预防运动障碍的方法

文档序号:1171408阅读:264来源:国知局
专利名称:预防运动障碍的方法
技术领域
本发明涉及一种预防与疾病相关或由药物诱发的运动障碍的方法。
背景技术
帕金森疾病(PD)是一种常见的神经变性疾病,年龄超过65岁的人中有几乎1%的人患此疾病(Tanner C.M.,Aston D.A.所著的,“Epidemiology ofParkinson’s disease and akinetic syndromes”,Curr.Opin.Neurol.,2000;13427-430)。最近,三项临床试验的结果显示,在早期使用多巴胺激动剂能够确切地延迟运动障碍和运动性并发症的发生,这在帕金森疾病的治疗上迈出了重要的一步(帕金森研究小组,Pramipexole vs levodopa as initialtreatment for Parkinson’s diseaseA randomized controlled trial,JAMA,2000;2841931-1938;Rascol O.,Brooks D.J.,Korczyn A.D.,De Deyn P.P.,Clarke C.E.,Lang A.E.,A five-year study of the incidence of dyskinesia inpatients with early Parkinson’s disease who were treated with ropinirole orlevodopa,N.Engl.J.Med.,2000;3421484-1491;Rinne U.K.,Bracco F.,ChouzaC.,Dupont E.,Gershanik O.,Marti Masso J.F.等人,Early treatment ofParkinson’s disease with cabergoline delays the onset of motor complications.Results of a double-blind levodopa controlled trial.Drugs,1988;55(增刊1)23-30)。而且,这些研究表明对患者不补充左旋多巴(L-Dopa)而是使用多巴胺激动剂单独治疗直至后续疗程(3到5年)末,能进一步减少其运动障碍的发生。然而,在Frucht S.,Rogers J.D.,Greene P.E.,Gordon M.F.,Fahn S.所著的“Falling asleep at the wheelmotor vehicle mishaps in persons takingpramipexole and ropinirole,Neurology,1999;521908-1910公开了对服用普拉克索(pramipexole)和罗吡尼洛(ropinirole)的帕金森疾病患者中突然睡眠的发作(睡眠袭击)的观察,使得使用多巴胺激动剂延迟运动障碍的早期希望至少暂时搁置。此外,事实上,随着疾病的进展,增加多巴胺激动剂剂量的可能性因其副作用将大打折扣,因此通常引入左旋多巴来使临床有益效果达到最大并可能最终导致了运动障碍的发生。事实上,对于大多数患者来说,左旋多巴疗法被相当普遍的运动障碍的发展所烦扰,在长期给药左旋多巴后,发生率在30%到80%之间(Blanchet P.J.,Allard P.,Gregoire L.,Tardif F.,Bedard P.J.著,“Risk factors for peak dose dyskinesia in 100levodopa-treated parkinsonian patients”,Can.J.Neurol.Sci,1996;23189-193;Fahn S.著,“The spectrum of levodopa-induced dyskinesias”,Ann.Neural.2000;47(增于1)S2-92000;Grandas F.,Galiano M.L.,Tabemero C.著,“Riskfactors for levodopa-induced dyskinesias in Parkinson’s disease”,J.Neurol.,1999;2461127-1133)。患上运动障碍将比帕金森神经功能障碍本身更丧失行为能力,且其依然是药物治疗帕金森病的主要缺陷。这多少令人困恼不得不同意Ferreira J.J.和Rascol O.最近在Prevention and therapeutic strategiesfor levodopa-induced dyskinesias in Parkinson’s disease(Curr.Opin.Neurol.),2000;13431-436中的综述尽管全世界不同的研究小组作出了巨大的努力,我们依然没有令人满意的临床上治疗帕金森病的方法。因此,迫切需要找到一种避免运动波动(motor fluctuations)和运动障碍发生的预防措施。
人们尚未完全理解构成左旋多巴诱导的运动障碍基础的机制。几条线索最近显示,作为慢性的、间歇性的左旋多巴疗法的结果而引起的N-甲基-D-天冬氨酸(NMDA)受体功能的改变可能起着重要的作用。的确,多巴胺消耗及后继的左旋多巴治疗诱导了纹状体的适应性变化,包括纹状体的谷氨酸能(glutamatergic)功能的变化。在用左旋多巴治疗帕金森病患者中,对死后组织进行分析显示与纹状体NMDA的结合增加了,而不是与kainate或者AMPA受体的结合增加(Ulsa.J.,Weihmuller F.B.,Brunner L.C.,JoyceJ.N.,Mashall J.F.,Cotman C.W.著,“Selective increase of NMDA-sensitiveglutamate binding in the striatum of Parkinson’s disease,Alzheimer’s disease,and mixed Parkinson’s disease/Alzheimer’s disease patientsanautoradiographic study”,J.Neurosci.,1994;146317-624)。而且,在运动障碍的MPTP灵长目动物中发现了纹状体NR2B亚单元的上调(Di Paolo T.,Calon F.,Morissette M.,Ghribi O.,Grondin R.,Goulet G.