肉桂均一多糖及其抗氧化用途的制作方法

文档序号:25280218发布日期:2021-06-01 17:26阅读:385来源:国知局
肉桂均一多糖及其抗氧化用途的制作方法

本发明属于天然产物开发领域,涉及多糖,具体涉及肉桂中的天然均一多糖,及其在抗氧化方面的用途。



背景技术:

人类的许多重大疾病如:动脉粥样硬化、糖尿病、癌症等均与机体氧化损伤有关。抗氧化剂通过清除活性氧或阻止活性氧的生成实现对氧化过程的抑制作用,在医药、食品等领域都起着重要作用。人工合成的抗氧化剂如:2,6-二叔丁基对甲酚(bht)、叔丁基对羟基茴醚(bha)、没食子酸丙酯(pg)等普遍具有一定的毒性和致畸作用。因此,对于成分明确、结构明确及安全高效的天然抗氧化物在研制抗氧化剂方面,具有诱人的市场前景和开发价值。

肉桂(cinnamomum)是中国特有的樟科樟属树种,主要分布在我国的广西省,此外湖南、广东、重庆等省市也有种植。肉桂的化学成分包括挥发油、黄酮类化合物、倍半萜、二萜及糖苷类化合物、多糖类化合物和其他物质。研究表明肉桂具有抗氧化、抗菌、抗肿瘤、抗溃疡、降血糖降血脂、加强消化功能以及镇痛的作用。多个文献提示肉桂水提液中的非挥发性成分如多糖,也具有抗氧化活性。如郭占京研究肉桂水提液对大鼠脑缺血再灌注损伤后脑、心、肝、肾组织中丙二醛(mda)和超氧化物歧化酶(sod)的影响,结果表明肉桂水提物对脑缺血再灌注损伤有保护作用,其机制可能与抗脂质过氧化有关;黄宏妙研究肉桂水提物对大鼠全脑缺血再灌注损伤的保护用用,结果表明肉桂水提物对脑缺血再灌注损伤有保护作用,其机制可能与抗脂质过氧化和抑制单胺氧化酶活力有关。中国专利文献cn110940746a、cn106397624a、公布了肉桂多糖的制备方法及其测定方法,主要研究对象为肉桂粗多糖。我们结合离子交换层析和凝胶柱层析从肉柱水提物中分离制备出了具备抗氧化活性的均一多糖,迄今为止尚未发现有关该均一多糖的分离制备及其抗氧化活性的文献报道。



技术实现要素:

本发明目的是提供天然产物中具有抗氧化的活性成分,具体涉及肉桂中的天然均一多糖及其制备天然抗氧化剂的用途;尤其涉及肉桂均一多糖及其制备方法和在制备天然抗氧化剂中的用途。

本发明对肉桂的水提物进行分离得到一个均一的多糖,命名为cnp,经体外实验证实,所述的肉桂均一多糖具有显著的抗氧化活性,且与vc的活性相当,可进一步开发制备天然抗氧化剂。

本发明中,所述的肉桂是樟科植物肉桂cinnamomumcassiapresl的干燥皮或枝叶或任意组合。

本发明所述的cnp具有如下结构特征:

cnp为主要由葡萄糖(glc)组成的均一多糖;分子量3630g/mol;聚合物分散指数为1.585;糖含量为98.38%;cnp连接方式主要为1,4-linkedglcp,1-linkedglcp和1,6-linkedglcp。

本发明所述的cnp通过下述方法制备:

肉桂cinnamomumcassiapresl的干燥皮或枝叶或任意组合,粉碎,加水煎煮两次,第一次3小时,第二次2小时,滤过,滤液合并,滤液浓缩至稠膏状,冷冻干燥,得到肉桂水提物;将肉桂水提物以水复溶,加入sevage试剂(氯仿∶正丁醇=5∶1,v/v),水提物溶液与sevage试剂的体积比为4∶1,混合振荡20min,然后离心,保留上层清液,重复上述步骤4次,合并上层清液,浓缩,得到肉桂粗多糖浓缩液;将肉桂粗多糖浓缩液借助deae纤维素de-52离子交换树脂进行初步分离,依次用蒸馏水、0.2、0.4、0.8、1.2、2.0mol/l的氯化钠进行梯度洗脱,流速为0.8ml/min,收集各流份,根据糖显色反应和紫外检测的结果合并相同流分,浓缩得2个次级组分:cp1和cp2。

