多点激光探针的制作方法

文档序号:1203461阅读:241来源:国知局
专利名称:多点激光探针的制作方法
技术领域
本申请涉及用在眼科手术中的激光探针,尤其涉及用于光凝固术中的多点激光探针。
背景技术
激光凝固术治疗处理眼部状况,例如视网膜脱落和撕裂及由于诸如糖尿病等疾病导致的增殖性视网膜病变。糖尿病患者异常高的血糖刺激视网膜血管释放增长因子,这种 增长因子又促进血管和毛细血管在视网膜表面上不期望的增殖。这些增殖的血管非常脆弱,很容易流血到玻璃体中。人体通过产生疤痕组织来响应受损的血管,这又可能造成视网膜脱落,从而最终导致失明。在激光凝固术中,激光探针用于在跨视网膜的各个激光焦斑(burn spot)烧灼血管。因为激光也将损害视网膜中存在的视杆细胞(rod)和视锥细胞(cone),从而使视觉、视力及血管受影响。由于视觉在视网膜的中央黄斑最敏锐,因此外科医生把结果产生的激光焦斑布置在视网膜的外围区域。以这种方式,牺牲了一些周边视觉,来保存中央视觉。在手术过程中,外科医生利用非烧灼的瞄准光束驱动探针,使得要光凝固的视网膜区域被照亮。由于低功率红色激光二极管的可获性,瞄准光束通常是低功率的红色激光。一旦外科医生定位激光探针以照亮期望的视网膜点,外科医生就通过脚踏开关或者其它装置激活激光,然后光凝固被照亮的区域。在烧完一个视网膜点之后,外科医生重新定位探针,以利用瞄准光照亮一个新的点,激活激光,重新定位探针,依此进行,直到跨视网膜分布了被烧激光点的合适阵列。对于任何一个视网膜手术,所需激光凝固的个数都很大-例如,通常要烧1000至1500个点。因而,很容易认识到,如果激光探针是多点探针,使得可以一次烧多个点,那么光凝固手术将会更快(假定激光源功率是足够的)。相应地,已经开发出了多点激光探针而且可以分成两类。第一类,在这里称为“多点/多光纤”激光探针,通过对应的光纤阵列产生其多个激光束。第二类只使用单根光纤,因此在这里称为“多点/单光纤”激光探针。不管激光探针是单光纤还是多光纤探针,它都应当与用于把探针连接到激光源的适配器(adapter)兼容。在这点上,让激光源具有例如微型版本A (SMA)互连的标准化互连是常规的。例如,激光源可以具有母SMA连接器,其接纳耦接到激光源驱动的任何仪器的公SMA连接器。对于传统的单点/单光纤激光探针,其公SMA连接器将结合单根光纤。激光源向该公SMA连接器提供称为激光束腰的聚焦光束。这对于单光纤探针是相当有利的,因为其光纤的端面被束腰照亮,使得可以有效地耦合到激光源。但是,如果多点/多光纤激光探针使用对应多根光纤来驱动其多个点,它就不能简单地以这种方便的单光纤方式让其多根光纤接收来自光源的聚焦光束,因为激光束腰太窄,不能耦合到多根光纤中。相反,激光源将必须改变或者调整其传统的互连,使得来自探针的多根光纤不是简单地被提供以激光束腰。但是,这种改变是昂贵而且麻烦的。因而,已经开发出了多点/多光纤探针,使得激光源驱动连接到单根光纤光缆的单个光纤互连,该光纤光缆又驱动在激光探针手柄中的单光纤/多光纤光耦合。手柄中结果产生的光学器件增加了成本,因为期望激光探针是一次性的,以限制患者之间的传染。例如,该光学器件包括衍射分束器,用以把来自单根光纤的光束分成多个光束,用于分布到多根光纤。为了校准从单根光纤到分束器上的激光束,然后把结果产生的多个光束会聚到多根光纤上,需要平凸透镜。但是,由于激光源互连相对小的内部直径,很难把这种透镜移到这种互连,使得探针的剩余部分可以不太昂贵。多点/多光纤激光探针中还出现了另一个问题,S卩,从多根光纤的远端发射的远心激光束应当被引导到不同的角方向中,从而在视网膜上正确地分布结果产生的激光束。