多记忆材料及其系统、方法和应用与流程

文档序号:12505411阅读:409来源:国知局
多记忆材料及其系统、方法和应用与流程

本申请要求2014年7月14日提交的美国临时专利申请No.62/023,995和2014年9月26日提交的美国临时专利申请No.62/055,775的优先权,这两个申请均通过引用并入本文。

技术领域

本公开内容通常涉及多记忆材料和形状记忆材料的处理。更特别地,本公开内容涉及用于处理或处置形状记忆材料以形成多记忆材料的方法和系统。



背景技术:

通常而言,形状记忆材料是在较低温度下具有可塑性并且可被培训以在较高温度下保持和返回特定形状的材料。即使在较低温度下被弯曲为不同的形状,所述材料在温度升高时也会返回到所培训的形状。材料恢复到所培训的高温构造时的温度典型地被称为相变温度。在这些材料中发生的形状记忆效应与可逆固态相变相关,其中材料随温度变化在奥氏体状态与马氏体状态之间转变。在马氏体状态中,形状记忆材料变得更易于变形且典型地能够以几乎恒定的应力水平适应显著塑性变形。当形状记忆材料处于马氏体状态中且被加热时,金属返回到奥氏体状态。相变可能在特定温度发生或在一温度范围内发生。

形状记忆材料可通常分为形状记忆金属/合金(SMA)和形状记忆聚合物(SMP)。许多合金可被处理为形状记忆材料,包括一些磁性材料和合金。SMA的三种主要类型包括:

1)镍-钛(NiTi)

2)铜-锌-铝-镍

3)铜-铝-镍

其它SMA包括但不限于以下材料:

1)Ag-Cd 44/49at.%Cd

2)Au-Cd 46.5/50at.%Cd

3)Cu-Al-Ni 14/14.5wt.%Al和3/4.5wt.%Ni

4)Cu-Sn约15at.%Sn

5)Cu-Zn 38.5/41.5wt.%Zn

6)Cu-Zn-X(X=Si,Al,Sn)

7)Fe-Pt约25at.%Pt

8)Mn-Cu 5/35at.%Cu

9)Fe-Mn-Si

10)Pt合金

11)Co-Ni-Al

12)Co-Ni-Ga

13)Ni-Fe-Ga

14)Ti-Pd(各种含量)

15)Ni-Ti(~55%Ni)

(at.%为原子百分比,wt.%为重量百分比)

SMP的示例包括但不限于以下材料:

1)具有离子或液晶/介晶组分的基于聚氨酯的形状记忆聚合物

2)使用马来酸酐交联的聚对苯二甲酸乙二醇酯-聚氧乙烯(PET-PEO)嵌段共聚物

最常见的形状记忆材料之一是镍钛合金(有时被称为NiTi),一种镍和钛的合金。这种应用着重于SMA,特别是镍钛合金,不过,类似原理可应用于其它SMA、SMP、或形状记忆材料,如本领域技术人员通过阅读本文献后将理解的那样。

形状记忆材料的应用将利用当形状记忆材料被加热和形状记忆材料从马氏体状态转变为奥氏体状态时的材料力构形。不过,传统的形状记忆材料受限于这些力可被制造和定制的程度和精度。

为了处理形状记忆材料,传统处理方法和系统要求操作者进行近乎恒定的人工操控这种处理技术可典型地缓慢且低效。而且,传统处理方法和系统当为了操作者安全而利用防护气体工作时可能要求在密封工作站下处理。如不采用防护气体,则有风险使被处置材料中存在的杂质达到不受欢迎的水平(例如高水平的氧)。

基于前述,需要改进的方法和系统用于处理或处置形状记忆材料以克服或减轻至少一种前述问题。



技术实现要素:

在第一方面,提供一种设备,用于制造多记忆材料,包括:

馈送组件,用于馈送形状记忆材料;

处理站,其与所述馈送组件对准以接纳拟处理的形状记忆材料,所述处理站包括:

材料通路,其穿过所述处理站并与所述馈送组件对准以接纳和保持来自所述馈送组件的所述形状记忆材料;和

至少一个能量源孔,其与所述材料通路对准;

防护气体接合部分,用以向所述材料通路提供防护气体;

至少一个能量源,其与所述能量源孔对准以向所述形状记忆材料提供能量;

防护气体供应器,其附接到所述防护气体接合部分以提供防护气体;和

控制器,其被构造为根据预定参数控制所述馈送组件、所述防护气体供应器和所述能量源以形成所述多记忆材料。

在特定情况下,所述防护气体接合部分可位于所述处理站的一侧(lateral side)上,所述至少一个能量源孔位于所述处理站的顶部分上。

在另一特定情况下,所述处理站可以进一步包括:第一和第二辊组件,用于保持所述材料。

在又一特定情况下,所述馈送组件可包括:上辊组件和下辊组件,其中所述辊组件中的一个由马达驱动且另一个辊组件自由转动。

在又一特定情况下,所述馈送组件可以是机械臂。

在又一特定情况下,所述馈送组件可按连续馈送方式将所述材料馈送到所述处理站。

在另一特定情况下,所述馈送组件可按步进方式将所述材料馈送到所述处理站。

在又一特定情况下,所述设备可进一步包括:

