超声波诊断装置和产生超声波图像的方法

文档序号:911644阅读:203来源:国知局
专利名称:超声波诊断装置和产生超声波图像的方法
技术领域
本发明涉及超声波诊断装置和产生超声波图像的方法,且具体地涉及将换能器阵列的电子扫描和机械扫描相结合以产生三维超声波图像的超声波诊断装置。
背景技术
迄今为止已将使用超声波图像的超声波诊断装置投入医疗领域中的实际使用。一般而言,该类型的超声波诊断装置具有嵌入了换能器阵列的超声波探头和连接到超声波探头的装置本体。从超声波探头向对象发送超声波,由超声波探头接收来自对象的超声回波,以及在装置本体中对接收信号进行电处理,以产生超声波图像。
广泛地使用具有以一维排列的多个超声波换能器的换能器阵列。电子地扫描换能器阵列以获得二维断层成像图像。当相对于断层成像图像的垂直方向观看图像(即,位于断层成像图像前面或后面的图像)时,改变超声波探头的位置或角度以产生不同的断层成像图像。然而,需要根据被检部位的形状、大小等来产生大量的二维断层成像图像,以识别被检部位的状况,且在超声波探头移动时,可能让患者感觉不舒服。因此,JP 2009-240525A描述了一种超声波诊断装置,其中,对换能器阵列电子扫描,以获取二维图像数据,且还沿与换能器阵列的阵列方向实质上正交的方向机械地扫描换能器阵列,从而产生三维超声波图像。根据该超声波诊断装置,有可能在不移动超声波探头的情况下产生三维超声波图像。然而在这种超声波诊断装置的超声波探头中,在探头的外壳中容纳用换能器阵列进行机械扫描的扫描机构,且在执行诊断时,从换能器阵列和扫描机构产生热量,引起超声波探头的外壳的温度上升。具体地,已知一种超声波诊断装置,其中,在超声波探头中嵌入用于信号处理的电路板的超声波诊断装置,且从换能器阵列输出的接收信号经过数字处理,然后通过无线通信或有线通信发送到装置本体,从而减少了噪声的影响并获得了高质量的超声波图像。在该超声波诊断装置中,从电路板产生热量,且引起外壳的温度上升。如果外壳的温度增加,则难以确保超声波探头中每个电路的稳定操作。

发明内容
为了解决相关技术中的固有缺陷而完成了本发明,且本发明的目的是提供能够获得高质量三维超声波图像同时抑制超声波探头的内部温度上升的超声波诊断装置和产生超声波图像的方法。根据本发明的第一方面的一种超声波诊断装置,包括超声波探头,具有一维阵列型换能器阵列以及阵列移动单元,所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向移动所述换能器阵列,发送和接收电路,用所述换能器阵列进行电子扫描,并向对象发送和接收超声波束,以获取二维图像数据,
图像产生器,在由所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描时,使用由所述发送和接收电路获取的二维图像数据来产生三维超声波图像,关注区域设置器,在成像区域中设置关注区域,温度传感器,检测所述超声波探头的内部温度,以及控制器,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得暂停针对除了关注区域之外的至少一部分区域发送和接收超声波束或接收超声波束,所述关注区域是由所述关注区域设置器设置的。
根据本发明的第二方面的一种超声波诊断装置,包括超声波探头,具有一维阵列型换能器阵列以及阵列移动单元,所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向移动所述换能器阵列,发送和接收电路,用所述换能器阵列进行电子扫描,并向对象发送和接收超声波束,以获取二维图像数据,图像产生器,在由所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描时,使用由所述发送和接收电路获取的二维图像数据来产生三维超声波图像,关注区域设置器,在成像区域中设置关注区域,温度传感器,检测所述超声波探头的内部温度,以及控制器,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得间歇执行针对除了关注区域之外的至少一部分区域的超声波束发送和接收或超声波束接收,所述关注区域是由所述关注区域设置器设置的。根据本发明的第三方面的一种超声波诊断装置,包括超声波探头,具有一维阵列型换能器阵列以及阵列移动单元,所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向移动所述换能器阵列,发送和接收电路,用所述换能器阵列进行电子扫描,并向对象发送和接收超声波束,以获取二维图像数据,图像产生器,在由所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描时,使用由所述发送和接收电路获取的二维图像数据来产生三维超声波图像,关注区域设置器,在成像区域中设置关注区域,温度传感器,检测所述超声波探头的内部温度,以及控制器,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得以降低的空间解析度来执行针对除了关注区域之外的至少一部分区域的超声波束发送和接收或超声波束接收,所述关注区域是由所述关注区域设置器设置的。根据本发明的第四方面的一种产生超声波图像的方法,包括以下步骤由发送和接收电路用超声波探头的一维阵列型换能器阵列进行电子扫描,并向对象发送和接收超声波束以获取二维图像数据,并沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描,以获取多个二维图像数据;使用获取的多个二维图像数据来产生三维超声波图像;在成像区域中设置关注区域;检测所述超声波探头的内部温度;以及当检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得暂停针对除了关注区域之外的至少一部分区域发送和接收超声波束或接收超声波束。
根据本发明的第五方面的一种产生超声波图像的方法,包括以下步骤由发送和接收电路用超声波探头的一维阵列型换能器阵列进行电子扫描,并向对象发送和接收超声波束以获取二维图像数据,并沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描,以获取多个二维图像数据;使用获取的多个二维图像数据来产生三维超声波图像;在成像区域中设置关注区域;检测所述超声波探头的内部温度;以及当检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得间歇执行针对除了关注区域之外的至少一部分区域的超声波束发送和接收或超声波束接收。根据本发明的第六方面的一种产生超声波图像的方法,包括以下步骤由发送和接收电路用超声波探头的一维阵列型换能器阵列进行电子扫描,并向对象发送和接收超声波束以获取二维图像数据,并沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描,以获取多个二维图像数据;使用获取的多个二维图像数据来产生三维超声波图像;在成像区域中设置关注区域;检测所述超声波探头的内部温度;以及当检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得以降低的空间解析度来执行针对除了关注区域之外的至少一部分区域的超声波束发送和接收或超声波束接收。