为了提供这种分布,已经开发出了光纤远端弯曲到期望角方向中的多点/多光纤激光探针。但是这种弯曲是麻烦的而且还增加了成本。为了避免与使用多根光纤关联的问题,来自单光纤激光探针的光束可以被引导到衍射分束器上,该衍射分束器把光束分成多个衍射光束,用于发射到视网膜。但是,衍射分 束器必须聚焦结果产生的衍射光束,这需要光栅方案以跨元件空间变化。这种复杂性不仅增加了成本,而且结果产生的空间变化的衍射分束器还将降低整体的性能。这种设计还使得难以改变光纤远端和衍射元件之间的距离。相应地,本领域中需要改进的多点激光探针。

发明内容
根据本公开的第一方面,提供了包括第一适配器、位于该第一适配器中的第一GRIN透镜及光纤阵列的多点/多光纤激光探针,所述第一适配器可操作成与激光源上相对的第二适配器连接;所述第一 GRIN透镜配置成在该第一 GRIN透镜的近端接收来自所述激光源的激光束,并且朝该GRIN透镜的远端转播(relay)所接收到的激光束;所述光纤阵列具有配置成接收所转播的激光的近端。根据本公开的第二方面,提供了包括套管、位于该套管中的光纤、位于该套管中的衍射分束器及位于该套管中且布置在所述光纤的远端与所述衍射分束器之间的GRIN透镜的多点/单光纤激光探针,其中所述衍射分束器配置成把来自GRIN透镜的聚焦激光束分成多个衍射激光束。根据本公开的第三方面,提供了一种将来自激光源的光束分成用于光凝固术治疗的多个激光束的方法,包括将从所述激光源传播通过GRIN透镜的激光束聚焦到衍射分束器上,其中所述GRIN透镜与衍射分束器顺序地布置在激光探针套管中;及调整所述GRIN透镜与衍射分束器之间的间隙,以便调整用于来自所述衍射分束器的多个结果衍射光束的聚焦光斑的尺寸。根据本公开的第四方面,提供了包括套管、位于该套管中的光纤阵列及位于套管中并且与所述光纤阵列的远端相邻的GRIN透镜的多点/单光纤激光探针,所述GRIN透镜配置成把来自所述光纤阵列的多个激光束聚焦到视网膜上的聚焦激光光斑。根据本公开的第五方面,提供了包括第一适配器、位于所述第一适配器中的第一GRIN透镜、位于所述第一适配器中且与所述第一 GRIN透镜的远端相邻的衍射分束器及位于所述第一适配器中且与所述衍射分束器的远端相邻的第二 GRIN透镜的多点/多光纤激光探针,其中所述第一适配器可操作成与激光源上相对的第二适配器连接;所述第一 GRIN透镜配置成在该第一 GRIN透镜的近端接收来自所述激光源的激光束,并且朝该GRIN透镜的远端转播所接收到的激光束,作为准直波前;所述衍射分束器配置成接收所述准直波前,从而提供多个衍射光束;所述第二 GRIN透镜可操作成把衍射光束聚焦到光纤阵列的近端面上。


图I是耦接到适配器元件的激光源的纵向截面图,其中适配器元件包含用于耦合到多点/多光纤激光探针的近端的GRIN透镜。图2示出了图I的探针的近端中的多光纤阵列的径向截面图。图3是耦接到适配器元件的激光源的纵向截面图,其中适配器元件包括用于耦合到多点/多光纤激光探针的近端的衍射分束器;图4是图3的探针的近端中的多光纤阵列的径向截面图。 图5例示了用于有角度地分离从图4的多光纤阵列发射出的多个投射光束的GRIN透镜。图6是结合了衍射分束器的多点/单光纤激光探针套管的远端的纵向截面图。图7是修改后的图6的多点/单光纤激光探针套管的远端的纵向截面图,其中在衍射分束器与单根光纤之间有一个空气隙,使结果产生的多个激光束聚焦到视网膜上。