引导组件,其接近于所述处理站,被构造为对离开所述处理站之后的所述多记忆材料进行引导。

在又一特定情况下,所述多记忆材料可以是线,所述材料通路被构造为:大致匹配于所述线的尺寸,而同时仍然允许所述线移动穿过所述材料通路。

在又一特定情况下,所述多记忆材料可以是片,所述材料通路被构造为:大致匹配于所述片的尺寸,而同时仍然允许所述片移动穿过所述材料通路。

在另一方面,提供一种方法,用于制造多记忆材料,包括:

通过控制器确定用于所述形状记忆材料的处理参数;

在馈送组件处接纳形状记忆材料;

通过所述馈送组件将所述形状记忆材料馈送到处理站;

通过防护气体供应器将防护气体提供到所述处理站;

基于所述处理参数通过至少一个能量源将能量提供到所述形状记忆材料,以形成所述多记忆材料。

在特定情况下,所述的方法可进一步包括:

确定是否存在所述形状记忆材料的额外区域进行处理;

将所述形状记忆材料经由所述处理站馈送到所述额外区域进行处理。

在另一特定情况下,所述多记忆材料可以是线。

在又一特定情况下,所述多记忆材料可以是片。

在又一方面,提供一种医用内支架,包括:较大弹性的区域和较小弹性的区域,其中所述内支架根据所述用于制造多记忆材料的方法制造。

在又一方面,提供一对眼镜,具有:

框架;

两个多记忆臂,其从所述框架延伸,其中每个臂包括:

第一部分,处于所述臂的近端处,由未处理的形状记忆材料形成;和

第二部分,处于所述臂的侧端处,由根据所述用于制造多记忆材料的方法处理的形状记忆材料形成,其中,所述第二部分与所述第一部分在第一温度下大致共线,其中,所述第二部分适于在被加热到第二温度时改变构形。

在进一步的方面,提供一种织物,包括根据所述用于制造多记忆材料的方法处理的多记忆材料,其中,所述材料被覆盖以所述织物并被构造为基于温度变化而调节所述织物的形状。

在又一方面,提供高尔夫球杆头,包括:

主体;和

面,其安装到所述主体的前部,其中,所述面包括根据所述用于制造多记忆材料的方法处理的多记忆材料,以在所述面的不同区域中具有不同的伪弹性(pseudo-elastic)性能。

在又一方面,提供一种牙髓锉,包括:

手柄;和

锉杆,其连接到所述手柄,所述锉杆包括多记忆线,所述多记忆线具有多伪弹性性能以适应于根管形状。

在又一方面,提供一种正畸弓丝,包括:具有不同张力的多个力区域,其中所述弓丝根据所述用于制造多记忆材料的方法制成。

通过阅读以下结合附图对具体实施例的描述,本公开内容的其它方面和特征对于本领域技术人员而言将变得显见。

附图说明

本公开内容的实施例现在将仅通过示例参照附图描述。

图1是将镍钛合金件处置/形成为具有多相变温度的多记忆材料(MMM)的示例性方法的流程;

图2例示出具有多相变温度的形状记忆材料条沿其长度的预计应力应变曲线的类型;

图3例示出将能量源施加于形状记忆材料以制造MMM的示例的立体图;

图4A、4B、4C例示出具有所施加能量的示例性形状记忆材料的截面图;

图5例示出具有管状截面的示例性形状记忆材料的截面图;

图6例示出具有大致平面形状的示例性形状记忆材料的俯视图;

图7例示出根据一个实施例的用于制造MMM的设备的立体图;

图8A至8F例示出根据另一实施例的用于制造MMM的设备;

图9例示出根据一个实施例的用于制造MMM的系统的结构示意图;

图10是根据一个实施例的用于制造MMM的方法的流程;

图11例示出根据另一实施例的处理站的侧视图;

图12例示出使用MMM的弓丝的示例性力构形(force profile);

图13例示出使用MMM的牙髓锉的侧视图;

图14A例示出具有不同直径的动脉及其力构形;

图14B例示出使用MMM的内支架的侧视图;

图15例示出使用MMM的眼镜的立体图;

图16例示出使用MMM的线性致动器的侧视图;

图17例示出使用MMM的织物的立体图;和

图18例示出使用MMM的高尔夫球杆的侧视图。

具体实施方式

通常,本公开内容提供用于处理材料以形成多记忆材料的方法、设备和系统以及其应用。

虽然以下论述着重于形状记忆合金(SMA),不过应理解,所述原理、过程和系统可类似地应用于其它形状记忆材料;例如,形状记忆金属和形状记忆聚合物。多记忆材料在2010年8月6日提交的PCT申请PCT/CA2010/001219更详细描述,该申请在此通过引用并入本文。进一步地,虽然以下论述着重于激光作为能量源,不过能量源可包括其它装置/材料,用于施加能量,例如电子束、电弧、离子束或类似物。

传统的形状记忆材料被批量处理以形成具有单一相变温度的单片。这种处理由于形状记忆材料内的组分和结构均匀而为最适合的。因此,这种处理仅允许形状记忆材料对于给定“记得”形状具有单一相变温度。

