复至少4次并将结果绘制在图IA (125I_Cry35Abl对BBMV的结合)和图IB (125I-Cry3Bal对BBMV的结合)的曲线图中。这些结合实验证明7 125I-Cry35Abl 和 125I_Cry3Bal 都能够特异性结合 BBMV (图 IA 和 IB)。125I_Cry35Abl 和125I-Cry3Bal分别具有结合亲和力Kd=Il. 66± 11. 44,7. 35±3.81 (nM),而且分别具有结合位点浓度 Bmax=O. 78±0. 46,0. 55±0. 13 (pmole/mg BBMV)。在未标记Cry34Ab I 存在下(1:50=125I_Cry35Abl: Cry34Abl,摩尔比)进行125I-Cry35Abl的特异性结合。没有获得结合参数(Kd和Bmax),因为125I_Cry35Abl的特异性结合不饱和(图2)。然而,125I-Cry35Abl的特异性结合占未标记Cry34Abl存在下总结合的大约90%。实施例12-竟争结合测定法进行竞争结合测定法以确定分开的Cry34Abl和Cry35Abl,加上它们的混合物(作为二元毒素)是否与Cry3Bal分享同一组结合位点。对于Cry3Bal的同源竞争结合测定法,首先将渐增量(0-2,500nM)的未标记Cry3Bal与5nM125I_Cry3Bal混合,然后分别与0. Img/ml的昆虫BBMV —起于室温温育I小时,以容许它们竞争BBMV上的推定受体。类似地,分别在未标记的Cry34Abl缺失或存在下(1:50=125I_Cry35Abl:Cry34Abl,摩尔比)并在0. 03mg/ml的BBMV的情况中用5nM 125I-Cry35Abl完成Cry35Abl同源竞争。对每一个反应测定与BBMV结合的125I-Cry3Bal或125I_Cry35Abl的百分比,与未标记竞争物缺失下的初始总(或特异性)结合比较。
在未标记的Cry34Abl缺失或存在下进行125I_Cry35Abl和未标记Cry3Bal之间的异源竞争结合测定法以鉴定它们是否分享同一组结合位点。这是通过提高未标记 Cry3Bal 作为竞争物与单独 125I_Cry35Abl 或 125I_Cry35Abl+Cry34Abl(l:50=125I-Cry35Abl:Cry34Abl,摩尔比)竞争结合来实现的。类似地,还进行反异源竞争结合测定法,这是通过提高单独的未标记的Cry35Abl和Cry34Abl,或Cry35Abl+Cry34Abl(I 50=Cry35Abl: Cry34Abl,摩尔比)混合物的量作为反应中包括的一种或两种竞争物分别与经标记Cry3Bal竞争结合来实现的。实验重复至少3次并将结果绘制在图3A (单独的125I-Cry35Ab的百分比结合)和图3B (在Cry34Abl存在下125I_Cry35Abl的百分比结合)的曲线图中。实验结果证明了 Cry35Abl能够竞争掉125I_Cry35Abl的特异性结合,不管Cry34Abl的缺失(图3A)或存在(图3B)。然而,在Cry34Abl的存在或缺失下,Cry3Bal都不能竞争掉125I_Cry35Abl的特异性结合。在反竞争结合测定法中,Cry3Ba也能够置换自身,超过总结合的20%,这反映它完全竞争掉它的特异性结合,因为特异性结合只占小部分(见图 1B)。单独的 Cry34Abl 或 Cry35Abl 任一或 Cry35Abl+Cry34Abl (1:10)的混合物都 不能置换125I_Cry3Bal。这些数据指示了单独的Cry35Abl或Cry35Abl+Cry34Abl的混合物不与Cry3Bal分享受体结合位点。参考文献Bradford, Μ. Μ. 1976. A rapid and sensitive method for the quantitationof microgram quantities of protein utilizing the principle of protein-dyebinding, Anal. Biochem. 72,248-254.Li,H.,Oppertj B.,Higgins, R. A.,Huang, F.,Zhuj K. Y.,Buschmanj L.L.,2004a. Comparative analysis of proteinase activities of Bacillusthuringiensis-resistant and -susceptible Ostrinia nubilalis (Lepidoptera:Crambidae). Insect Biochem. Mol. Biol. 34,753-762.Li,H.,Oppert,B.,Gonzalez-Cabreraj J.,Ferre, J.,Higgins,R.
A., Buschmanj L. L. and Zhuj Κ. Y. and Huang, F. 2004b. Binding analysis of CrylAband CrylAc with membrane vesicles from Bacillus thuringiensis—resistant and-susceptible Ostrinia nubilalis(Lepidoptera:Crambidae). Biochem.Biophys. Res.Commun. 323,52-57.Wolfersbergerj M. G.,Luthyj P.,Maurer, A.,Parentij P.,Sacchij F.,Giordanaj
B.,HanozetjG.M.,1987. Preparation and partial characterization of amino acidtransporting brush border membrane vesicles from the larval midgut of thecabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. 86A,301-308.美国专利申请No. 20080193974. 2008. BACTERIAL LEADER SEQUENCES FORINCREASED EXPRESSION美国专利申请No. 20060008877, 2006. Expression systems with sec-systemsecretion.美国专利申请No. 20080058262,2008. rPA optimization.