图I是示出了根据本发明的实施例I的超声波诊断装置的配置的框图。图2是示出了实施例I的操作的流程图。图3是示出了在实施例I中普通状态下的换能器阵列的扫描方法的图。图4是示出了在实施例I中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图5是示出了在实施例2中超声波探头的内部温度等于或高于第二设置值时的换能器阵列的扫描方法的图。图6是示出了在实施例2中超声波探头的内部温度等于或高于第三设置值时的换能器阵列的扫描方法的图。图7是示出了在实施例2的修改中超声波探头的内部温度等于或高于第三设置值时的换能器阵列的扫描方法的图。图8是示出了在实施例3中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图9是示出了在实施例3的修改中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图10是示出了在实施例3的另一修改中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图11是示出了根据实施例4的超声波诊断装置的配置的框图。图12是示出了实施例4的操作的流程图。 图13是示出了在实施例4中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图14是示出了在实施例5中超声波探头的内部温度等于或高于第二设置值时的换能器阵列的扫描方法的图。图15是示出了在实施例5中超声波探头的内部温度等于或高于第三设置值时的换能器阵列的扫描方法的图。图16是示出了在实施例5的修改中超声波探头的内部温度等于或高于第三设置值时的换能器阵列的扫描方法的图。图17是示出了在实施例6中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图18是示出了在实施例6的修改中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图19是示出了在实施例6的另一修改中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图20是示出了在实施例7中普通状态下的换能器阵列的扫描方法的图。图21是示出了在实施例7中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图22是示出了在实施例8中超声波探头的内部温度等于或高于第二设置值时的换能器阵列的扫描方法的图。图23是示出了在实施例8中超声波探头的内部温度等于或高于第三设置值时的换能器阵列的扫描方法的图。图24是示出了在实施例8的修改中超声波探头的内部温度等于或高于第三设置值时的换能器阵列的扫描方法的图。图25是示出了在实施例9中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图26是示出了在实施例9的修改中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。图27是示出了在实施例9的另一修改中超声波探头的内部温度等于或高于第一设置值时的换能器阵列的扫描方法的图。
具体实施例方式下文中,将基于附图来描述本发明的实施例。实施例I图I示出了根据本发明的实施例I的超声波诊断装置的配置。超声波诊断装置包括超声波探头I和连接到超声波探头I的诊断装置本体2。超声波探头I具有换能器阵列3,换能器阵列3具有一维排列的多个超声波换能器。阵列移动单元4连接到换能器阵列3,且发送电路5和接收电路6也连接到换能器阵列3。探头控制器7连接到阵列移动单元4、发 送电路5和接收电路6。将检测超声波探头I的内部温度的温度传感器8嵌入超声波探头I,且温度传感器8连接到探头控制器7。温度传感器8被置于例如预期产生热量(特别是在超声波诊断装置进行操作时产生热量)的接收电路6的附近。诊断装置本体2具有连接到超声波探头I的接收电路6的信号处理器11。DSC (数字扫描转换器)12、图像处理器13、显示控制器14和监视器15顺序连接到信号处理器11,且图像存储器16连接到图像处理器13。装置控制器17连接到信号处理器11、DSC 12和显示控制器14。操作单元18和存储单元19连接到装置控制器17。超声波探头I的探头控制器7和诊断装置本体2的装置控制器17连接在一起。超声波探头I的换能器阵列3具有一维排列的多个超声波换能器。这些超声波换能器由换能器构成,在所述换能器中,在压电体的两端上形成电极,压电体由例如以PZT(锆钛酸铅)为代表的压电陶瓷、以PVDF(聚偏二氟乙烯)为代表的聚合压电器件、或以PMN-PT (银续酸铅钦酸铅固溶,lead magnesium niobate-lead titanate solid solution)为代表的压电单晶等制成。如果对每个换能器的电极施加脉冲电压或连续波电压,则压电体膨胀并收缩,并从换能器产生脉冲或连续波超声波,所述脉冲或连续波超声波被合成以形成超声波束。当接收到传播中的超声波时,换能器膨胀并收缩以产生电信号,且输出电信号作为超声波的接收信号。将换能器阵列3沿与超声波换能器的阵列方向实质正交的方向可旋转地或可滑动地布置,并被配置为通过阵列移动单元4的致动在预定周期和角度范围中重复旋转,或以预定周期和摆动(stroke)进行线性往复运动。作为阵列移动单元4,可以使用各种发动机、致动器等等。发送电路5包括例如多个脉冲器。发送电路5基于响应于来自探头控制器6的控制信号而选择的发送延迟模式,调整每个致动信号的延迟量,使得从换能器阵列3的多个超声波换能器发送的超声波形成超声波束,并向多个超声波换能器中的每个超声波换能器供应调整过的延迟量。接收电路6执行接收定焦过程,在所述接收定焦过程中,对从换能器阵列3的每个超声波换能器发送的接收信号进行放大,并让其经过A/D转换,且将附加了延迟的接收信号相加,其中,根据基于响应于来自探头控制器6的控制信号而选择的接收延迟模式所设置的声速或声速分布,延迟被附加至所述接收信号。使用该接收定焦过程,将超声回波的焦点变窄,以产生接收数据(声线信号)。发送电路5和接收电路6构成了本发明的发送和接收电路。