具体实施例方式提供了与传统激光源互连兼容的改进的多点/多光纤激光探针。此外,还提供了改进的多点/单光纤激光探针,这种激光探针不需要空间变化的衍射分束器,而且还允许单根光纤相对于GRIN透镜方便的物理运动,使得能够调整光斑的尺寸。每种实施方式都具有其自己独特的优点。例如,改进的多点/单光纤激光探针允许外科医生调整激光焦斑的尺寸。相对而言,改进的多点/多光纤激光探针将在由瞄准光束提供的照明与结果产生的激光光斑之间具有固有的对准。因为,由于外科医生将确信地知道由瞄准光束产生的光斑准确地表示结果产生的激光焦斑将处于的地方,因此这种对准是相当有利的,所以首先讨论多点/多光纤激光探针。多点/多光纤激光探针现在转向附图,在图I中示出了多点/多光纤激光探针100。如在这里将进一步讨论的,激光探针100不需要任何的衍射光学器件。激光源105通过合适的互连驱动探针100。用于激光源105的普通标准化互连是微型版本A (SMA)适配器。因而,激光源105包括母SMA适配器110。然而,将认识到,激光探针100很容易改装成与任何传统的标准化光学互连配对,只要激光源的互连向激光探针的公连接器的近端给出诸如激光束腰115的聚焦光束点就可以。因而,以下讨论将假定激光探针100通过定制的SMA适配器120耦接到源105,而不失一般性。为了接收激光束腰115,SMA适配器120的孔包括梯度折射率(GRIN)透镜125。GRIN透镜125可以是很容易插到这种孔中的简单的单元件圆柱体GRIN棒式透镜。GRIN透镜125设计成把聚焦光束转播到第二聚焦点130,然后在其远端转播到准直光束波前。如SMA领域中已知的,SMA适配器120通过带螺纹的圆柱体135和扣环140固定到SMA适配器110。SMA适配器120既有用于插入到SMA适配器110中的公端,还有接纳传统光学互连(例如,公SMA 905光纤连接器145)的母端。连接器145通过带螺纹的圆柱体或环160和扣环165固定到适配器120。连接器145在其孔中包括光纤阵列150。阵列150的近端151与GRIN透镜125的远端隔开合适的空气隙,例如220 μ m的空气隙。连接器145连接到包装光纤150的柔性线缆,如激光探针领域已知的,该柔性线缆通向手柄和套管。光纤阵列150的实施方式在图2的截面图中示出。图I的近端151处的激光束边界被示出既用于来自源105的绿色激光束边界205也用于红色瞄准光束边界210。阵列150包括被六根外围光纤环绕包围的一根中央光纤。在一种实施方式中,每根光纤220都具有
O.22的数值孔径(NA),这是通过被90 μ m包层包住的75 μ m玻璃芯部实现的,所述包层又被101 μ m的护套(jacket)围住。为了最小化进入阵列150的未耦合激光能量的量,GRIN透镜125配置成使得激光束边界205刚好包围住这六根外围光纤。阵列150关于激光束的计时(clocking)不是问题,因为激光束与阵列150是轴对称的。阵列150延伸到激光探针的远端,如关于图5类似地讨论的。 可以马上认识到这种近端互连的有利特性,因为不需要复杂的多透镜转播系统。相反,GRIN透镜125很容易插到适配器120的孔中,使得诸如公SMA适配器145的标准化适配器能够连到接纳光纤阵列150的一次性激光探针。由于没有GRIN透镜125及其适配器120,所以将需要改变激光源105上的标准化适配器110,这显然是不期望的,因为用于源105的其它附连也将不得不一起改变。作为替代,源的适配器可以维持标准化,但是将需要多透镜转播系统。然而,SMA适配器120与GRIN透镜125消除了这种复杂性。尽管SMA适配器120因此而非常有利,但是可以认识到,大约50%的激光能量被递送到阵列150中的光纤之间的空隙,如图2中看到的。因而,这种激光能量在光凝固术中不可用,由此增加了必需的激光源功率和/或产生激光焦斑必需的时间量。现在转向图3,例示了不照亮光纤阵列空隙的衍射实施方式。