申请人已经确认:在对形状记忆材料(在此示例中为镍钛合金)的区域进行局部激光施加的过程中,局部温度和分压的影响使得材料或其成分熔化和所相信的沸腾。检测指示出:镍钛合金工件的承受激光处置的部分使得被处置的部分/区域呈现出相变温度改变。其中显示出,镍钛合金的熔化和随后的固化导致镍钛合金的局部化学性质改变。因此,处理后的区域呈现出另外的记忆,而未处置材料仍保持呈现出其原始性能和记忆。这样,一种或多种另外的记忆可嵌入形状记忆材料中,使得形状记忆材料可为具有多相变温度的多记忆材料(MMM)。应理解,具有另外的记忆能够实现用于许多应用的另外的功能。

据信,相变温度改变是因为相变温度对镍钛合金的局部结构和化学性质非常敏感。由于在熔化过程中的蒸发(由于温度和所涉及分压所致),先前的微观结构失稳,直到熔化金属随后重新固化时为止。特别地,在镍钛合金的情况下,NiTi的原始基材料典型地为均匀结构,对于镍(当Ni原子百分比大于50%时)或钛(当Ti原子百分比大于50%时)饱和。这种结构常通过以下方式得到:将合金退火(在500和1200摄氏度),然后淬火以保持NiTi结构。在特定情况下,合金退火可在约800摄氏度进行。进一步地,可进行机械处理,例如轧制,以细化微观结构和增大强度。不过,当所述结构熔化并再固化(例如使用激光,如在下文中进一步所述)时,一种或多种成分可被蒸发,而剩余的饱和成分与最终液体的固化前沿一起固化,富集所述特定化学成分。这种局部区域然后将稳定为金属间化合物(即,富Ni时为Ni3TiNi4Ti3;富Ti时为Ti2Ni)。这种结果可当存在组分不平衡而且可能还存在其它相关机制时出现。虽然再固化金属的整体化学性质大致相同(包括基体和金属间化合物),基体化学性质将不同于原始基材料。因此,局部区域中的基体将具有不同的相变温度。有趣的是,在一些情况下,最高温度可保持高值足够久,从而使局部区域也经历某些程度的后处理热处理(例如退火),其中可包括热影响区。

形状记忆材料的局部熔化不同于一些较低温度的合金/金属热处理形式,例如退化,这是因为,这些较低温度处理发生在固态而非熔化液态,由此将对内部结构和化学性质具有较小影响。进一步地,若操作适当,则熔化处理不会导致形状记忆材料在马氏体状态下的超弹性完全破坏,不过其可能导致超弹性改变。更进一步地,所述处理可对现存的形状记忆材料进行,不同于用于从基本成分形成形状记忆材料的处理。

图1显示出将镍钛合金的单片或工件处置/形成为具有多相变温度的多记忆材料(MMM)的示例性方法100的流程。应理解,此方法可适于处理其它形状记忆材料以改变局部化学性质/结构,从而提供所希望的结果,如在本文中所述。

方法100开始,接收形状记忆材料作为输入110,例如镍钛合金单片。在一些情况下,镍钛合金的单片或工件可首先被处理以给予单片特定的形状记忆110。处理镍钛合金以给予第一形状记忆(和相变温度)是本领域公知的。不过,具有足够组分以呈现出形状记忆效应的未处理合金也可使用在此所述的实施例进行处理。在此情况下,可首先使用方法100给予第一记忆。

镍钛合金工件然后作为输入被移动到处理站,在此其被定位以进行后续处置。

在120,确定处理参数。例如,所述方法可包括:使用处理器或类似物基于所希望的相变温度、化学组分或预定处理结果自动计算拟使用处理参数。在其它情况下,处理器可取回被预存在例如记忆部件、数据库或类似物中的预定的处理参数。可用于所述计算中或者查询表或类似物中的包括相变温度(根据NiTi化学性质而定)和类似物的信息的类型的示例是例如在Khan的美国专利申请公开物No.2012/0192999或者Tang W所著“近等原子Ti-Ni形状记忆合金中的低温相B19’和马氏体转变的热力学研究”(冶金和材料学报A,第28A卷,1997年3月,第537-544页)中所述类型。应理解,所述实施例的这一方面可包括:在物理介质上的计算机可读指令,其在计算装置(处理器)上被执行或实行时使得所述过程被执行。

镍钛合金工件然后在意在使局部化学性质改变的区域中进行激光处置130,在此情况下,用以提供不同的相变温度。应理解,根据应用,可移动激光以确保镍钛合金工件的所需区域被激光处置,或者可替代地,镍钛合金工件可相对于激光移动。在激光处置130中,能量被施加于镍钛合金的局部区域中,使得至少发生一些局部熔化和蒸发(基于局部区域处的温度和分压而定)。形状记忆材料(例如镍钛合金)的熔点范围受形状记忆材料的化学组成以及在加热处理中可能发生的化学改变的影响。蒸发的速度也受到局部压力的影响。对于镍钛合金而言,在加热到约1000摄氏度和更高温度范围后,某些影响可能是有用的。这种温度范围不同于某些较低温度形式的合金/金属热处理,例如退火,这是因为,这些处理在固态进行时将比在熔化液态进行时对内部结构具有更小影响。在进一步的特定情况下,镍钛合金可在约1250至1280摄氏度之间被加热。在另一情况下,镍钛合金被加热到约1300摄氏度或更高的温度,例如在约1320或1340摄氏度的范围内。通常而言,选择温度以实现足够程度的熔化和蒸发,使得局部化学性质改变,从而提供所希望的结果,例如另外的相变温度。