温度传感器8检测到超声波探头I的内部温度Tp,并向探头控制器7输出结果。探头控制器7基于从诊断装置本体2的装置控制器17发送的各种控制信号,控制超声波探头I的相应单元。诊断装置本体2的信号处理器11针对超声波探头I的接收电路6产生的接收数据,根据距离来校正衰减,所述距离取决于超声波反射位置深度;并执行包络检测过程,以产生B模式图像信号,所述B模式图像信号是与对象中的组织相关的断层成像图像信息。DSC 12将信号处理器11产生的B模式图像信号转换(光栅转换)为符合常规电视信号扫描制式的图像信号。图像处理器13对从DSC 12输入的B模式图像信号执行各种必需的图像过程(比如渐变过程),以产生二维图像数据,并在图像存储器16中 存储二维图像数据。同时,图像处理器13根据在图像存储器16中存储的多个二维图像数据,产生三维图像数据,并向显示控制器14输出三维图像数据。信号处理器11、DSC 12、图像处理器13、和图像存储器16形成图像产生器20。显示控制器14执行控制,使得监视器15基于从图像处理器13输入的三维图像数据显示三维超声波诊断图像。监视器15包括显示设备(比如IXD),并在显示控制器14的控制下显示超声波诊断图像。装置控制器17基于操作者从操作单元18输入的命令,控制超声波诊断装置的相应单元。装置控制器17通过探头控制器7控制发送电路5和接收电路6,使得根据超声波探头I的温度传感器8检测到的内部温度Tp来执行普通扫描或温度上升抑制扫描,在普通扫描中,对包括关注区域在内的被观察空间均匀地执行超声波束的发送和接收,在温度上升抑制扫描中,暂停针对被观察空间区域中除关注区域之外的至少部分区域发送和接收或接收超声波束。操作单元18被配置为允许操作者执行输入操作。操作单元18构成本发明的关注区域设置器,并包括键盘、鼠标、轨迹球、触摸板等等。存储单元19存储操作程序等等,并且可以使用记录介质,比如硬盘、软盘、MO、MT、RAM、CD-ROM、DVD-ROM、SD卡、CF卡、或USB存储器、服务器等等。信号处理器11、DSC 12、图像处理器13、显示控制器14、和装置控制器17由CPU及用于使CPU执行各种过程的操作程序构成,且它们可以由数字电路构成。当产生三维图像时,由发送电路5和接收电路6电子地扫描换能器阵列3,且向对象发送和接收超声波束,以获取单一断层成像平面中的二维图像数据,且通过阵列移动单元4机械扫描换能器阵列3,以采集与大量断层成像平面相对应的二维图像数据。S卩,响应于从超声波探头I的发送电路5供应的致动信号从换能器阵列3的多个超声波换能器发送超声波,从已接收到来自对象的超声回波的相应超声波换能器向接收电路6输出接收信号,且由接收电路6产生接收数据。由已输入了接收数据的诊断装置本体2的信号处理器11来产生B模式图像信号,由DSC 12对B模式图像信号进行光栅转换,且在图像处理器13中对B模式图像信号执行各种图像过程。因此,产生并在图像存储器16中存储单一断层成像平面中的二维图像数据。这样,在产生单一断层成像平面中的二维图像数据时,由阵列移动单元4以预定角度范围或摆动机械地扫描换能器阵列3,使得顺序产生并在图像存储器16中存储与大量断层成像平面相对应的二维图像数据。在图像处理器13中,使用在图像存储器16中存储的图像数据来产生在换能器阵列3的机械扫描的角度范围或摆动或者电子扫描范围中确定的空间的三维图像数据。通过图像投影法(比如VR(体呈现)或MPR(多平面重构)),由显示控制器14基于三维图像数据在监视器15上显示三维图像。接下来,将参照图2的流程图来描述实施例I的操作。首先,在步骤SI中,由发送电路5和接收电路6电子地扫描换能器阵列3,以获取二维图像数据,且由阵列移动单元4机械地扫描换能器阵列3,以产生三维图像数据。由显示控制器14在监视器15上显示三维图像。在步骤S2中,操作者操作操作单元18,且如图 3所示,在监视器15上显示的被观察空间区域W上的三维图像上设置关注区域V。在图3中,X轴表示阵列移动单元4对换能器阵列3的移动方向(即,机械扫描方向),Y轴表不换能器阵列3的多个超声波换能器的一维阵列方向,且Z轴表不测量深度方向。假定关注区域V在X轴方向、Y轴方向和Z轴方向上具有尺寸Xv、Yv和Zv。如果设置了关注区域V,在步骤S3中,由温度传感器8来检测超声波探头I的内部温度Tp。在步骤S4中,将检测到的内部温度Tp与事先设置的第一设置值Tl比较。当确定超声波探头I的内部温度Tp低于第一设置值Tl时,过程进行到步骤S5,且装置控制器17通过探头控制器7来控制发送电路5和接收电路6,并执行普通扫描。S卩,如图3所示,由发送电路5和接收电路6电子地扫描换能器阵列3,且由阵列移动单元4机械地扫描换能器阵列3。因此,在被观察空间区域W上均匀形成电子扫描平面E,且产生并在图像存储器16中存储每个电子扫描平面E的二维图像数据。接下来,在步骤S6中,由图像处理器13使用在图像存储器16中存储的二维图像数据来产生被观察空间区域W的三维图像数据。随后,在步骤S7中,由显示控制器14在监视器15上显示三维图像。在步骤S8中,确认检查是否结束。当检查继续时,重复步骤S3至S8。当检查结束时,处理序列完成。以上述方式执行超声波诊断,且随着执行时间的流逝,超声波探头I的内部温度Tp逐渐增加。因此,在步骤S4中,当确定超声波探头I的内部温度Tp等于或高于第一设置值Tl时,过程进行至步骤S9,且装置控制器17通过探头控制器7来控制发送电路5和接收电路6,使得此时执行温度上升抑制扫描。S卩,如图4所示,当在被观察空间区域W上执行阵列移动单元4的换能器阵列3机械扫描时,无论关注区域V如何,仅在X轴方向上(换能器阵列3的机械扫描方向)包括关注区域V在内的长度范围Xv内形成电子扫描平面E,且暂停针对在X轴方向上除关注区域V之外的区域发送和接收超声波束。将发送电路5和接收电路6的暂停时间延长该量,且抑制超声波探头I中的温度上升。之后,在步骤S6中,在图像处理器13中使用图像存储器16中存储的每个电子扫描平面E的二维图像数据来产生三维图像数据,且在步骤S7中,由显示控制器14在监视器15上显示三维图像。如果执行温度上升抑制扫描,且超声波探头I的内部温度Tp减小至等于低于第一设置值Tl,则再次执行普通扫描,使得可以显示与被观察空间区域W相对应的三维图像。如上所述,当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第一设置值Tl时,控制发送电路5和接收电路6,使得暂停针对换能器阵列3的机械扫描方向上除关注区域V之外的区域发送和接收超声波束。