权利要求
1.一种转基因植物,其生成Cry34蛋白、Cry35蛋白、和Cry3B杀虫蛋白。
2.权利要求I的转基因植物,所述植物进一步生成选自Cry3A和Cry6A的第四杀虫蛋白。
3.依照权利要求1-2任一项的植物的种子,其中所述种子包含所述DNA。
4.一种植物田地,其包含多个依照权利要求1-2任一项的植物。
5.权利要求4的植物田地,所述田地进一步包含非Bt庇护植物,其中所述庇护植物占所述田地中所有作物植物的少于40%。
6.权利要求5的植物田地,其中所述庇护植物占所述田地中所有作物植物的少于30%。
7.权利要求5的植物田地,其中所述庇护植物占所述田地中所有作物植物的少于20%。
8.权利要求5的植物田地,其中所述庇护植物占所述田地中所有作物植物的少于10%。
9.权利要求5的植物田地,其中所述庇护植物占所述田地中所有作物植物的少于5%。
10.权利要求4的植物田地,其中所述田地没有庇护植物。
11.权利要求5的植物田地,其中所述庇护植物成片或条。
12.—种种子混合物,其包含来自非Bt庇护植物的庇护种子和多个权利要求3的种子,其中所述庇护种子占该混合物中所有种子的少于40%。
13.权利要求12的种子混合物,其中所述庇护种子占该混合物中所有种子的少于30%。
14.权利要求12的种子混合物,其中所述庇护种子占该混合物中所有种子的少于20%。
15.权利要求12的种子混合物,其中所述庇护种子占该混合物中所有种子的少于10%。
16.权利要求12的种子混合物,其中所述庇护种子占该混合物中所有种子的少于5%。
17.—种种子袋或容器,其包含多个权利要求3的种子,所述袋或容器具有零个庇护种子。
18.—种管理昆虫形成对Cry蛋白的抗性的方法,所述方法包括种植种子以生成权利要求5或10的植物田地。
19.权利要求5-11任一项的田地,其中所述植物占地超过10英亩。
20.权利要求1-2任一项的植物,其中所述植物为玉蜀黍植物。
21.权利要求1-2任一项的植物的植物细胞,其中所述Cry35蛋白与选自SEQID NO: I和SEQ ID NO:2的序列至少95%相同,所述Cry3B杀虫蛋白与选自SEQ ID NO:3和SEQ IDNO: 4的序列至少95%相同,且所述Cry34蛋白与SEQ ID NO: 5至少95%相同。
22.权利要求1-2任一项的植物,其中所述Cry35蛋白包含选自SEQID NO:l和SEQID NO:2的序列,所述Cry3B杀虫蛋白包含选自SEQ ID NO:3和SEQ ID N0:4的序列,且所述Cry34蛋白包含SEQ ID NO: 5。
23.一种生成权利要求21的植物细胞的方法。
24.—种控制根虫昆虫的方法,其通过使所述昆虫与Cry34蛋白、Cry35蛋白、和Cry3B杀虫蛋白接触。
25.权利要求I的植物,其中所述Cry34蛋白为Cry34A蛋白,所述Cry35蛋白为Cry35A蛋白,且所述Cry3B蛋白为Cry3Ba蛋白。
26.权利要求I的植物,其中所述Cry34蛋白为Cry34Ab蛋白且所述Cry35蛋白为Cry35Ab 蛋白。
27.权利要求2的植物,其中所述Cry3A蛋白为Cry3Aa蛋白且所述Cry6A蛋白为Cry6Aa 蛋白。
28.权利要求24的方法,其中所述Cry34蛋白为Cry34A蛋白,所述Cry35蛋白为Cry35A蛋白,且所述Cry3B蛋白为Cry3Ba蛋白。
29.权利要求24的方法,其中所述Cry34蛋白为Cry34Ab蛋白且所述Cry35蛋白为Cry35Ab 蛋白 。
全文摘要
本发明部分涉及Cry34Ab/35Ab与Cry3Ba的组合。本发明部分涉及令人惊讶的发现,即Cry34Ab/Cry35Ab和Cry3Ba对于防止玉米根虫(根萤叶甲)群体形成抗性(对单独的任一杀虫蛋白系统)是有用的。正如本领域技术人员借助此公开内容会认识到的,生成这些杀虫Cry蛋白的植物对减轻会形成对单独的任一这些杀虫蛋白系统有抗性的玉米根虫群体的担忧会是有用的。本发明部分得到下述发现的支持,即这些Cry蛋白系统的各成分没有彼此竞争对玉米根虫肠受体的结合。本发明还部分涉及三种(或更多种)毒素系统的三重堆叠或“金字塔”,其中Cry34Ab/Cry35Ab和Cry3Ba作为基础对。因此,生成这两种杀虫蛋白系统的植物(和种植此类植物的土地)包括在本发明的范围内。
文档编号A01H5/00GK102970862SQ201180031211
公开日2013年3月13日 申请日期2011年4月22日 优先权日2010年4月23日
发明者K.E.纳瓦, T.米德, K.J.芬希尔, H.李, T.D.海伊, A.T.伍斯利, M.B.奥尔森 申请人:陶氏益农公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1