等著,“Striatalglutamate receptors in dyskinetic MPTP monkeys”,Soc.Neurosci,2000;NewOrleans),正如使用[3H]-Ro256981的定量放射自显影法(quantitativeautoradiography)所揭示的,一种有效的和选择性的含有BR2B亚单元的NMDA受体拮抗剂(Mutel V.,Buchy D.,Klingelschmidt A.,Messer J.,Bleuel Z.,Kemp J.A.,Richards J.G.著,“In vitro binding properties in rat brain of[3H]Ro25-6981,a potent and selective antagonist of NMDA receptors containingNR2B subunits”,J.Neurochem.,1998;702147-255)。在啮齿类动物的帕金森病模型中,(6-羟基多巴胺(6-OHDA)-受损的大鼠),用左旋多巴重复给药疗法诱导加强的运动应答,以与拟多巴胺类药物(dopamine-like agents)竞争,这被暗示代表左旋多巴诱导的运动障碍的相应啮齿类动物部分(Henry B.,Crossman A.R.,Brotchie J.M.著,“Characterization of enhanced behavioralresponse to L-DOPA following repeated administration in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease”,Exp.Neurol.,1998;151(2)(Jun)334-342)。在该大鼠模型中,受体结合的研究也证明了在长期的左旋多巴给药后NR2B亚单元表达有显著的增加(Ravenscroft P.和Brotchie J.著,“Alterations in striatal NR1 and NR2B NMDA receptor subunitexpression in the 6-OHDA-lesioned rat model of L-DOPA-induced dyskinesia”,Parkinsonism & Related Disorders,1999;5(增刊)S42)。而且,有报道在中间刺状输出神经元(medium spiny output neurons)中给予左旋多巴引起含NR2B的NMDA受体的酪氨酸磷酸化作用增强(Menegoz M.,Lau L.F.,HerveD.,Huganir R.L.,Girault J.A.著“Tyrosine phosphorylation of NMDA receptorin rat striatumeffects of 6-OH-dopamine lesions”,Neuroreport,1995;7125-128;Oh J.D.,Russell D.S.,Vaughan C.L.,Chase T.N.,Russell D.著,“Enhanced tyrosine phosphorylation of striatal NMDA receptor subunitseffectof dopaminergic denervation and L-DOPA administration”,Brain Res.,1998;813150-159;Dunah A.W.,Wang Y.,Yasuda R.P.,Kameyama K.,Huganir R.L.,Wolfe B.B.,Standaert D.G.著,“Alterations in subunit expression,composition,and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat6-hydroxydopamine model of Parkinson’s disease”,Mol.Pharmacol.,2000;57342-352)。由于蛋白质磷酸化作用用作NMDA受体的重要的调控机构(Suen P.C.,Wu K.,Xu J.L.,Lin S.Y.,Levine E.S.,Black I.B.著,“NMDAreceptor subunits in the postsynaptic density of rat brainexpression andphosphorylation by endogenous protein kinases”,Brain Res.Mol.Brain Res,1998;59215-228),其突触功效增加(Chase T.N.,“The significance ofcontinuous dopaminergic stimulation in the treatment of Parkinson’s disease”,Drugs,1998;55(增刊1)1-9;Chase T.N.,Oh J.D.著,“Striatal dopamine-andglutamate-mediated dysregulation in experimental parkinsonism”,TrendsNeurosci.,2000;10(增刊)S86-91)。其他NMDA受体亚单元如NR1或NR2A同样也由于去神经支配及随后的左旋多巴治疗而改变,但是NR2B mRNA和蛋白质水平和/或其酪氨酸磷酸化作用只在患有运动障碍的动物中增加,暗示出一种原因性的关联。因此,在持续性运动障碍的诱发及含有NR2B亚单元的NMDA受体的上调之间存在可能的关联性。其他因素,包括NMDA受体的分布和/或偶联功能的改变,可能有助于引起这些功能性的改变,这些改变可能最终导致了运动并发症的加剧(Dunah,同上,2000;Chase和Oh,同上.,2000)。