因此,有可能获得至少关注区域V的高质量三维超声波图像,同时抑制超声波探头I的内部温度Tp的上升。实施例2尽管在上述实施例I中,设置了第一设置值Tl,且在超声波探头I的内部温度Tp等于或高于第一设置值Tl时,执行温度上升抑制扫描,可以设置多个温度设置值,且可以根据超声波探头I的内部温度Tp,逐步执行具有不同温度上升抑制效果的扫描。例如,事先设置高于第一设置值Tl的第二设置值T2和高于第二设置值T2的第三设置值T3,且在温度传感器8检测到的超声波探头I的内部温度Tp等 于或高于第一设置值Tl且低于第二设置值T2时,如图4所示,在换能器阵列3的机械扫描方向上,仅在包括关注区域V在内的长度范围Xv中形成电子扫描平面E。当超声波探头I的内部温度Tp等于或高于第二设置值T2且低于第三设置值T3时,如图5所示,可以仅在Y轴方向(换能器阵列3的一维阵列方向)上包括关注区域V在内的长度范围Yv中形成电子扫描平面E,且可以暂停针对在Y轴方向上除关注区域V之外的区域发送和接收超声波束。当这发生时,将暂停超声波束的发送和接收的范围增加与Y轴方向上除关注区域V之外的区域相对应的量,且进一步将发送电路5和接收电路6的暂停时段延长该量,从而抑制超声波探头I的温度的上升。当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第三设置值T3时,如图6所示,可以仅在Z轴方向(测量深度方向)上包括关注区域V和比关注区域V更浅的区域在内的长度范围Zv中形成电子扫描平面E,且可以暂停针对比关注区域V更深的区域接收超声波束。当这发生时,将暂停超声波束的接收的范围增加与比关注区域V更深的区域相对应的量,且进一步将发送电路5和接收电路6的暂停时段延长该量,从而进一步抑制超声波探头I的温度的上升。在实施例2中,无论超声波探头I的内部温度Tp和关注区域R如何,在被观察空间区域W上执行阵列移动单元4的换能器阵列3机械扫描。当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第三设置值T3时,如图7所示,可以仅在测量深度方向上包括关注区域V在内的长度范围Zv中形成电子扫描平面E,且可以暂停针对Z轴方向上除关注区域V之外的区域接收超声波束。相比于如图6所示的暂停针对比关注区域V浅的区域接收超声波束的情况,有可能进一步延长接收电路6的暂停时段。实施例3尽管在上述实施例I中,当超声波探头I的内部温度Tp等于或高于第一设置值Tl并低于第二设置值T2,如图4所示,暂停针对在X轴方向上(换能器阵列3的机械扫描方向)除了关注区域V之外的区域发送和接收超声波束,本发明不受限于此。例如,如图8所示,可以仅在Y轴方向(换能器阵列3的一维阵列方向)上包括关注区域V在内的长度范围Yv中形成电子扫描平面E,且可以暂停针对在Y轴方向上除了关注区域V之外的区域发送和接收超声波束。在该情况下,设置多个温度设置值,且在超声波探头I的内部温度Tp增加到等于或高于第二设置值T2时,可以暂停针对在X轴方向(换能器阵列3的机械扫描方向)上除了关注区域V之外的区域发送和接收超声波束,或可以暂停针对Z轴方向(测量深度方向)上除了关注区域V之外的区域接收超声波束。当超声波探头I的内部温度Tp等于或高于第一设置值Tl并低于第二设置值T2时,如图9所示,可以仅在Z轴方向(测量深度方向)上包括关注区域V和比关注区域V更浅的区域在内的长度范围Zv中形成电子扫描平面E,且可以暂停针对比关注区域V更深的区域接收超声波束。备选地,如图10所示,可以仅在Z轴方向(测量深度方向)上包括关注区域V在内的长度范围Zv中形成电子扫描平面E,且可以暂停针对Z轴方向上除了关注区域V之外的区域接收超声波束。即使在执行图9或10所示的扫描时,也可以设置多个温度 设置值,且在超声波探头I的内部温度Tp增加到等于或高于第二设置值T2时,可以进一步暂停针对在X轴方向(换能器阵列3的机械扫描方向)上除了关注区域V之外的区域发送和接收超声波束,或进一步暂停针对在Y轴方向(换能器阵列3的一维阵列方向)上除了关注区域V之外的区域发送和接收超声波束。在实施例3中,与实施例I 一样,延长发送电路5和接收电路6的暂停时段,或延长接收电路6的暂停时段,使得有可能获得至少关注区域V的高质量三维超声波图像,同时抑制超声波探头I的内部温度Tp的上升。实施例4尽管在上述实施例I至3中,当超声波探头I的内部温度Tp等于或高于第一设置值Tl时,暂停针对除了关注区域V之外的至少部分区域发送和接收或接收超声波束,在实施例4中,间歇执行针对除了关注区域V之外的至少部分区域的超声波束发送和接收或接收。图11示出了根据实施例4的超声波诊断装置的配置。该超声波诊断装置包括超声波探头I和连接到超声波探头I的诊断装置本体2A。诊断装置本体2A被配置为使得插值器21连接到图I所示的实施例I的诊断装置本体2中的图像处理器13,且装置控制器17连接到插值器21。插值器21基于之前和之后的帧的二维图像数据,插值并形成在之前和之后帧之间的中间帧的二维图像数据。信号处理器11、DSC 12、图像处理器13、图像存储器16和插值器21形成图像产生器 20A。装置控制器17通过探头控制器7来控制发送电路5和接收电路6,使得根据超声波探头I的温度传感器8检测到的内部温度Tp,来执行普通扫描或温度上升抑制扫描,在普通扫描中,在包括关注区域在内的被观察空间区域上均匀执行超声波束的发送和接收,在温度上升抑制扫描中,间歇执行对被观察空间区域中除了关注区域之外的至少部分区域的超声波束发送和接收或接收。在图12的流程图中示出了实施例4的操作。步骤S I至S8与图2所示的实施例I中的操作相同。S卩,当超声波探头I的内部温度Tp低于第一设置值Tl时,执行与实施例I中相同的普通扫描。在步骤S4中,当确定超声波探头I的内部温度Tp等于或高于第一设置值Tl时,过程进行至步骤S11,且装置控制器17通过探头控制器7控制发送电路5和接收电路6。此时,如图13所示,当无论关注区域V如何在被观察空间区域W上执行阵列移动单兀4的换能器阵列3机械扫描时,与普通扫描一样,在X轴方向(换能器阵列3的机械扫描方向)上包括关注区域V在内的长度范围Xv中均匀形成电子扫描平面E,且逐帧间歇执行针对在X轴方向上除了关注区域V之外的区域的超声波束发送和接收。在图13中,用实线来指示所形成的电子扫描平面E,且用虚线来指示未形成的电子扫描平面。为此,当以与普通扫描相同的间隔,在X轴方向上包括关注区域V在内的范围中形成电子扫描平面E时,相比于普通扫描,减少了在范围外的电子扫描平面E的数目,且扩展了在所形成的电子扫描平面之间的间隔。相比于普通扫 描,将发送电路5和接收电路6的暂停时段延长了与尚未形成的电子扫描平面相对应的量,从而抑制了超声波探头I的温度上升。