如关于图I所讨论的,定制的SMA适配器120允许用户方便地把一次性探针连到适配器120,以便把激光能量驱动到激光阵列上。然而,适配器120在其孔中包括布置在第一 GRIN透镜301和第二 GRIN透镜310之间的衍射分束器305。GRIN透镜301配置成将从激光束腰115发散的激光束校准成提供给衍射分束器305的准直波前。GRIN透镜310配置成把来自分束器305的多个结果衍射激光束聚焦到公SMA适配器145孔中所包含的光纤阵列320的近端面151。光纤阵列320包括根据衍射分束器305的衍射属性布置的多根光纤。例如,如果衍射分束器产生五个衍射光束的对称五角分布,那么光纤阵列320就以对应的五角分布布置。图4示出了光纤束320在其近端面151的布置。在一种实施方式中,每根光纤400都具有在90 μ m包层中被包覆的75 μ m玻璃芯部,90 μ m的包层又被101 μ m的护套围绕,从而实现了 O. 22的NA。从分束器305结果产生的衍射绿色激光束的投射是由边界405指示的。因为衍射是依赖于波长的,因此瞄准光束的投射将具有与光纤阵列320不同的对准。因而,分束器305和光纤阵列320对准,使得边界405与每根光纤400轴向对准,而红色瞄准光束的边界410关于每根光纤的中心或轴径向移位。在一种实施方式中,对每个绿色衍射光束由分束器305提供的离轴移位是I. 45度。GRIN透镜310把结果产生的准直和衍射光束聚焦到阵列320中每根光纤400的入射面。通过阵列320关于衍射光束的适当计时,实现了各个衍射光束与瞄准光束到每根光纤400中的有效耦合。在这点上,代替SMA适配器120,也可以采用其它类型的适配器(例如,电信行业中常用的套圈(ferrule)连接器(FC)或者标准连接器(SC))来帮助进行最优的计时。如关于图I所讨论的,光学部件到SMA适配器120中的组装有利地是方便的,这是因为GRIN透镜301和310及中间的衍射分束器305可以具有光学粘合剂,这种光学粘合剂施加并滑入适配器120的孔中并且彼此端到端地邻接。相比而言,折射透镜的对准将是比较麻烦而困难的。如以上参考图I或者图3所讨论的,对于来自源的激光束分离并远心传播通过光纤阵列,仍然存在从激光探针有角度地投射聚焦激光光斑的问题。GRIN透镜解决方案在图5中关于图3的光纤阵列320公开,但是,将认识到,很容易对图I的光纤阵列150构造类似的实施方式。
如图5中看到的,激光探针套管500,例如不锈钢套管,在其远端接纳GRIN透镜505。光纤阵列320的远端在套管中移位,从而把发散的光束510投射到GRIN透镜505的近端面。然后,GRIN透镜505把光束聚焦到视网膜表面520上。结果聚焦光束在视网膜上的分布取决于光纤在阵列320的远端的分布。在这点上,鉴于在阵列320近端的分布(图3)应当是轴向对称的,可以在远端以任何合适的分布布置光纤。例如,如图5中看到的,阵列320在远端线性布置。因而,结果产生的激光光斑是提供给GRIN透镜505的图像(在这种实施方式中,是线性阵列)的放大版本。在一种实施方式中,GRIN透镜505在离套管500的远端4mm的距离处聚焦有角度地分布的光束。有利地,GRIN透镜505消除了以下任何需求把光纤弯曲到期望的角分布中(及与这种弯曲关联的问题)、倾斜光纤的远端面、或者把光学元件添加到远端面。光纤甚至可以在阵列320中彼此接触,而且GRIN透镜505将仍然是有效的。现在将讨论多点/单光纤激光探针实施方式。多点/单光纤激光探针由于单根光纤将载带单个激光束,因此提供衍射分束器来产生必需的多个激光束,以实现同时多个激光焦斑。为了避免使光功率进入衍射分束器中的需求,图6的激光探针600包括校准GRIN透镜605,其近端与探针600的套管615中的单根玻璃光纤610的远端邻接。