施加能量以产生加热优选地在局部进行,并被构造为使得局部化学性质的改变将在局部发生,从而所述影响不会或者仅有限地扩展到形状记忆材料片的其它区域中。在许多情况下,较短的能量施加处理可提供更好的限定的局部化学性质显著改变的区域或区、以及相变温度的局部改变。这样,激光熔化是优选的,不过也可以采用其它形式的加热,例如电阻或等离子体熔化。在激光熔化的情况下,典型地可在短至1毫秒或更短时间内达到适合温度,以具有极快的形状记忆材料加热或处置。在特定情况下,可在短于半毫秒的时间内达到适合温度。通过电阻或等离子体加热,热量施加时间也可短至1秒或更短。

处置后材料的冷却和再固化将在移除能量之后快速进行。处理参数可被构造为提供受控的原位冷却速率。原位冷却控制可在工件进行处理时进行。例如,冷却和再固化可通过以下方式控制:使用散热体以实现更快的冷却(即,作为冷冻体的铜块或者冷气体),或者加热级(heated stage)以实现更慢的冷却速率。

在一些情况下,镍钛合金工件在完成初始处理之后可承受进一步的处理140,其可包括:如在下文中的一个示例中所述的进一步热处理,或者其它处理,例如冷加工、热处理、表面抛光、清洁、或类似处理,取决于用于多记忆材料的具体应用而定。

在一些情况下,通过能量源处理形状记忆材料包括:通过激光处理。在一个示例中,可使用钕掺杂钇铝石榴石(Nd:YAG)激光器。多种关键参数可用于控制脉冲Nd:YAG激光处理。这些参数包括但不限于脉宽、峰值功率、频率、激光运动速度(有时是指焊接速度)、和离焦距离。还使用脉冲能量和平均功率以设计被传送到材料的能量的量。操作者典型地预设激光器上的峰值功率、脉宽和频率。峰值功率是激光脉冲的瞬时功率,可影响材料温度升高。当存在足以将峰值温度升高到工件液相温度(liquidius temperature)之上的热量时,熔化开始。这种升高峰值温度的处理涉及:克服由于传导和对流导致的热量损失。模块是每次脉冲辐射工件的时间。脉宽越大,则施加峰值功率的时间越长。最后,脉冲频率是每秒的激光脉冲次数,可用于控制脉冲重叠量和输入到工件的热量。在此实施例中,使用脉冲激光,但这在此并不是必要的要求。

激光运动速度和离焦距离是也可对工件整体处理产生影响的参数。激光运动速度影响在给定脉冲频率下每个光斑尺寸上的重叠量。不过,脉冲频率和激光运动速度典型地相互关联,以获得所希望的光斑重叠。在焊接领域中,光斑重叠典型地从约50%(考虑到焊接应用的强度)至80%(针对焊接以形成紧密密封的应用)变化。

在激光作为能量源的情况下,处理方法可包括:选择激光的功率、光束尺寸、和运动速度,以形成预定结果;将激光聚焦到形状记忆材料的分组的预定部分上;调节激光和形状记忆材料的空间关系,使来自激光的光束接触形状记忆材料的所有预定部分。在一些情况下,激光可按照脉冲方式操作,以提供更短的能量释放,从而控制能量施加。

形状记忆材料的处理,无论是激光加热其它方式,通常在存在防护气体(例如氩气或类似的生产气体)已知的情况下进行。如果不使用防护气体,则组分或形状记忆材料可能与氧或其它元素反应以产生不受欢迎的副产物或杂质;可能导致形状记忆材料具有不受欢迎的性质,例如,低强度、高脆性、或类似性质。

预计的优点在于:根据本发明的方法的实施例对形状记忆材料局部化学性质的改变也可用于产生形状记忆材料的应力应变曲线以反映出多个伪弹性区域。图2例示出具有多相变温度的形状记忆材料条沿其长度的预计的应力应变曲线的类型。卸载曲线预计被类似地影响。如图所示,对于加载曲线,材料预计呈现出多个依次的弹性变形,然后是伪弹性变形的平台。以此方式,形状记忆材料的不同区域可具有不同的弹性或伪弹性性能,不同于形状记忆材料的其它区域(其可保持在非弹性状态)。

预计优点还在于:根据本发明的方法的实施例对形状记忆材料局部化学性质的改变也可用于改变材料硬度。相对于化学性质未改变的区域或者蒸发未扩展的区域,由于材料蒸发而已发生局部化学性质改变的区域可通常呈现出改变的硬度。