如果以上述方式执行温度上升抑制扫描,且在图像存储器16中存储每个形成的电子扫描平面E的二维图像数据,在步骤S12中,由插值器21来执行对二维图像数据的插值过程。即,基于之前和之后帧的二维图像数据,插值并形成以下帧的二维图像数据在该帧中,在X轴方向上除了关注区域V之外的区域中尚未执行超声波束的发送和接收以及尚未形成电子扫描平面。因此,产生了与执行普通扫描时相同数目的帧的二维图像数据,且在步骤S6中,图像处理器13使用二维图像数据来产生三维图像数据。随后,在步骤S7中,由显示控制器14在监视器15上显示三维图像。如果执行温度上升抑制扫描,且超声波探头I的内部温度Tp降低至等于或低于第一设置值Tl,则再次执行普通扫描,且可以显示三维图像。如上所述,当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第一设置值Tl时,控制发送电路5和接收电路6,使得间歇执行针对在换能器阵列3的机械扫描方向上除了关注区域V之外的区域的超声波束发送和接收。因此,有可能获得至少关注区域V的高质量三维超声波图像,同时抑制超声波探头I的内部温度Tp的上升。实施例5尽管在上述实施例4中,设置了第一设置值Tl,且当超声波探头I的内部温度Tp等于或高于第一设置值Tl时,执行温度上升抑制扫描,可以设置多个温度设置值,且可以根据超声波探头I的内部温度Tp,逐步地执行具有不同温度上升抑制效果的扫描。例如,事先设置高于第一设置值Tl的第二设置值T2以及高于第二设置值T2的第三设置值T3,且当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第一设置值Tl且低于第二设置值T2时,如图13所示,与普通扫描一样,在X轴方向(换能器阵列3的机械扫描方向)上包括关注区域V在内的长度范围Xv中执行超声波束的发送和接收,且间歇执行针对除了关注区域V之外的区域的超声波束发送和接收。当超声波探头I的内部温度Tp等于或高于第二设置值T2且低于第三设置值T3时,如图14所示,与普通扫描一样,可以进一步在Y轴方向(换能器阵列3的一维阵列方向)上包括关注区域V在内的长度范围Yv中执行超声波束的发送和接收,且可以间歇执行针对在Y轴方向上除了关注区域V之外的区域的超声波束发送和接收。当这发生时,将不执行超声波束的发送和接收的范围增加一定量,使得对在Y轴方向上除了关注区域V之外的区域,间歇执行超声波束的发送和接收,且将发送电路5和接收电路6的暂停时段进一步延长该量,从而抑制超声波探头I的温度的上升。当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第三设置值T3时,如图15所示,可以与普通扫描一样,仅在Z轴方向(测量深度方向)上包括关注区域V和比关注区域V更浅的区域在内的长度范围Zv中进一步执行超声波束的发送和接收,且可以间歇执行针对比关注区域V更深的区域的超声波束接收。当这发生时,将间歇执行超声波束的接收的范围增加与比关注区域V更深的区域相对应的量,且将接收电路6的暂停时段进一步延长该量,从而进一步抑制超声波探头I的温度的上升。在实施例5中,无论超声波探头I的内部温度Tp和 关注区域V如何,在被观察空间区域W上执行阵列移动单元4的换能器阵列3机械扫描。当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第三设置值T3时,如图16所示,与普通扫描一样,可以仅在测量深度方向上包括关注区域V在内的长度范围Zv中执行超声波束的发送和接收,且可以间歇执行针对Z轴方向上除了关注区域V之外的区域的超声波束接收。相比于如图15所示间歇执行针对比关注区域V更深的区域的超声波束接收的情况,有可能进一步延长接收电路6的暂停时段。实施例6尽管在上述实施例4中,当超声波探头I的内部温度Tp等于或高于第一设置值Tl并低于第二设置值T2,如图13所示,间歇执行针对在X轴方向(换能器阵列3的机械扫描方向)上除了关注区域V之外的区域的超声波束发送和接收,本发明不受限于此。例如,如图17所示,与普通扫描一样,可以仅在Y轴方向(换能器阵列3的一维阵列方向)上包括关注区域V在内的长度范围Yv中执行超声波束的发送和接收,且可以间歇执行针对在Y轴方向上除了关注区域V之外的区域的超声波束发送和接收。在该情况下,设置多个温度设置值,且在超声波探头I的内部温度Tp增加到等于或高于第二设置值T2时,可以进一步间歇执行针对在X轴方向(换能器阵列3的机械扫描方向)上除了关注区域V之外的区域的超声波束发送和接收,或可以间歇执行针对在Z轴方向(测量深度方向)上除了关注区域V之外的区域的超声波束接收。当超声波探头I的内部温度Tp等于或高于第一设置值Tl并低于第二设置值T2时,如图18所示,与普通扫描一样,可以仅在Z轴方向(测量深度方向)上包括关注区域V和比关注区域V更浅的区域在内的长度范围Zv中执行超声波束的发送和接收,且可以间歇执行针对比关注区域V更深的区域的超声波束接收。备选地,如图19所示,与普通扫描一样,可以仅在Z轴方向(测量深度方向)上包括关注区域V在内的长度范围Zv中执行超声波束的发送和接收,且可以间歇执行针对在Z轴方向上除了关注区域V之外的区域的超声波束接收。即使在执行图18或19所示的扫描时,也可以设置多个温度设置值,且在超声波探头I的内部温度增加到等于或高于第二设置值T2时,可以进一步间歇执行针对在X轴方向(换能器阵列3的机械扫描方向)上除了关注区域V之外的区域的超声波束发送和接收,或针对在Y轴方向(换能器阵列3的一维阵列方向)上除了关注区域V之外的区域的超声波束发送和接收。在实施例6中,与实施例4 一样,延长发送电路5和接收电路6的暂停时段,或延长接收电路6的暂停时段,使得有可能获得至少关注区域V的高质量三维超声波图像,同时抑制超声波探头I的内部温度Tp的上升。实施例7尽管在上述实施例4至6中,当超声波探头I的内部温度Tp等于或高于第一设置值Tl时,间歇执行针对除了关注区域V之外的至少部分区域的超声波束发送和接收或接收,在实施例7中,以降低的空间解析度来执行针对除了关注区域V之外的至少部分区域的超声波束发送和接收或接收。实施例7的超声波诊断装置具有与图I所示的实施 例I的超声波诊断装置相同的配置。当超声波探头I的内部温度Tp低于第一设置值Tl时,执行与实施例I中相同的普通扫描。即,如图20所示,当由发送电路5和接收电路6电子地扫描换能器阵列3时,由阵列移动单元4机械地扫描换能器阵列3,使得在被观察空间区域W上形成电子扫描平面E1,且产生并在图像存储器16中存储每个电子扫描平面El的二维图像数据。在普通扫描中,假定使用预定数目N个同时打开的通道来执行超声波束的接收,且形成每帧预定数目S个声线。