居中的圆柱体620圆周包围光纤610,以保持光纤在套管的中央。GRIN透镜605把准直激光束波前提供给衍射分束器630。在一种实施方式中,分离器630配置成以11度的角度分离产生5个衍射并准直的光束,这些光束在离套管615的远端4_的距离处聚焦,如类似地关于图3所讨论的。探针600的组装有利地是方便的,因为光纤610及其居中的圆柱体620在套管中远端缩回。然后,有光学粘合剂涂到其外表面的GRIN透镜605被推到套管孔中,直到其邻接光纤610和圆柱体620的远端,然后插入分束器630,其中分束器630的侧壁上也有光学粘合剂。然后,光纤610和圆柱体620可以在套管孔中远端移位,以将分束器630的远端与套管615的远端对准,随后允许放粘合剂。而且,折射率匹配的粘合剂可以用在光纤610与GRIN透镜605的接合处及透镜605与分束器630之间,以便消除任何的菲涅耳反射损耗。图7不出了一种备选实施方式,其中光纤610的远端与GRIN透镜605之间的间隔不固定。以这种方式,通过致动到光纤610及其圆柱体620的机械耦合(未例示),外科医生可以调整光纤610与透镜605之间的间隙700的尺寸。如果没有如图6中所例示的间隙,那么衍射光束是准直的。然而,通过引入间隙700,衍射光束是会聚的,而不是准直的,这在视网膜上产生更小的聚焦激光光斑。因而,通过远端或者近端地移位机械耦合,外科医生可以响应于治疗目标而实时地调整视网膜上的激光束光斑的尺寸。尽管这种调整有优点,但是可以观察到,衍射分束器605将必需把红色瞄准光束衍射到与图6和7中所例示的用于绿色激光的分离度不同的角方向。关于单根光纤端面上的红色和绿色激光光斑边界,这种依赖波长的移位与图4中看到的移位是类似的。因为瞄准光束的点是要指示产生对应激光焦斑的地方,所以这种移位是相当不期望的。相反,关于图I和3讨论的多点/多光纤实施方式在瞄准光束光斑和激光束光斑之间将没有这种移位。以上所描述的实施方式例示但不限制本发明。还应当理解,根据本发明的原理,很 多种修改与变体都是可能的。因此,本发明的范围只由以下权利要求来定义。
权利要求
1.一种多点/多光纤激光探针,包括 第一适配器,该第一适配器能操作成与激光源上的相对的第二适配器连接; GRIN透镜,该GRIN透镜位于所述第一适配器中,该GRIN透镜配置成在该GRIN透镜的近端接收来自所述激光源的激光束,并且朝该GRIN透镜的远端转播所接收到的激光束;及 光纤阵列,该光纤阵列具有配置成接收所转播的激光束的近端。
2.如权利要求I所述的多点/多光纤激光探针,其中所述GRIN透镜还配置成在第一聚焦光斑处从所述激光源接收激光束并通过第二聚焦光斑把接收到的激光束转播到准直波前中;而且,所述光纤阵列放置成与所述GRIN透镜的远端相邻,使得所述光纤阵列中的每根光纤都接收所述准直波前的一部分。
3.如权利要求2所述的多点/多光纤激光探针,其中所述第一适配器能操作成与第三适配器连接,而且所述光纤阵列在该第三适配器中。
4.如权利要求3所述的多点/多光纤激光探针,其中所述第一、第二和第三适配器都是SMA适配器。
5.如权利要求3所述的多点/多光纤激光探针,还包括第一带螺纹圆柱体,用以将所述第一适配器连接到所述第二适配器。
6.如权利要求5所述的多点/多光纤激光探针,还包括第二带螺纹圆柱体,用以将所述第一适配器连接到所述第三适配器。