进一步地,处置/形成形状记忆材料工件的本发明实施例可用于生产具有多种力构形(force profile)的形状记忆材料。如在此所述,当形状记忆材料被加热或以其他方式从马氏体状态转变为奥氏体状态时,形状记忆材料局部化学性质的改变可改变材料的力构形。如果载荷施加于形状记忆材料以抵制向奥氏体状态的转变,则形状记忆材料将以一力抵消该载荷。形状记忆材料的力构形可被构造为使得:当有载荷施加于形状记忆材料时,形状记忆材料的多个区域可提供不同的力。在一些情况下,使用在此所述的系统、设备和方法可被制造为形成具有最大至约0.025mm的空间分辨率的力记忆和具有最大至约±5MPa的力分辨率的力记忆。在其它情况下,MMM可被制造为形成具有最大至约0.5mm的空间分辨率的力记忆和具有最大至约±10MPa的力分辨率的力记忆。

在一些情况下,在形状记忆材料的处理过程中,可添加额外的元素,以改变MMM的性能。在一个示例中,氮或氢可被添加到形状记忆材料的意在使局部化学性质改变以提供更大强度的区域。在一些情况下,额外元素可被添加到防护气体、或作为填充材料。

图3例示出将能量源施加于形状记忆材料以制造MMM 300的一个示例的立体图。如在此所述,MMM可通过以下方式制造:将来自能量源302的能量施加于形状记忆材料304的区域306,以修改形状记忆材料304的区域306中、且在一些情况下在区域306周围的区域308中(通过传导)的局部化学性质(包括原子结构)。在这种示例中,能量源302是激光。能量源302通过受控方式将能量施加于形状记忆材料302,以产生形状记忆材料302的预定的特征改变。如在此所述,由于施加能量源302,因而形状记忆材料304在区域306和周围区域308中的局部形状记忆、伪弹性性能和/或力构形可精确调整以呈现出所希望的功能。在一些情况下,在可能因所述处理也受到影响和可能进一步促使性能改变的界面处,可能存在进一步的热影响区域。这种热影响区域可能接近于被处理区域周边处或者恰处于其外侧。这种能力预计对于从医疗保健到航空航天的广泛多种应用都是有益的。

虽然图3例示出形状记忆材料为矩形棱柱的形状,不过在此所述的系统、设备和方法可适用于具有任意适合形状(例如柱形、立方形、三角形棱柱、多边形棱柱、或类似形状)的形状记忆材料。在特定情况下,形状记忆材料可为大致平面的;例如设置为材料片。在进一步的情况下,形状记忆材料可具有凹部、凹陷、中空部、腔、或类似物(例如具有管形、U形、凹形、或类似形状)。

图4A至4C例示出具有施加能量400的形状记忆材料的截面图。预计优点在于:改变施加于形状记忆材料402的区域的能量的渗透深度可以产生不同的力构形,与有载荷施加时每个区域抵制不向奥氏体状态记忆形状转变的强度相关联。预计优点还在于:通过配置例如能量源的脉冲频率和/或脉冲持续时长,相变温度可改变或者保持恒定,而独立于力构形的改变。

在图4的示例中,形状记忆材料402具有正方形截面。能量以不同能量渗透水平施加于形状记忆材料402的顶侧。在图4A中,形状记忆材料402a中存在能量渗透区域404a。在形状记忆材料402a的大约这个区域,将发生形状记忆材料402a的局部化学性质改变。在图4B中,形状记忆材料402b中存在能量渗透区域404b,在尺寸上大于图4A中的能量渗透区域404a。由于较大的能量渗透区域404b引起更多的材料蒸发,因而图4B的形状记忆材料402b可具有与图4A的形状记忆材料402a不同的力构形。在一个示例中,形状记忆材料是镍钛合金,图4B的形状记忆材料402b将以比图4A的形状记忆材料402a更小的力响应于载荷起反应。图4B的形状记忆材料402b可通过更小的力起反应是因为至少一些更易挥发的材料(在此情况下为镍)已在能量渗透区域404b中蒸发,现在镍钛合金在能量渗透区域404b中包括更少材料以在有载荷施加时抵制不向奥氏体状态形状转变。

在图4C中,形状记忆材料402c中存在能量渗透区域404c,在尺寸上大于图4B中的能量渗透区域404b。能量渗透区域404c实现几乎完全渗透穿过形状记忆材料402c。当能量渗透水平较高时,一旦形状记忆材料402c再固化,则形状记忆材料402c的表面张力可使得形状记忆材料402c的能量渗透区域404c再固化为球形的或半球形的形状。因此,能量源可被构造为提供以一定方式限制的能量渗透,使得在再固化时形状记忆材料的表面张力保持所希望的形状。当形状记忆材料的界面是球形或半球形时、或者当希望具有球形或半球形的再固化形状时,由于对再固化形状的考虑,因而可能不需要限制能量渗透的深度。

图5和6例示出施加多个能量的形状记忆材料的示例。图5例示出具有多纳圈形截面的形状记忆材料500的截面图。形状记忆材料500中存在多个(在此情况下为四个)能量渗透区域502a、502b、502c、502d。在其它的情况下,可能存在多于或少于四个能量渗透区域,取决于能量渗透区域502的尺寸和形状记忆材料500的尺寸。每个能量渗透区域可被构造为具有不同的相变温度和/或力构形。在图5的示例中,形状记忆材料500的截面为多纳圈形,从而存在内腔。能量源可被构造为限制能量渗透区域502,使得能量渗透不到达内腔。如果能量渗透区域502不到达内腔,则在再固化时,内腔可能损失一些结构完整性。