以上述方式执行超声波诊断,且当确定超声波探头I的内部温度Tp等于或高于第一设置值Tl时,装置控制器17通过探头控制器7来控制发送电路5和接收电路6,使得此时执行温度上升抑制扫描。S卩,如图21所示,当无论关注区域V如何在被观察空间区域W上执行阵列移动单兀4的换能器阵列3机械扫描时,与普通扫描一样,仅在X轴方向(换能器阵列3的机械扫描方向)上包括关注区域V在内的长度范围Xv中电子地扫描换能器阵列3,以在接收时使用数目N个同时打开的通道来形成每帧S个声线。从而,形成电子扫描平面E1。针对在X轴方向上除了关注区域V之外的区域,电子扫描地换能器阵列3,相比于普通扫描,减少每帧的声线数目或接收时同时打开的通道的数目。从而,形成了电子扫描平面E2。在图21中,用实线来指示每个电子扫描平面E1,与普通扫描一样,电子扫描平面El由接收时N个同时打开的通道和每帧S个声线所形成。由虚线来指示每个电子扫描平面E2,电子扫描平面E2由温度上升抑制扫描形成,其中,相比于普通扫描,减少声线数目或接收时同时打开的通道的数目。在接收时减少每帧的声线数目或减少同时打开通道的数目的情况下,空间解析度降低,且使得X轴方向上除了关注区域V之外的区域的图像质量劣化。同时,将发送电路5和接收电路6的暂停时段延长该量,从而抑制了超声波探头I的温度的上升。如果在图像存储器16中存储以上述方式形成的电子扫描平面El和E2中的每一个的二维图像数据,则图像处理器13使用二维图像数据来产生三维图像数据,且显示控制器14在监视器15上显示三维图像。如果执行温度上升抑制扫描,且超声波探头I的内部温度Tp降低至等于或低于第一设置值Tl,则再次执行普通扫描,且可以显示三维图像。如上所述,当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第一设置值Tl时,控制发送电路5和接收电路6,使得对于换能器阵列3的机械扫描方向上除了关注区域V之外的区域,减少每帧的声线数目或接收时同时打开通道的数目,以降低空间解析度。因此,有可能获得至少关注区域V的高质量三维超声波图像,同时抑制超声波探头I的内部温度Tp的上升。实施例8尽管在上述实施例7中,设置了第一设置值Tl,且当超声波探头I的内部温度Tp等于或高于第一设置值Tl时,执行温度上升抑制扫描,可以设置多个温度设置值,且可以根据超声波探头I的内部温度Tp,逐步执行具有不同温度上升抑制效果的扫描。例如,事先设置高于第一设置值Tl的第二设置值T2以及高于第二设置值T2的第三设置值T3,且当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第一设置值Tl且低于第二设置值T2时,如图21所示,在X轴方向(换能器阵列3的机械扫描方向)上包括关注区域V在内的长度范围Xv中执行超声波束的发送和 接收,使得空间解析度变为等于普通扫描中的空间解析度。对于除了关注区域V之外的区域,以降低的空间解析度来执行超声波束的发送和接收。当超声波探头I的内部温度Tp等于或高于第二设置值T2且低于第三设置值T3时,如图22所示,可以进一步在Y轴方向(换能器阵列3的一维阵列方向)上包括关注区域V在内的长度范围Yv中执行超声波束的发送和接收,使得空间解析度变为等于普通扫描中的空间解析度。对于Y轴方向上除了关注区域V之外的区域,可以以降低的空间解析度来执行超声波束的发送和接收。当这发生时,将发送电路5和接收电路6的暂停时段进一步延长一定量,使得以降低的空间解析度来执行针对在Y轴方向上除了关注区域V之外的区域的超声波束发送和接收,从而抑制超声波探头I的温度的上升。当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第三设置值T3时,如图23所示,仅在Z轴方向(测量深度方向)上包括关注区域V和比关注区域V更浅的区域在内的长度范围Zv中执行超声波束的发送和接收,使得空间解析度变为等于普通扫描中的空间解析度。对于比关注区域V更深的区域,可以以降低的空间解析度来执行超声波束的接收。当这发生时,将以降低的空间解析度来执行超声波束的接收的范围增加与比关注区域V更深的区域相对应的量,且将接收电路6的暂停时段进一步延长该量,从而进一步抑制超声波探头I的温度的上升。在实施例8中,无论超声波探头I的内部温度Tp和关注区域V如何,在被观察空间区域W上执行阵列移动单元4的换能器阵列3机械扫描。当温度传感器8检测到的超声波探头I的内部温度Tp等于或高于第三设置值T3时,如图24所示可以仅在测量深度方向上包括关注区域V在内的长度范围Zv中执行超声波束的发送和接收,使得空间解析度变为等于普通扫描中的空间解析度。对于在Z轴方向上除了关注区域V之外的区域,可以以降低的空间解析度来执行超声波束的接收。相比于如图23所示以低空间解析度来执行针对比关注区域V更深的区域的超声波束接收的情况,有可能进一步延长接收电路6的暂停时段。实施例9
尽管在上述实施例7中,当超声波探头I的内部温度Tp等于或高于第一设置值Tl并低于第二设置值T2,如图21所示,对于在X轴方向(换能器阵列3的机械扫描方向)上除了关注区域V之外的区域,以降低的空间解析度来执行超声波束的发送和接收,本发明不受限于此。例如,如图25所示,可以仅在Y轴方向(换能器阵列3的一维阵列方向)上包括关注区域V在内的长度范围Yv中执行超声波束的发送和接收,使得空间解析度等于普通扫描中的空间解析度。对于在Y轴方向上除了关注区域V之外的区域,可以以降低的空间解析度来执行超声波束的发送和接收。在该情况下,设置多个温度设置值,且在超声波探头I的内部温度Tp增加到等于或高于第二设置值T2时,对于在X轴方向(换能器阵列3的机械扫描方向)上除了关注区域V之外的区域,或对于在Z轴方向(测量深度方向)上除了关注区域V之外的区域,可以以降低的空间解析度来执行超声波束的接收。当超声波探头I的内部温度Tp等于或高于第一设置值Tl并低于第二设置值T2时,如图26所示,可以仅在Z轴方向(测量深度方向)上包括关注 区域V和比关注区域V更浅的区域在内的长度范围Zv中执行超声波束的发送和接收,使得空间解析度变为等于普通扫描中的空间解析度。对于比关注区域V更深的区域,可以以降低的空间解析度来执行超声波束的接收。备选地,如图27所示,可以仅在Z轴方向(测量深度方向)上包括关注区域V在内的长度范围Zv中执行超声波束的发送和接收,使得空间解析度变为等于普通扫描中的空间解析度。对于在Z轴方向上除了关注区域V之外的区域,可以以降低的空间解析度来执行超声波束的接收。即使在执行图26或27所示的扫描时,可以设置多个温度设置值,在超声波探头I的内部温度Tp增加到等于或高于第二设置值T2时,对于在X轴方向(换能器阵列3的机械扫描方向)上除了关注区域V之外的区域,或对于在Y轴方向(换能器阵列3的一维阵列方向)上除了关注区域V之外的区域,可以以降低的空间解析度来执行超声波束的发送和接收。在实施例9中,与实施例7—样,延长发送电路5和接收电路6的暂停时段,或延长接收电路6的暂停时段,使得有可能获得至少关注区域V的高质量三维超声波图像,同时抑制超声波探头I的内部温度Tp的上升。在上述实施例I至9中,超声波探头I和诊断装置本体2的连接可以是有线连接或者通过无线通信的连接。