与上述观察相符,使用NMDA受体拮抗剂在实验型帕金森神经功能障碍及帕金森疾病患者的行为研究表明阻断NMDA受体可能减少左旋多巴诱导的运动障碍的发生。在帕金森疾病患者中,NMDA受体拮抗剂,诸如右甲吗喃(dextromethorphan)或金刚烷胺减少了左旋多巴诱导的运动障碍的发生(Verhagen M.L.,Blanchet P.J.,van den Munckhof P.,Del Dotto P.,Natte R.,Chase T.N.著,“A trial of dextromethorphan in parkinsonian patients with motorresponse complications”,Mov.Disord.,1998a;13414-417;Verhagen M.L.,Del Dotto P.,Natte R.,van den Munckhof P.,Chase T.N.著,“Dextromethorphanimproves levodopa-induced dyskinesias in Parkinson’s disease”,Neurology,1998b;51203-206;Verhagen Metman L.,Del Dotto P.,van den Munckhof P.,Fang J.,Mouradian M.M.,Chase T.N.著,“Amantadine as treatment fordyskinesias and motor fluctuations in Parkinson’s disease”,Neurology,1998c;501323-1326;Blanchet P.J.,Konitsiotis S.,Chase T.N.,著,“Amantadinereduces levodapa-induced dyskinesias in parkinsonian monkeys”,Mov.Disord.,1998;13798-802),且在一项研究中,在用金刚烷胺对运动应答并发症治疗开始后,其有益效果能持续至少1年(Metman L.V.,Del Dotto P.,Lepoole K.,Konitsiotis S.,Fang J.,Chase T.N.著,“Amantadine for levodopa-induced dyskinesiasa 1-year follow-up study”,Arch.Neurol.,1999;561383-1386)。在PD的灵长类动物模型中,选择性阻断含NR2B亚单元的NMDA受体减少了运动障碍的发生(Papa S.M.,Chase T.N.著,“Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonianmonkeys”,Ann.Neurol.,1996;39574-578)且产生了一种抗帕金森症的效果(Steece-Collier K.,Chambers L.K.,Jaw-Tsai S.S.,Menniti F.S.,GreenamyreJ.T.,著,“Antiparkinsonian actions of CP-101,606,an antagonist of NR2Bsubunit-containing N-methyl-d-aspartate receptors”,Exp.Neurol.,2000;163239-43;Nash J.E.,Fox S.H.,Henry B.,Hill M.P.,Peggs D.,McGuire S.,ManeufY.等著,“Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmosetmodel of Parkinson’s disease”,Exp.Neurol.,2000;165136-142)。而且,当被给予长期间歇性的左旋多巴治疗时,6-羟基多巴胺-损害的大鼠逐步开始呈现对拟多巴胺药的应答变化(对多巴胺能的竞争及其他变化的应答时间缩短),PD患者表现出对wearing-off和on-off现象的回忆(Papa S.M.,EngberT.M.,Kask A.M.,Chase T.N.著,“Motor fluctuations in levodopa treatedparkinsonian ratsrelation to lesion extent and treatment duration”,Brain Res.,1994,66269-74)。Chase和他在Bethesta的小组在该啮齿类动物模型中作出了努力以阐明NMDA受体在上述运动性并发症中起作用的分子学机制。作者们发现通过全身给予MK-801,一种非选择性的NMDA受体拮抗剂,不仅能完全逆转左旋多巴诱导的运动波动(motor fluctuations),更有意义的是还能被预防该运动波动(Boldry R.C.,Papa S.M.,Kask A.M.,Chase T.N.,著,“MK-801 reverses effects of chronic levodopa on D1 and D2 dopamineagonist-induced rotational behavior”,Brain Res.,1995;692(1-2)(Sep18)259-264;Marin C.,Papa S.,Engber T.M.,Bonastre M.,Tolosa E.,Chase T.N.著,“MK-801 prevents levodopa-induced motor response alterations inparkinsonian rats”,Brain Res.,1996;736202-205;Papa S.M.,Boldry R.C.,Engber T.M.,Kask A.M.,Chase T.N.著,“Reversal of levodopa-induced motorfluctuations in experimental parkinsonism by NMDA receptor blockade”,BrainRes.,1995;70113-18)。运动性波动及运动障碍似乎有相同的病理生理学机理,即对由多巴胺引起纹状体摄取谷氨酸能物质的改变或不足选通(deficient gating)(Calon F.,Hadj T.A.,Blanchet P.J.,Morissette M.,Grondin R.,Goulet M.,Doucet J.P.等所著,“Dopamine-receptor stimulationbiobehavioraland biochemical consequences”,Trends Neurosci.,2000;23S92-100;Chase和Oh,同上,2000)。因此,将这些发现结合在一起可以提供有力的临床/行为学上的证据,以证明NMDA受体的兴奋和长期服用左旋多巴产生的副作用之间的联系。类似于在啮齿类动物上进行的研究还扩展到了灵长目上。