图6例示出具有大致平面形状的形状记忆材料600的俯视图。形状记忆材料600中存在多个(在此情况下为六个)能量渗透区域602a、602b、602c、602d、602e、602f。在其它情况下,可能存在多于或少于六个能量渗透区域在形状记忆材料600的表面上扩展,取决于能量渗透区域602的尺寸和形状记忆材料600的表面的尺寸。

图7例示出用于制造具有长窄形状的MMM(例如线或类似物)的设备700的实施例的立体图。设备700包括基底702、馈给组件710和处理站720。基底702可为任意适合表面,用于支撑馈给组件710和处理站720并保持其正确对准。在一些情况下,若其它部件已被适合安装,则基底702可省略。

馈给组件710包括上辊组件712和下辊组件714。馈给组件710将形状记忆材料(例如为镍钛合金)接纳在上辊组件712与下辊组件714之间。在一些情况下,形状记忆材料可由馈给组件710从形状记忆材料源(例如卷轴、卷盘、匣、芯轴、盒、或类似物)接纳。馈给组件710可通过人工方式或者通过自动方式接纳形状记忆材料。

在特定情况下,上辊组件712可例如由马达(未示出)驱动且下辊组件714可“自由转动”。在其它情况下,上辊组件712可“自由转动”且下辊组件714可被驱动,或者上辊组件712和下辊组件714可以均被驱动,或者上辊组件712和下辊组件714可以均“自由转动”。

一旦将形状记忆材料接纳在上辊组件712与下辊组件714之间,则上辊组件712旋转以将形状记忆材料馈给到处理站720。馈给组件710可被构造为:当形状记忆材料被馈给到处理站720时保持形状记忆材料张紧。进一步地,馈给组件710可包括使形状记忆材料与处理站保持对准的机构;例如,在上辊组件712或下辊组件714中具有适合尺寸的缝。在进一步的示例中,馈给组件710可被替换为用于将形状记忆材料馈给到处理站720的任何适合机构;例如,机械臂。在一些情况下,形状记忆材料源(例如卷轴)可预先张紧以确保馈送组件保持张紧。

馈给组件710将形状记忆材料馈给到处理站720中。处理站720包括:材料通路722、能量源孔724、和防护气体接合部分726。材料通路722从处理站720的面对馈给组件710的前侧728处的入口穿透到处理站720的背对馈给组件710的后侧730处的出口。材料通路722与上辊组件712和下辊组件714对准。材料通路722典型地在尺寸和形状上被构造为承接特定的被处理的形状记忆材料,使得没有或仅有较少量的防护气体经由材料通路722流出。

形状记忆材料从馈给组件710馈给到处理站720的前侧728处的入口。当馈给组件710馈给形状记忆材料时,形状记忆材料穿过材料通路722直到其出现在材料通路722的出口处。随形状记忆材料穿过材料通路722,形状记忆材料被处理为MMM 200,如在此所述。馈给组件710可连续地、步进地、或者如处理通常要求地馈给形状记忆材料。形状记忆材料可由馈给组件馈给以推动材料进行处理,或者形状记忆材料可被牵拉(例如通过处理站内的引导组件或分立的引导组件)穿过处理站。在一个示例中,形状记忆材料可按照步进方式以0.5毫米/秒馈给,使得材料被馈给0.5mm、处理,然后再移动0.5mm并处理,依此类推。这种步进式处理在处置材料较大部分且在处置过程中的张力可能导致材料分离的情况下可能特别有用。应理解的是,运动长度和运动速度可以变化,根据被处理区域的尺寸和被使用材料而定。

能量源910(图9中)通过能量源孔724施加于形状记忆材料。在一些情况下,多个能量源可被设置,并可通过多个能量源孔施加。能量源孔724位于处理站720的顶侧732上,并被形成为使得能量源孔724的底部与材料通路722交叉。通常而言,当形状记忆材料穿过材料通路722时,能量源孔724在能量源910与形状记忆材料之间提供直接视线。能量源孔724可改变尺寸和形状,取决于所用能量源的类型和被处理的形状记忆材料的形状。在一些情况下,在穿过材料通路722之后,已被制造为MMM的形状记忆材料被安置到容接物(例如卷轴、芯轴、容器、或类似物)之内或之上。应理解,在一些情况下,能量源可朝向处理站的一侧,而能量源孔724可位于处理站的一侧上。

如前所述,MMM 200的制造通常在存在防护气体(例如氩气或适合的非反应性生产气体)的情况下进行。防护气体经由防护气体连接器726(其有时是指防护气体接合部分)被提供到处理站720。在图7的示例中,防护气体连接器726的开口位于处理站720的侧面上;不过,防护气体连接器726可位于处理站720的任意适合部分上。防护气体连接器726被构造为使防护气体被提供到能量源孔724与材料通路722的交叉处。在一些情况下,防护气体连接器726可在其开口处具有联接部与供应防护气体的软管连接;联接部例如具有软管钩、螺丝接合部、夹环、或类似物。