将cp1浓缩液借助丙烯葡聚糖凝胶s-300层析柱(1.2*70cm)进一步分离,用蒸馏水洗脱,流速为0.4ml/min,4.5ml/管收集,收集各流份,苯酚硫酸法检测,根据糖显色反应和紫外检测的结果合并相同流分,浓缩,冷冻干燥,得到1个次级组分:cnp。

经体外试验证实,cnp对dpph自由基和abts自由基具有明显的清除作用,即有明显的抗氧化活性。

cnp对dpph自由基清除作用的ic50值为125μg/ml,对dpph自由基的清除率的最高值达到84%;cnp对abts自由基清除作用的ic50值为150μg/ml,对dpph自由基的清除率的最高值达到61%。

本发明所提供的cnp,可与药学上可接受的载体混合,用于制备有助于抗氧化的食品添加剂,用于制备有助于抗氧化的保健品、药物。

本发明cnp可以作为活性部位与其它天然提取物/有效部位或相关化学合成药物与药学上可接受的赋型剂或辅料一起用于制备药物组合物,该药物组合物可采用制剂学的常规方法制备成各种剂型,如胶囊、片剂、丸剂、口服液、颗粒剂、酊剂、缓释剂等。

本发明的制备方法为条件温和、高效、环保的柱层析方式,该方法简单易行,具有很强的推广应用价值。

附图说明

图1为本发明实例1中离子交换层析和凝胶柱层析曲线。其中,a:肉桂粗多糖的离子交换层析曲线;b:cp1的凝胶柱层析曲线。

图2为本发明实例2中cnp的gpc色谱图。

图3为本发明实例2中pmp衍生化产物的液相色谱图。其中,a:单糖对照品的pmp衍生化产物,b:cnp的pmp衍生化产物,1.甘露糖,2.葡萄糖,3.半乳糖,4.木糖,5.岩藻糖。

图4为本发明实例3和实例4中cnp的体外抗氧化活性图。其中,ce:肉桂水提物,cnp:肉桂均一多糖,vc:维生素c。

具体实施方式

实例1、本发明肉桂均一多糖(cnp)的分离制备

取肉桂的干燥皮或枝叶或任意组合10kg,粉碎,加水煎煮两次,第一次3小时,第二次2小时,滤过,滤液合并,滤液浓缩至稠膏状,冷冻干燥,得到肉桂水提物;将3.2g肉桂水提物以160ml水复溶,加入sevage试剂(氯仿∶正丁醇=5∶1,v/v),水提物溶液与sevage试剂的体积比为4∶1,混合振荡20min,然后离心,保留上层清液,重复上述步骤4次,合并上层清液,浓缩,得到72mg/ml的肉桂粗多糖浓缩液;取1.5ml肉桂粗多糖浓缩液,借助deae纤维素de-52离子交换树脂进行初步分离,依次用蒸馏水、0.2、0.4、0.8、1.2、2.0mol/l的氯化钠进行梯度洗脱,流速为0.8ml/min,9ml/管收集,收集各流份,根据糖显色反应和紫外检测的结果合并相同流分,浓缩,得2个次级组分:cp1和cp2。

取500ulcp1浓缩液(48mg/ml),用丙烯葡聚糖凝胶s-300层析柱(1.2*70cm)进一步分离,用蒸馏水洗脱,流速为0.4ml/min,4.5ml/管收集,收集各流份,苯酚硫酸法检测,根据糖显色反应和紫外检测的结果合并相同流分,浓缩,冷冻干燥,得到1个均一组分cnp(14.5mg)。

实例2、本发明肉桂均一多糖(cnp)的结构表征。

(1)分子质量测定

采用凝胶排渗透色谱法(gpc)对cnp的重均分子量进行测定。色谱条件:流动相为nano3溶液,流速为1ml/min,柱温30℃,进样量50μl,运行时间30min,示差折光检测器,以标准葡聚糖的保留时间和分子质量各取自然对数绘制标准曲线,计算纯化多糖的分子量。

cnp重均分子量(mw)为3630g/mol,数均分子量(mn)为2290g/mol,z均分子量(mz)为5475g/mol,聚合物分散指数(pdi)为1.585。