由神经毒素1,2,3,6-四氢-1-甲基-4-苯基吡啶(MPTP)引起的帕金森神经功能障碍的猴子提供了研究运动障碍的特殊工具,因为当长期给予左旋多巴时,其呈现出不自觉的运动,在表型上与PD患者身上观察到的运动障碍一致。在使用该模型的目前的研究工作中,人们调查研究了选择性NMDA受体拮抗剂是否能防止运动障碍的发生。比较分成两组的8例de novo (药物纯)帕金森症猴。一组单独接受左旋多巴治疗,另一组给予左旋多巴和CI-1041(每一组中,n=4)。CI-1041,是一种与艾芬地尔(ifenprodil)相关的取代哌啶,对由NR1A/2B克隆的NMDA受体具有>1000-倍的选择性(Whittemore E.R.,Ilyin V.I.,Woodward R.M.,著,“Electrophysiologicalcharacterization of CI-1041 on cloned and native NMDA receptors”,Soc.Neurosci.,2000;New Orleans)。它作为一种新的NMDA拮抗剂在变构调节点起作用,它阻断具有纳摩尔亲和力(24nM)的含NR2B的NMDA受体(Whittemore,同上,2000)。在MPTP治疗的猴子上评估单独使用CI-1041或联用左旋多巴的抗帕金森疾病的效果。3-30mg/kg的CI-1041在单独给药的时候没有表现出任何的抗帕金森疾病作用,且也不产生与左旋多巴的抗帕金森疾病作用相一致的变化(Christoffersen C.L.,Wright J.L.,Kesten S.R.,Meltzer L.T.著,“Effects of CI-1041,a selective NMDA 1A/2B receptorantagonist,in MPTP treated monkeys”,Soc.Neurosci.,2000;New Orleans)。然而,CI-1041在3只猴子中2只身上产生了左旋多巴诱导的运动障碍的30%到50%的可重现性减轻。在6-羟基多巴胺损伤的偏侧震颤麻痹大鼠模型中,CI-1041使得由左旋多巴引起的逆向旋转(contraversive rotation)加强,且增加了旋转的峰速度,延长了持续时间(Serpa K.A.,Wright J.L.,Kesten S.R.,Meltzer L.T.著,“Antiparkinsonian(AP)effects of CI-1041(PD196860),asubtype selective NMDA antagonist,in the 6-OHDA rat model”,Sci.Neurosci.,2000;New Orleans)。在重复的联合给药9天后保持了该效果。同样地,由直接作用的多巴胺激动剂SKF38393和喹吡罗(quinpirole)引起的CI-1041强化的旋转表明抗帕金森疾病的效果并非归结于对左旋多巴代谢的作用(Serpa,同上,2000)。当单独给予CI-1041时,它加强了contraversive和ipisiversive旋转(Serpa,同上,2000)。申请人发现联用CI-1041的治疗预防了运动障碍,这一项发现结论性地指出了NMDA受体介导机制对左旋多巴诱导的运动障碍的产生所起的作用,同时给出了进一步的证据证明该不利(disabling)副作用的预防是可能的。
PCT国际公开号WO96/37226公开了联合使用位点选择性NMDA受体拮抗剂和左旋多巴治疗帕金森疾病的治疗方法。给药拮抗化合物允许使用较低剂量的左旋多巴。然而,这并非暗示可以给药NR1A/2B位点选择性NMDA受体拮抗化合物来预防伴随着左旋多巴正常剂量而发生的副作用。
PCT国际公开号WO/US98/19357(在此引入作为参考)公开了使用NR1A/2B位点选择性NMDA受体拮抗化合物治疗与疾病有关或药物诱发的运动障碍的治疗方法。然而,这并非暗示可以给药NR1A/2B位点选择性NMDA受体拮抗剂来预防伴随着左旋多巴正常剂量而发生的副作用,包括左旋多巴诱发的运动障碍。
需要应用NR1A/2B位点选择性NMDA受体拮抗剂化合物来预防运动障碍的方法。

发明内容
本发明涉及一种预防运动障碍的方法,所述方法包含对受治疗者,优选患有该疾病的人给药治疗有效量的NR1A/2B位点选择性NMDA拮抗剂化合物。
本发明还涉及NR1A/2B位点选择性NMDA拮抗剂化合物在制备用于预防运动障碍的药物组合物中的应用。
在本发明的一个优选的实施方案中,化合物具有下列结构 或其立体异构体或其可药用盐,其中R和R′独立地选自氢、羟基、烷基、卤素、硝基、氰基、甲醛、醛胺、低级烷氧羰基甲基、羟基低级烷基、氨基羰基甲基、肼基羰基甲基、乙酰氨基、芳基、芳烷基、氨基、卤代烷基、低级烷氨基、低级烷氨基或者低级烷氧基;R″和R独立地选自氢、羟基、烷基、卤素、氨基、卤代烷基、低级烷氨基或者低级烷氧基;X是氢或羟基;
Z是-CH2-或者-C(O)-;n的值为2到4;及Y是O,NH或S。
在本发明的另一个优选的实施方案中,所述化合物选自6-{2-[4-(4-氯-苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(4-氟-苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(4-甲基-苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-[2-(4-苄基哌啶-1-基)-乙烷亚磺酰基]-3H-苯并噁唑-2-酮;6-{2-[4-(4-甲氧苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(3,4-二氯苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(2-氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-[2-(4-苄基-4-羟基哌啶-1-基)-乙烷亚磺酰基