7.一种多点/多光纤激光探针,包括 第一适配器,该第一适配器能操作成与激光源上的相对的第二适配器连接; 第一 GRIN透镜,该第一 GRIN透镜位于所述第一适配器中,该第一 GRIN透镜配置成在该GRIN透镜的近端接收来自所述激光源的激光束,并且朝该GRIN透镜的远端转播所接收到的激光束,作为准直波前; 衍射分束器,该衍射分束器位于所述第一适配器中且与所述第一 GRIN透镜的远端相邻,其中该衍射分束器配置成接收所述准直波前,从而提供多个衍射光束; 第二 GRIN透镜,该第二 GRIN透镜位于所述第一适配器中且与所述衍射分束器的远端相邻;及 光纤阵列,其中所述第二 GRIN透镜能操作成将衍射光束聚焦到所述光纤阵列的近端面上。
8.如权利要求7所述的多点/多光纤激光探针,其中来自所述第二GRIN透镜的每个聚焦的衍射光束都基本上在所述光纤阵列中对应的一根光纤上居中。
9.如权利要求7所述的多点/多光纤激光探针,其中所述第一适配器能操作成与第三适配器连接,而且所述光纤阵列位于该第三适配器中。
10.如权利要求9所述的多点/多光纤激光探针,其中所述第一、第二和第三适配器都是SMA适配器。
11.一种多点/多光纤激光探针,包括 套管; 光纤阵列,位于所述套管中 '及 GRIN透镜,位于所述套管中并且与所述光纤阵列的远端相邻,该GRIN透镜配置成将来自所述光纤阵列的多个激光束聚焦到聚焦激光光斑中。
12.如权利要求11所述的多点/多光纤激光探针,其中所述套管是不锈钢套管。
13.如权利要求11所述的多点/多光纤激光探针,其中所述GRIN透镜的远端与所述套管的远端对准。
14.一种多点/单光纤激光探针,包括 套管; 光纤,位于所述套管中; 衍射分束器,位于所述套管中 '及 GRIN透镜,位于所述套管中并且布置在所述光纤的远端与所述衍射分束器之间,其中所述衍射分束器配置成将来自所述GRIN透镜的聚焦激光束分成多个衍射激光束。
15.如权利要求14所述的多点/单光纤激光探针,其中所述GRIN透镜与所述光纤在所述套管中刚性连接。
16.如权利要求14所述的多点/单光纤激光探针,其中所述光纤可滑动地安装在所述套管中,使得所述光纤的远端与所述GRIN透镜的近端之间的间隙能够通过关于所述GRIN透镜可滑动地移动所述光纤来调整。
17.如权利要求14所述的多点/单光纤激光探针,其中所述套管是不锈钢套管。
18.如权利要求14所述的多点/单光纤激光探针,其中所述衍射分束器配置成将聚焦激光束分成五个衍射激光束。
19.一种将来自激光源的光束分成用于光凝固术治疗的多个激光束的方法,包括 将来自所述激光源的激光束通过GRIN透镜聚焦到衍射分束器上,其中所述GRIN透镜和衍射分束器顺序地布置在激光探针套管中;并且 调整所述GRIN透镜与衍射分束器之间的间隙尺寸,以便调整用于来自所述衍射分束器的多个结果衍射光束的聚焦光斑的尺寸。
20.如权利要求19所述的方法,还包括把调整后的多个衍射激光束投射到视网膜上。
全文摘要
提供了包括第一适配器、位于该第一适配器中的GRIN透镜及多光纤阵列的多点/多光纤激光探针,所述GRIN透镜配置成在该GRIN透镜的近端接收来自激光源的激光束并朝该GRIN透镜的远端转播所接收到的激光束;而所述多光纤阵列具有配置成接收所转播的激光的近端。此外,还提供了包括套管、位于该套管中的光纤、位于该套管中的衍射分束器及位于该套管中并布置在所述光纤的远端与所述衍射分束器之间的GRIN透镜的多点/单光纤激光探针,其中衍射分束器配置成把来自所述GRIN透镜的聚焦的激光束分成多个衍射激光束。
文档编号A61N1/00GK102655906SQ201080056929
公开日2012年9月5日 申请日期2010年11月15日 优先权日2009年12月15日
发明者R·T·史密斯 申请人:爱尔康研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1