在进一步的实施例中,馈给组件710并不是将形状记忆材料馈给到材料通路722,而是可当形状记忆材料离开材料通路722时牵拉形状记忆材料、或者沿双向往复移动形状记忆材料,根据处理需要而定。

图8A至8F例示出用于制造长窄MMM(例如线)的其它实施例的设备800。用于制造MMM的设备800包括:基底802、馈给组件810、处理站820、对准引导部840。基底802可为任意适合表面,用于支撑馈给组件810、处理站820、对准引导部840并且保持其正确对准。在一些情况下,若其它部件已被适合安装,则基底802可省略。

类似于图8的实施例,馈给组件810包括上辊组件812和下辊组件814。馈给组件810将形状记忆材料(例如镍钛合金)接纳在上辊组件812与下辊组件814之间。在一些情况下,形状记忆材料可由馈给组件810从形状记忆材料源(例如卷轴、卷盘、匣、芯轴、盒、或类似物)接纳。在特定情况下,上辊组件812可例如由马达(未示出)驱动且下辊组件814可自由转动。在其它情况下,上辊组件812和下辊组件814中的至少一种可具有缝,以接纳和引导形状记忆材料,使得形状记忆材料保持与处理站820正确对准。上辊组件812和下辊组件814中的至少一种可包括弹性材料(例如钢)或可塑性材料(例如橡胶)。

一旦将形状记忆材料接纳在上辊组件812与下辊组件814之间,则上辊组件812旋转以将形状记忆材料馈给到处理站820。在进一步的实施例中,馈给组件810可为用于将形状记忆材料馈给到处理站820的任何适合机构;例如,机械臂。在一些情况下,馈给组件810可沿双向操作,根据MMM的制造要求而定

处理站820包括:主体822、第一辊824、第二辊826、处理帽828、和防护气体接合部分834。形状记忆材料从馈给组件810被馈给到处理站820,在此形状记忆材料在第一辊824之下经过。第一辊824和第二辊826可用于引导形状记忆材料往来于处理帽828,使得形状记忆材料在处理过程中保持水平且稳定移动。而且,第一辊824和第二辊826可在形状记忆材料经过处理帽828时确保形状记忆材料保持适合的馈给张力以使形状记忆材料保持在正确的位置和朝向。在一些情况下,上辊组件812可推动或拉动形状记忆材料,辊824、826协助对准和推动形状记忆材料。

在第一辊824之后,形状记忆材料进入处理帽828。处理帽828包括:经过处理帽828或者处于处理帽828与主体822之间的材料通路832。处理帽828还包括能量源孔830。处理帽828安装到主体822的顶部,例如使用紧固件、环氧树脂、或类似物安装。在一些情况下,处理帽828可与主体822集成。能量源孔830位于处理帽828的顶侧上并定位而使得能量源孔830的底部与材料通路832交叉。

形状记忆材料穿过处理帽828的材料通路832。材料通路832在尺寸和形状上被构造为承接形状记忆材料。当形状记忆材料穿过材料通路832时,能量源对经过能量源孔830的形状记忆材料起作用。当能量源根据处理参数对形状记忆材料起作用时,形状记忆材料被制造为MMM,如在此所述。

防护气体连接器834可安装到主体822的一侧上。在一些情况下,防护气体连接器834可在其开口处具有联接部与供应防护气体的软管连接;联接部例如具有软管钩、螺丝接合部、夹环、或类似物。

主体822在防护气体接合部分834的连接处具有开口。主体822还在能量源孔的下方具有开口。在主体822内,存在内部通路而将能量源孔830下方的开口连接到防护气体接合部分834处的开口。这样,供应到防护气体接合部分834的防护气体横穿主体822的内部通路,使得防护气体被提供到能量源孔724。

在形状记忆材料被制造为MMM且离开处理帽828的材料通路832后,形状记忆材料在第二辊826之下经过并且穿过引导组件840。第二辊826可用于当形状记忆材料离开处理帽828时引导形状记忆材料,使形状记忆材料保持水平且稳定移动。第一辊824和第二辊826可包括弹性材料(例如钢)或可塑性材料(例如橡胶)。第一辊824和第二辊826可包括缝,以进一步引导形状记忆材料。在一些情况下,如果处理帽820提供对形状记忆材料的足够引导,则设备800可省略第一辊824和/或第二辊826。在进一步情况下,第一辊824和/或第二辊826可被替代为不同的引导机构,例如带缝的板。

引导组件840包括基底842和引导帽844。引导帽844位于基底842的顶部上并包括引导通路846。形状记忆材料在从第二辊826下经过后穿过引导通路846,并意在提供对形状记忆材料的稳定引导以确保形状记忆材料在离开材料通路832之后不弯曲。在一些情况下,引导帽844可类似于处理帽820。在进一步情况下,如果形状记忆材料在离开处理帽828之后被充分引导,则引导组件840可省略。在其它情况下,引导组件840可替代为不同的引导机构,例如类似于馈给组件810的组件或者类似物。在一些情况下,在穿过引导通路846之后,已被制造为MMM的形状记忆材料被安置到容接物(例如卷轴、芯轴、容器、或类似物)中。在一些情况下,形状记忆材料的刚性可足以引导材料通过所述系统。