]-3H-苯并噁唑-2-酮;6-{2-[4-(4-氟代苄基)-4-羟基哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-[2-(4-苯甲酰基哌啶-1-基)-乙烷亚磺酰基]-3H-苯并噁唑-2-酮;6-{2-[4-(2,3-二氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(2,4-二氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(4-三氟甲基苄基)-哌啶-1-基}-3H-苯并噁唑-2-酮;6-{2-[4-(2,6-二氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(2,4-二氯苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;N-(4-{1-[2-(2-氧代-2,3-二氢苯并噁唑-6-亚磺酰基)乙基]哌啶-4-基甲基}苯基)乙酰胺;6-[2-(4-苄基哌啶-1-基)乙烷亚磺酰基]-5-氯-3H-苯并噁唑-2-酮;5-氯-6-{2-[4-(4-氟苄基)哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;(+)-6-{2-[4-(4-氟苄基)-哌啶-1-基]乙烷亚磺酰基}-3H-苯并噁唑-2-酮;(-)-6-{2-[4-(4-氟苄基)-哌啶-1-基]乙烷亚磺酰基}-3H-苯并噁唑-2-酮及其可药用盐。
在本发明的另一个优选的实施方案中,所述化合物是6-[2-[4-(4-氟代-苄基)-哌啶-1-基]-乙烷亚磺酰基]-3H-苯并噁唑-2-酮或其可药用盐。
在本发明的另一个更为优选的实施方案中,所述化合物是 或者其可药用盐,其中Ar1和Ar2各自独立地为芳基或者杂芳基,每个基团可各自独立地被1-3个羟基、烷基、卤素、硝基、氰基、甲醛、醛肟、低级烷氧基羰甲基、羟基低级烷基、氨基羰甲基、肼基羰甲基、乙酰氨基、芳基、芳烷基、氨基、卤代烷基、低级烷基氨基、或者低级烷氧基取代;X是-(CHR3)m-,其中每个R3独立地为氢、羟基、或者具有1-6个碳原子的低级烷基;且m的值为0或者1;每个R2独立地为氢、羟基、或者具有1-6个碳原子的低级烷基;n的值为1,2,3,或者4;Y是C≡C,O,及SOp,其中p是0,1或2,NR4,其中R4是氢或者具有1-6个碳原子的低级烷基,或者一个单键;以及R5是氢或者羟基。
在本发明的另一个优选的实施方式中,化合物具有选自如下所列的结构、它们的立体异构体和它们的可药用盐 α-(4-氯苯基)-4-[(4-氟苯基)甲基]-1-哌啶乙醇; α-(4-羟基苯基)-β-甲基-4-(苯基甲基)-1-哌啶乙醇; 4-羟基-α-(4-羟基苯基)-β-甲基-4-苯基-1-哌啶乙醇;
3-[4-(4-苯基)-4-羟基哌啶-1-基]-苯并二氢吡喃-4,7-二醇;和 和α-(4-羟基苯基)-β-甲基-4-(苯基甲基)-1-哌啶丙醇。
附图描述

图1显示单独或同时使用CI-1041时的运动障碍的应答状况,其中在对猴子给予治疗后,计算出所有猴子在观察效果期间得到的运动障碍的最大得分的平均值。然后使用非参数的(nonparametric)Mann-Whitney非配对试验(nonpaired test)将这些平均得分进行比较。相对于左旋多巴(L-Dopa)组,得分±SEM,*P<0.018。
图2显示抗帕金森的应答状况,其中在对猴子给予治疗后,计算出所有猴子在观察效果期间得到的运动障碍的最低得分的平均值。然后使用非参数的Friedman和Mann-Whitney试验进行比较。与对照组相比较,帕金森症的得分均值±SEM;*P<0.05且**P<0.01。在对猴子给予治疗后,计算出所有猴子在最大效应时段1小时期间各自记录的总运动数(totalmobility counts)(B)的平均值。采用ANOVA方法比较这些平均值和运动运动数的重复测量值,接着进行PLSD(最低位差)测试。与对照组比较,运动数±SEM,*P<0.05且**P<0.01。
具体实施例方式
在本发明的方法中,通过给予治疗有效量的NR1A/2B位点选择性NMDA受体拮抗化合物来预防运动障碍。
术语“预防”、“防止”、“阻止”和“避免”包括,预防运动障碍发展和/或初现的有预防作用的(如预防性的)和减缓性的治疗,或者是提供预防性的或者减缓性的治疗的行为。
术语“受治疗者”指动物,尤其为哺乳动物。优选的受治疗者是人。
在本发明的进一步优选的实施方案中,化合物是 或其立体异构体或其可药用盐,其中R和R′独立地选自氢、羟基、烷基、卤素、硝基、氰基、甲醛(carboxaldehyde)、醛胺(aldehyde amine)、低级烷氧羰基甲基、羟基低级烷基、氨基羰基甲基、肼基羰基甲基、乙酰氨基、芳基、芳烷基、氨基、卤代烷基、低级烷氨基、低级烷氨基或者低级烷氧基;R″和R独立地选自氢、羟基、烷基、卤素、氨基、卤代烷基、低级烷氨基或者低级烷氧基;X是氢或羟基;Z是-CH2-或者-C(O)-;n的值为2到4;及Y是O,NH或S,其在WO00/00197中公开,公开内容在此引入作为参考。
在本发明的另一个优选的实施方式中,所述化合物选自6-{2-[4-(4-氯-苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(4-氟-苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(4-甲基-苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-[2-(4-苄基哌啶-1-基)-乙烷亚磺酰基]-3H-苯并噁唑-2-酮;6-{2-[4-(4-甲氧苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(3,4-二氯苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(2-氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-[2-(4-苄基-4-羟基哌啶-1-基)-乙烷亚磺酰基]-3H-苯并噁唑-2-酮;6-{2-[4-(4-氟代苄