(2)总糖含量测定

苯酚-硫酸法测定cnp的总糖含量为98.38%。

(3)糖组成分析

取甘露糖、葡萄糖、半乳糖、木糖、岩藻糖用蒸馏水配置成1mg/ml的混合对照品,取混合对照品400μl,加0.5mol/lpmp甲醇溶液450μl,0.3mol/l氢氧化钠450μl,涡旋混合,70℃水浴30min,放冷至室温,加入0.3mol/l盐酸450μl,涡旋混合,加0.1mol/l醋酸铵溶液稀释至2ml,加1ml氯仿,充分震荡,静置分层,除去下层氯仿,用氯仿同法处理3次,用10000转/min的离心,取上清,进行色谱检测。色谱柱条件为柱温箱为35℃,流速为1ml/min,紫外检测波长为245nm,进样量为5μl,流动相a为0.02mol/lkh2po4缓冲溶液,b为乙腈,洗脱条件为0~10min:15%b,10~50min:15%~20%b,50~60min:20%~25%b,60~70min:25%~90%b。

取cnp4mg置于10ml的离心管中,加入1ml盐酸溶液(6mol/l),在70℃水浴中加热30min,冷却,用氢氧化钠(200g/l)至中性,加水至刻度(4ml)的位置,混匀,过滤,继续取滤液。参照上述对照品的pmp衍生方法进行衍生化。

cnp是主要由葡萄糖组成的多糖。

(4)糖链结构分析

取cnp5mg溶于1.5mldmso中,超声处理30min,待样品溶解后,加入60mg研磨成粉末的氢氧化钠,超声30min,之后向样品中加入450μl的碘甲烷,超声30min,再加入450μl碘甲烷[14],超声30min,加水5ml终止甲基化,然后用等体积的氯仿萃取一次,之后用等量的水进行洗涤5次,最后用氮气吹干留下的氯仿溶剂,吹干之后向其中加入1ml的甲醇,继续氮吹,重复三次,加入1.25ml6mol/l盐酸溶液70℃下反应30min,冷却、旋干,旋干温度为45℃,然后再加入1ml甲醇旋干,即可完成甲基化。向甲基化产物中加入2ml新配置的25mg/ml的硼氢化钠室温反应2h,期间震荡数次,逐滴加入醋酸中和,ph试纸检验,加入0.1ml甲醇旋干,即可完成还原。向还原产物中加入12ml新配置的吡啶/乙酸酐(1∶1),100℃下反应1h,冷却至室温旋干,然后加入甲醇4ml(每次2ml,重复两次),旋干,最后加入2ml二氯甲烷取出液体,离心,进行gc-ms分析。

将谱库数据与cnp数据进行匹配,发现cnp的连接方式主要为1,4-linkedglcp,1-linkedglcp和1,6-linkedglcp。

实例3、本发明肉桂均一多糖(cnp)的dpph自由基清除活性。

采用dpph自由基清除能力试剂盒进行肉桂均一多糖抗氧化能力的测定,此法根据dpph自由基有单电子,在517nm处有强吸收,醇溶液呈紫色的特性。当自由基清除剂存在时,由于与其单电子配对而使其吸收逐渐消失,呈现的颜色越浅,即吸光度越低,肉桂多糖清除自由基的能力越强。向0.4ml不同浓度的样品溶液(0.016、0.03、0.06、0.125、0.25、0.5、1、2g/l)中分别加入0.6mldpph工作液,将混合物摇匀,室温放置30min,整个实验过程均在避光处进行,在517nm处使用酶标仪进行吸光度的测定。实验以抗坏血酸(vc)作为阳性对照,以单蒸水作为空白对照,测定值为每份样品三次平行试验后的平均值,计算dpph自由基(dpph·)清除率。

在0.016-2g/l的浓度范围内,维生素c、cnp和肉桂水提物均是随着浓度的增加,抗氧化活性逐渐增加,cnp虽然在低浓度下,对dpph自由基清除清除率不及维生素c,但是在高浓度时清除dpph·的作用与维生素c相当。cnp对dpph自由基清除作用的ic50值为125μg/ml,对dpph自由基的清除率的最高值达到84%

实例4、本发明肉桂均一多糖(cnp)的abts自由基清除活性。

采用总抗氧化(t-aoc)测试盒进行肉桂均一多糖总抗氧化能力的测定。abts在适当的氧化剂作用下氧化成绿色的abts+,在抗氧化物的存在下,abts+的产生会被抑制,在405nm测定abts的吸光度即可测定并计算出样品的总抗氧化能力。本次实验以维生素c作为阳性对照实验,以单蒸水作为空白对照,测试样品与对照样品的浓度分别为(0.016、0.03、0.06、0.125、0.25、0.5、1、2g/l)按照测试盒实验步骤要求进行试验,在405nm处使用酶标仪进行吸光度的测定。测定值为每份样品三次平行试验后的平均值,计算abts清除率。

cnp对abts自由基清除作用的ic50值为150μg/ml,对dpph自由基的清除率的最高值达到61%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1