权利要求
1.一种超声波诊断装置,包括 超声波探头,具有一维阵列型换能器阵列以及阵列移动单元,所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向移动所述换能器阵列, 发送和接收电路,用所述换能器阵列进行电子扫描,并向对象发送和接收超声波束,以获取二维图像数据, 图像产生器,在由所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描时,使用由所述发送和接收电路获取的二维图像数据来产生三维超声波图像, 关注区域设置器,在成像区域中设置关注区域, 温度传感器,检测所述超声波探头的内部温度,以及 控制器,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得暂停针对除了关注区域之外的至少一部分区域发送和接收超声波束或接收超声波束,所述关注区域是由所述关注区域设置器设置的。
2.根据权利要求I所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得暂停针对在所述换能器阵列的机械扫描方向上除了所述关注区域之外的区域发送和接收超声波束。
3.根据权利要求2所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于被设置为高于所述第一设置值的第二设置值时,所述控制器还控制所述发送和接收电路,使得暂停针对在所述换能器阵列的阵列方向上除了所述关注区域之外的区域发送和接收超声波束。
4.根据权利要求3所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于被设置为高于所述第二设置值的第三设置值时,所述控制器还控制所述发送和接收电路,使得暂停针对比所述关注区域更深的区域接收超声波束。
5.根据权利要求3所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于被设置为高于所述第二设置值的第三设置值时,所述控制器还控制所述发送和接收电路,使得暂停针对在测量深度方向上除了所述关注区域之外的区域接收超声波束。
6.根据权利要求I所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得暂停针对在所述换能器阵列的阵列方向上除了所述关注区域之外的区域发送和接收超声波束。
7.根据权利要求I所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得暂停针对比所述关注区域更深的区域接收超声波束。
8.根据权利要求I所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得暂停针对在测量深度方向上除了所述关注区域之外的区域接收超声波束。
9.一种超声波诊断装置,包括 超声波探头,具有一维阵列型换能器阵列以及阵列移动单元,所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向移动所述换能器阵列, 发送和接收电路,用所述换能器阵列进行电子扫描,并向对象发送和接收超声波束,以获取二维图像数据, 图像产生器,在由所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描时,使用由所述发送和接收电路获取的二维图像数据来产生三维超声波图像, 关注区域设置器,在成像区域中设置关注区域, 温度传感器,检测所述超声波探头的内部温度,以及 控制器,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得间歇执行针对除了关注区域之外的至少一部分区域的超声波束发送和接收或超声波束接收,所述关注区域是由所述关注区域设置器设置的。
10.根据权利要求9所述的超声波诊断装置,还包括 插值器,基于之前和之后的帧的二维图像数据,插值并形成中间帧的二维图像数据, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得逐帧地间歇执行针对除了所述关注区域之外的至少一部分区域的超声波束发送和接收或超声波束接收,以及 由所述插值器插值并形成帧的二维图像数据,在该帧中,尚未执行针对除了所述关注区域之外的至少一部分区域的超声波束发送和接收。
11.根据权利要求9或10所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得间歇执行针对在所述换能器阵列的机械扫描方向上除了所述关注区域之外的区域的超声波束发送和接收。
12.根据权利要求11所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于被设置为高于所述第一设置值的第二设置值时,所述控制器还控制所述发送和接收电路,使得间歇执行针对在所述换能器阵列的阵列方向上除了所述关注区域之外的区域的超声波束发送和接收。
13.根据权利要求12所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于被设置为高于所述第二设置值的第三设置值时,所述控制器还控制所述发送和接收电路,使得间歇执行针对比所述关注区域更深的区域的超声波束接收。
14.根据权利要求12所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于被设置为高于所述第二设置值的第三设置值时,所述控制器还控制所述发送和接收电路,使得间歇执行针对在测量深度方向上除了所述关注区域之外的区域的超声波束接收。
15.根据权利要求9或10所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得间歇执行针对在所述换能器阵列的阵列方向上除了所述关注区域之外的区域的超声波束发送和接收。
16.根据权利要求9或10所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得间歇执行针对比所述关注区域更深的区域的超声波束接收。