基)-4-羟基哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-[2-(4-苯甲酰基哌啶-1-基)-乙烷亚磺酰基]-3H-苯并噁唑-2-酮;6-{2-[4-(2,3-二氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(2,4-二氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(4-三氟甲基苄基)-哌啶-1-基}-3H-苯并噁唑-2-酮;6-{2-[4-(2,6-二氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(2,4-二氯苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;N-(4-{1-[2-(2-氧代-2,3-二氢苯并噁唑-6-亚磺酰基)乙基]哌啶-4-基甲基}苯基)乙酰胺;6-[2-(4-苄基哌啶-1-基)乙烷亚磺酰基]-5-氯-3H-苯并噁唑-2-酮;5-氯-6-{2-[4-(4-氟苄基)哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;(+)-6-{2-[4-(4-氟苄基)-哌啶-1-基]乙烷亚磺酰基}-3H-苯并噁唑-2-酮;(-)-6-{2-[4-(4-氟苄基)-哌啶-1-基]乙烷亚磺酰基}-3H-苯并噁唑-2-酮及其可药用盐。
在本发明的另一个优选的具体实施方式
中,所述化合物是6-[2-[-(4-氟代-苄基)-哌啶-1-基]-乙烷亚磺酰基]-3H-苯并噁唑-2-酮或其可药用盐。
在本发明的另一个更为优选的实施方案中,所述化合物是 或者其可药用盐,其中Ar1和Ar2各自独立地为芳基或者杂芳基,每个基团可各自独立地被1-3个羟基、烷基、卤素、硝基、氰基、甲醛、醛肟、低级烷氧基羰甲基、羟基低级烷基、氨基羰甲基、肼基羰甲基、乙酰氨基、芳基、芳烷基、氨基、卤代烷基、低级烷基氨基、或者低级烷氧基取代;X是-(CHR3)m-,其中每个R3独立地为氢、羟基、或者具有1-6个碳原子的低级烷基;且m的值为0或者1;每个R2独立地为氢、羟基、或者具有1-6个碳原子的低级烷基;n的值为1,2,3,或者4;Y是C≡C,O,及SOp,其中p是0,1或2,NR4,其中R4是氢或者具有1-6个碳原子的低级烷基,或者一个单键;以及R5是氢或者羟基,其在PCT国际公开号WO97/23216和WO97-23214中公开,公开内容在此引入作为参考。
在本发明的另一个优选的实施方式中,化合物选自如下所列的结构和名称、它们的立体异构体和它们的可药用盐
α-(4-氯苯基)-4-[(4-氟苯基)甲基]-1-哌啶乙醇(Eliprodil,可从Synthelabo,Inc.购得,且公开在美国专利No.5547963中) α-(4-羟基苯基)-β-甲基-4-(苯基甲基)-1-哌啶乙醇(苄哌酚醇(Ifenprodil),可从Synthelabo,Inc.购得,且公开在美国专利No.3509164中) 4-羟基-α-(4-羟基苯基)-β-甲基-4-苯基-1-哌啶乙醇(旋光形式CP-101,606,可从Pfizer,Inc.购得,且公开在美国专利No.5272160中) 3-[4-(4-苯基)-4-羟基哌啶-1-基]-苯并二氢吡喃-4,7-二羟基(旋光形式CP-283,097,可从Pfizer,Inc.购得) α-(4-羟基苯基)-β-甲基-4-(苯基甲基)-1-哌啶丙醇(旋光形式Ro 25-6981,可从Hoffmann-La Roche购得,且公开在欧洲专利申请EP648744中)本发明所述方法中用于给药的最优选的化合物是1-[2-(4-羟基苯氧基)乙基]-4-羟基-4-(4-甲基苄基)哌啶盐酸盐,其结构式如下 和1-[2-(4-羟基苯氧基)乙基]-4-(4-氟苄基)-4-羟基-哌啶盐酸盐,其结构式如下 和CP-101606,[S-(R*,R*)]-4-羟基-α-(4-羟基苯基)-β-甲基-4-苯基-1-哌啶乙醇,其结构式如下 且公开在PCT申请WO 96/37226中,所公开的内容在此作为参考。
本发明的方法还包括在给药左旋多巴、阿朴吗啡(apomorphine)、普拉克索(pramipexole)、罗吡洛尔(ropinirole)、卡麦角林(cabergoline)、溴隐停(bromocryptine)、培高利特(pergolide)、U-91356A、SKF38393、SKF82958、A-77636、A-86929、CY-208-243、任何其他选择性的或非选择性的多巴胺或其他组合的多巴胺D1、D2、D3、D4、或D5受体激动剂的化合物,或其组合之前或者同时给药上述化合物或组合物,用以预防运动障碍的发展和/或初发症状。
本发明的范围还包括上文所述化合物的无毒的可药用的盐类的用途。酸加成盐类可通过将本发明所用的特定化合物溶液与可药用的无毒性酸,如盐酸、富马酸、马来酸、琥珀酸、乙酸、柠檬酸、酒石酸、碳酸、磷酸、草酸等的溶液混合而制得。
本发明的药物组合物可通过任何能达到预期目的的任何方式给药。比如,可以非肠道的、皮下的、静脉内的、肌肉内的、腹膜内的、经皮或者颊内给药的途径给药。或者或同时,也可通过口服途径给药。给药剂量依赖于接受者的年龄、健康状况和体重,与之同时治疗的种类,如果有的话,治疗的频率、及期望效果的性质。
本发明方法中用于口服给药的合适的剂量水平范围在大约100mg/剂到约1000mg/剂。用于皮下给药时,合适的水平在大约1mg/剂到大约200mg/剂。
以下实施例用以阐明本发明的某些优选的具体实施方式
,并非意味着对本发明的限定。
实施例1材料和方法动物及预处理按照加拿大动物保护委员会(Canadian Council on Animal care)的标准,使用八只体重在3.0到3.5kg的雌性cynomolgus(Macaca fascicularis)猴子进行试验。它们被隔离的圈养在温控的房间内装有电动的监控系统(Datascience,St.Paul,明尼苏达州)的单独的观察笼内,给予12小时的光照/黑暗循环(光照从6AM到6PM)。它们每天只在下午进食(验证合格的灵长类杂食(chow)和水果)一次,而水可以随意提供。最初所有的动物都用溶于无菌水中的神经毒素MPTP(Sigma-Aldrich Canada Ltd,Oakville,Ontario),并以0.5mg/24小时的剂量使用Alzet微型泵连续注射。一般来说,需要2到4星期的时间来诱发持续性的帕金森症特征。此MPTP传输方法能被很好地接受,且能减少诱发帕金森综合征的时间和操作MPTP的危险。在有些动物上观察到病情恢复的现象,此种情况下每周给予2mg MPTP一次,持续1到3周。达到该目的所需的累积剂量和时间平均分别为15.6±2.4mg和4.2±1月。使用下文描述的运动障碍等级表(disability scale)对动物每周进行几次记分,其中正常状态为0到2,最严重的运动障碍是16。在双向(bilateral)帕金森综合征稳定(即分值为8或更大的不变的运动障碍得分超过一个月)后开始治疗。在稳定的帕金森综合征加剧后,此项研究持续进行数月(关于动物表征的详细描述见表1)。
表1 动物的特性分析及行为测评概述

*P<0.05,相对于左旋多巴组使用无参数的Mann-Whintey试验法在两组内比较每一参数的均值±SEM。
NS不显著试验药物治疗在此项研究中,动物按照每四个一组被分成两个治疗组。在每个治疗组中的动物具有从中度到严重的帕金森综合征,这样的分组使得有可能干扰运动障碍诱发的不同参数(基线帕金森症得分、在MPTP给药后发现病情恢复的时间、总MPTP剂量等)对于两组来说是相似的(见表1)。单独给药左旋多巴/苄丝肼长期每天口服治疗开始左旋多巴组(100/25mg;Prolopa)(Hoffmann-La Roche Limited,Mississauga,Ontario)。左旋多巴/CI-1041组被给药左旋多巴(相同剂量)与CI-1041(剂量为10mg/kg)。CI-1041被溶解且经口服给药。在试验期间,在930AM给予药物,观察动物的自发行为直至所给药物的效力终止。在两组中,连续28天治疗动物。
应答的评估使用MPTP猴子的异常运动障碍等级表(Hadj T.A.,Gregoire L.,Bangassoro E.,Bedard P.J.,“Sustained cabergoline treatment reverseslevodopa-induced dyskinesias in parkinsonian monkeys”,Clin.Neuropharmacol.,2000;23195-202),评估MPTP暴露后产生的帕金森综合征,和在单独或与CI-1041联合给予左旋多巴/苄丝肼后帕金森综合征的减轻情况,由两位有经验的双盲(blinded)观察员按以下方法评估(a)姿势正常=0,间断性的弯曲=1,持续性的弯曲=2,屈膝(crouched)=3;(b)运动性正常=0,轻微降低=1,中度降低=2,重度降低=3;(c)步态(gait)正常=0,缓慢=2,非常缓慢=2,非常慢,伴有滞硬=3;(d)震颤无=0,轻微动作震颤=1,中度动作震颤=2,静止震颤=3;(e)攀登动作有=0,无=1;(f)梳理动作(grooming)有=0,无=1;(g)发音(vocalization)有=0,无=1;(h)社会交往有=0,无=1。每30分钟给一次记分,反映前半小时的观察。最高的运动障碍得分是16。
以下列方式每30分钟还测量每一体节(body segment)的运动障碍的严重程度,这些体节是脸部、颈部、躯干、手臂、腿部无=0;轻度=1;中度=2;重度=3。所给体节的轻度、中度和重度运动障碍程度的区别是以对异常运动的幅度和频率(无论偶然的、间歇性的或持续的)的评估为基础的;基于对前半小时的观察的评估,分别给每一体节记分。所得的运动障碍的分值是最高为21分的所有体节得分的总和。运动障碍实质上主要是指舞蹈病,但同时也能看到张力障碍的发生,刻板症和舔不被认为是运动障碍。
用装在每个笼子里的电动监控系统监控所有猴子的运动活力(DataquestIV,Data Sciences Inc,St.Paul,MN)。使用无线电波(radio-waves)频率,将皮下植入到每只动物背部的探头将信号传输至连接到计算机上的固定在笼子上的接收器。累加每只动物每5分钟运动活力的计数。
统计分析在每一组中,在给予治疗后,计算出所有猴子在最大效应期间1小时内单独记录1的总运动数的平均值,使用方差分析法(ANOVA)进行比较得出重复的测量值,随后进行Fisher PLSD(最低位差)测试。舍弃水平为0.05时的0的假设值。计算出左旋多巴组或左旋多巴+CI组的所有猴子的最低帕金森症得分和在观察效应期间得到的最大运动障碍得分的平均值。使用无参数的Mann-Whitney测试比较这些平均值,当0的假设值被舍弃时,接着还要进行多次比较(multiple comparisons)测试(post-hoc分析法)。
结论运动障碍的诱发图1清楚地示出了两组运动障碍有显著性的不同(P<0.018)。事实上,在左旋多巴治疗组中,动物迅速产生了运动障碍,且从第二周起,所有的动物都具有异常的运动,在研究结束时运动渐渐地变成中度到重度的症状(图1)。运动障碍实质上主要是指舞蹈病,但是同时也能观察到下肢的张力障碍运动。相反,联用CI-1041的给药方法完全防止了三只动物的运动障碍的诱发,其中直到研究结束也没有观察到运动障碍症状。在左旋多巴+CI组中,只有一只猴子在治疗的第四周末期产生了下肢轻度的舞蹈病动作(见图1)。
抗帕金森症应答图2A示出了每一治疗组的帕金森得分的减少,表明了一种显著的抗帕金森症的作用。与对照组相比,单独使用左旋多巴或者其联用CI-1041显著性地(P<0.01)降低了帕金森综合征的得分(见图2A)。与单独给药左旋多巴相比,联用CI-1041和左旋多巴产生了相同的效果(见图2A)。然而,在左旋多巴+CI治疗组中,帕金森症得分的减少要稍不重要些。在两组中运动活性的显著改进也反映了抗帕金森症应答,这表明帕金森症运动失能的有效逆转。事实上,与对照组相比,单独使用左旋多巴或者联合使用CI-1041产生了显著性的(P<0.01)运动增加(见图2B)。组合治疗方案的效果没有不同(P<0.2),且整个研究过程中得到的总的累积运动计数也没有不同(数据没有显示),该运动计数在两个治疗组是中可比较的。在4周期间保持了该对运动的显著刺激效应(见图2B)。联用CI-1041给药没有显著影响左旋多巴应答的延迟和持续时间(见表2)。然而,在与CI-1041联用时,观察到了延迟应答的趋势,主要发生在治疗阶段的前2星期。