17.根据权利要求9或10所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得间歇执行针对在测量深度方向上除了所述关注区域之外的区域的超声波束接收。
18.—种超声波诊断装置,包括 超声波探头,具有一维阵列型换能器阵列以及阵列移动单元,所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向移动所述换能器阵列, 发送和接收电路,用所述换能器阵列进行电子扫描,并向对象发送和接收超声波束,以获取二维图像数据, 图像产生器,在由所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描时,使用由所述发送和接收电路获取的二维图像数据来产生三维超声波图像, 关注区域设置器,在成像区域中设置关注区域, 温度传感器,检测所述超声波探头的内部温度,以及 控制器,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得以降低的空间解析度来执行针对除了关注区域之外的至少一部分区域的超声波束发送和接收或超声波束接收,所述关注区域是由所述关注区域设置器设置的。
19.根据权利要求18所述的超声波诊断装置, 其中,所述控制器减少每帧的声线的数目或减少在接收时同时打开的通道的数目,以形成降低的空间解析度。
20.根据权利要求18或19所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得以降低的空间解析度来执行针对在所述换能器阵列的机械扫描方向上除了所述关注区域之外的区域的超声波束发送和接收。
21.根据权利要求20所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于被设置为高于所述第一设置值的第二设置值时,所述控制器还控制所述发送和接收电路,使得以降低的空间解析度来执行针对在所述换能器阵列的阵列方向上除了所述关注区域之外的区域的超声波束发送和接收。
22.根据权利要求21所述的超声波诊断装置,其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于被设置为高于所述第二设置值的第三设置值时,所述控制器还控制所述发送和接收电路,使得以降低的空间解析度来执行针对比所述关注区域更深的区域的超声波束接收。
23.根据权利要求21所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于被设置为高于所述第二设置值的第三设置值时,所述控制器还控制所述发送和接收电路,使得以降低的空间解析度来执行针对在测量深度方向上除了所述关注区域之外的区域的超声波束接收。
24.根据权利要求18或19所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得以降低的空间解析度来执行针对在所述换能器阵列的阵列方向上除了所述关注区域之外的区域的超声波束发送和接收。
25.根据权利要求18或19所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得以降低的空间解析度来执行针对比所述关注区域更深的区域的超声波束接收。
26.根据权利要求18或19所述的超声波诊断装置, 其中,在所述温度传感器检测到的所述超声波探头的内部温度等于或高于所述第一设置值时,所述控制器控制所述发送和接收电路,使得以降低的空间解析度来执行针对在测量深度方向上除了所述关注区域之外的区域的超声波束接收。
27.—种产生超声波图像的方法,所述方法包括以下步骤 由发送和接收电路用超声波探头的一维阵列型换能器阵列进行电子扫描,并向对象发送和接收超声波束以获取二维图像数据,并沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描,以获取多个二维图像数据; 使用获取的多个二维图像数据来产生三维超声波图像; 在成像区域中设置关注区域; 检测所述超声波探头的内部温度;以及 当检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得暂停针对除了关注区域之外的至少一部分区域发送和接收超声波束或接收超声波束。
28.—种产生超声波图像的方法,所述方法包括以下步骤 由发送和接收电路用超声波探头的一维阵列型换能器阵列进行电子扫描,并向对象发送和接收超声波束以获取二维图像数据,并沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描,以获取多个二维图像数据; 使用获取的多个二维图像数据来产生三维超声波图像; 在成像区域中设置关注区域; 检测所述超声波探头的内部温度;以及 当检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得间歇执行针对除了关注区域之外的至少一部分区域的超声波束发送和接收或超声波束接收。
29.—种产生超声波图像的方法,所述方法包括以下步骤 由发送和接收电路用超声波探头的一维阵列型换能器阵列进行电子扫描,并向对象发送和接收超声波束以获取二维图像数据,并沿与所述换能器阵列的阵列方向实质正交的方向用所述换能器阵列进行机械扫描,以获取多个二维图像数据; 使用获取的多个二维图像数据来产生三维超声波图像; 在成像区域中设置关注区域; 检测所述超声波探头的内部温度;以及 当检测到的所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得以降低的空间解析度来执行针对除了关注区域之外的至少一部分区域的超声波束发送和接收或超声波束接收。
全文摘要
一种超声波诊断装置和产生超声波图像的方法。所述超声波诊断装置包括超声波探头,具有一维阵列型换能器阵列以及阵列移动单元,所述阵列移动单元沿与所述换能器阵列的阵列方向实质正交的方向移动所述换能器阵列;发送和接收电路,电子地扫描换能器阵列,并向对象发送和接收超声波束,以获取二维图像数据;以及控制器,在所述超声波探头的内部温度等于或高于第一设置值时,控制所述发送和接收电路,使得暂停针对除了关注区域之外的至少一部分区域发送和接收超声波束或接收超声波束。
文档编号A61B8/13GK102670261SQ20121005288
公开日2012年9月19日 申请日期2012年2月29日 优先权日2011年3月18日
发明者大岛雄二, 田边刚 申请人:富士胶片株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1