表2 左旋多巴应答的延迟和持续时间

对于各组中所有猴子计算出每只猴子单独使用左旋多巴或联用CI-1041的延迟和持续时间的平均得分。使用Student t-试验法在两组中进行比较。均值±SEM,NS相对于单独使用左旋多巴无显著性。
副作用CI-1041有很好的耐受性(well-tolerated),且在一个月的治疗期间没有观察到呕吐、运动失调或者幻觉的发生。
对于本领域技术人员来说,对本发明所作的其他变更和修饰是显而易见的。本发明的保护范围见权利要求书阐述的内容。
权利要求
1.一种预防运动障碍的方法,所述方法包括向受治疗者给予治疗有效量的NR1A/2B位点选择性NMDA受体拮抗化合物。
2.权利要求1的方法,其中的化合物具有下列结构 或其立体异构体或其可药用盐,其中R和R′独立地选自氢、羟基、烷基、卤素、硝基、氰基、甲醛、醛胺、低级烷氧羰基甲基、羟基低级烷基、氨基羰基甲基、肼基羰基甲基、乙酰氨基、芳基、芳烷基、氨基、卤代烷基、低级烷氨基、低级烷氨基或者低级烷氧基;R″和R独立地选自氢、羟基、烷基、卤素、氨基、卤代烷基、低级烷氨基或者低级烷氧基;X是氢或羟基;Z是-CH2-或者-C(O)-;n的值为2到4;及Y是O,NH或S。
3.权利要求1的方法,其中的化合物选自6-{2-[4-(4-氯-苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(4-氟-苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(4-甲基-苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-[2-(4-苄基哌啶-1-基)-乙烷亚磺酰基]-3H-苯并噁唑-2-酮;6-{2-[4-(4-甲氧苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(3,4-二氯苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(2-氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-[2-(4-苄基-4-羟基哌啶-1-基)-乙烷亚磺酰基]-3H-苯并噁唑-2-酮;6-{2-[4-(4-氟代苄基-4-羟基哌啶-1-基)-乙烷亚磺酰基]-3H-苯并噁唑-2-酮;6-[2-(4-苯甲酰基哌啶-1-基)-乙烷亚磺酰基]-3H-苯并噁唑-2-酮;6-{2-[4-(2,3-二氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(2,4-二氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(4-三氟甲基苄基)-哌啶-1-基}-3H-苯并噁唑-2-酮;6-{2-[4-(2,6-二氟苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;6-{2-[4-(2,4-二氯苄基)-哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;N-(4-{1-[2-(2-氧代-2,3-二氢苯并噁唑-6-亚磺酰基)乙基]哌啶-4-基甲基}苯基)乙酰胺;6-[2-(4-苄基哌啶-1-基)乙烷亚磺酰基]-5-氯-3H-苯并噁唑-2-酮;5-氯-6-{2-[4-(4-氟苄基)哌啶-1-基]-乙烷亚磺酰基}-3H-苯并噁唑-2-酮;(+)-6-{2-[4-(4-氟苄基)-哌啶-1-基]乙烷亚磺酰基}-3H-苯并噁唑-2-酮;(-)-6-{2-[4-(4-氟苄基)-哌啶-1-基]乙烷亚磺酰基}-3H-苯并噁唑-2-酮及其可药用盐。
4.权利要求1的方法,其中的化合物是是6-[2-[4-(4-氟代-苄基)-哌啶-1-基]-乙基磺酰基]-3H-苯并噁唑-2-酮或其可药用盐。
5.权利要求1的方法,其中的化合物具有下列结构 或其立体异构体或其可药用盐,其中Ar1和Ar2各自独立地为芳基或者杂芳基,每个基团可各自独立地被1-3个羟基、烷基、卤素、硝基、氰基、甲醛、醛肟、低级烷氧基羰甲基、羟基低级烷基、氨基羰甲基、肼基羰甲基、乙酰氨基、芳基、芳烷基、氨基、卤代烷基、低级烷基氨基、或者低级烷氧基取代;X是-(CHR3)m-,其中每个R3独立地为氢、羟基、或者具有1-6个碳原子的低级烷基;且m的值为0或者1;每个R2独立地为氢、羟基、或者具有1-6个碳原子的低级烷基;n的值为1,2,3,或者4;Y是C≡C,O,及SOp,其中p是0,1或2,NR4,其中R4是氢或者具有1-6个碳原子的低级烷基,或者一个单键;以及R5是氢或者羟基。
6.权利要求4的方法,其中的化合物选自 及它们的立体异构体和其可药用盐类。
7.权利要求4的方法,其中的化合物是1-[2-(4-羟基苯氧基)乙基]-4-羟基-4-(4-甲基苄基)哌啶盐酸盐。
8.权利要求4的方法,其中的化合物是1-[2-(4-羟基苯氧基)乙基]-4-(4-氟苄基)-4-羟基-哌啶盐酸盐。
9.权利要求5的方法,其中的化合物是[S-(R*,R*)]-4-羟基-α-(4-羟基苯基)-β-甲基-4-苯基-1-哌啶乙醇。
10.一种预防在治疗帕金森疾病中运动障碍的方法,所述方法包括给予人类受治疗者治疗有效量的NR1A/2B位点选择性NMDA受体拮抗化合物。
11.权利要求10的方法,其中的NR1A/2B位点选择性受体拮抗剂在选自左旋多巴、阿朴吗啡、普拉克索、罗吡洛尔、卡麦角林、溴隐停、培高利特、U-91356A、SKF38393、SKF82958、A-77636、A-86929、CY-208243、任何其他选择性的或非选择性的多巴胺或其他组合多巴胺D1、D2、D3、D4、或D5受体激动剂的化合物,或其组合之前或者同时给药。
全文摘要
通过向患者给予治疗有效量的NR1A/2B位点选择性受体拮抗化合物来预防人类运动障碍。
文档编号A61K31/445GK1382442SQ0211619
公开日2002年12月4日 申请日期2002年4月23日 优先权日2001年4月23日
发明者伦纳德·T·梅尔策, 保尔·J·贝达德 申请人:沃纳-兰伯特公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1