图9例示出用于制造MMM的系统900的实施例的结构示意图。系统900包括:控制器902、馈给组件904、处理站906、防护气体供应器908、能量源910、引导组件912,且在一些情况下还包括后处理站914。控制器902可通过操控和协调系统900其它部件的操作而控制MMM制造。控制器902可包括:处理器916、微控制器、或类似物。控制器902可连接到网络,例如局域网(LAN)、互联网、或类似物。控制器902也可被操作性地连接到存储部件,例如数据库918,控制器可在其中存储和取回数据,例如处理参数或类似物。

系统900的部件将联系图10描述,其中显示出MMM制造方法1000的实施例的流程。在1002,馈给组件904从形状记忆材料源(例如卷轴、卷盘、匣、芯轴、盒、或类似物)接纳形状记忆材料。形状记忆材料可通过人工方式或者自动方式加载到馈给组件904中。

在1004,馈给组件904从控制器902接纳指令以将形状记忆材料馈给到处理站906。馈给组件904可将预定长度的形状记忆材料馈给到处理站906中,使得预定区段的形状记忆材料位于能量源孔724或830下的材料通路722或832的区域中。

在1006,在形状记忆材料被处理之前,控制器902操控防护气体供应器908将防护气体提供到防护气体连接器726或834。可由防护气体供应器908提供足量的防护气体,以确保形状记忆材料的位于能量源孔724或830之下或近处的区段被包围在防护气体中。在一些情况下,处理站906可包括传感器以确定能量源孔724或830近处的防护气体的水平。在一些情况下,气体流速可通过计算流体力学确定,以确定处理站何时已接纳到足够的防护气体。

在1008,控制器902启动能量源910以根据预定参数将能量经处理站906的能量源孔724或830施加于形状记忆材料。形状记忆材料的位于能量源孔724或830下的区域因而接纳能量以发生至少一些熔化和蒸发(基于在局部区域处的温度和分压)。如在此所述,能量源910将预定的能量提供到形状记忆材料,使得形状记忆材料的局部区域呈现出预定记忆。

在1010,控制器902确定形状记忆材料是否形成有另外的记忆区域。如果形成有另外的记忆区域,则在1012,控制器902指示馈给组件将形状记忆材料馈给到处理站906,直到形状记忆材料的拟给予记忆的下一个区域位于能量源孔724或830之下和/或近处。然后,在1008,能量源将预定的能量提供到形状记忆材料的新区域而使其呈现出预定记忆。

如果未形成有另外的记忆区域,则在1014,形状记忆材料被制造为MMM且控制器902操控防护气体供应器908提供内置将防护气体提供到处理站906。在一些情况下,每次在1008从能量源910提供能量之后将停止防护气体,而且仅当在1012中形状记忆材料的拟给予记忆的下一区域被馈给到处理站906中时才再次开始防护气体。

在1016,控制器902操控馈给组件904将剩余形状记忆材料馈给通过处理站906。在一些情况下,在形状记忆材料离开处理站906之后,由引导组件912引导形状记忆材料。引导组件912可为无源/被动式的(例如带缝的板、“自由转动”辊、或类似物)、有源/主动式的(例如马达驱动辊组件、机械臂、或类似物)、或无源/被动式-有源/主动式的。如果引导组件912是有源/主动式的,则引导组件912可从控制器接纳指令以与馈给组件904和处理站906协调。

在1018,在一些情况下,在形状记忆材料已被制造为MMM之后,MMM可在后处理站914中施加后处理,这可由控制器902控制。在一些情况下,后处理可包括:将MMM切割和成形为所希望的尺寸和形态。在其它情况下,后处理可包括:MMM清洁和/或抛光。在另外的其它情况下,后处理可包括:拉线,以通过将MMM牵拉穿过一个或多个拉模而减小MMM截面。在另外的其它情况下,后处理可包括:将多个MMM以预定方式附贴或附接到一起(例如通过焊接、施加环氧树脂、使用紧固件、或类似的方式)。在另外的其它情况下,后处理可包括:通过特意引起变形而对MMM冷加工以增强和/或成形所述材料。在另外的其它情况下,后处理可包括:对MMM热处理以实现所希望的结果,例如硬化、软化、回火、形变、或类似结果。在另外的其它情况下,后处理可包括:使MMM经历受控的原位冷却。在另外的其它情况下,后处理可包括:使MMM穿过浴结构以去除MMM上的不受欢迎的残余物,例如去除酸、化学剂、或类似物。在另外的其它情况下,后处理可包括:MMM氧化处置,以增大MMM破裂的可能性。

在进一步的情况下,在后处理站914处的后处理之后,MMM可再次被提供到馈给组件904,在1002,在处理站906处进一步处理。在处理站906处的处理和在后处理站914处的后处理在必要时可重复多次。

转到图11,显示出根据另一实施例的处理站1100的截面侧视图。在此实施例中,处理站1100为桶形或盒形,由此处理站具有底部1102、一个或多个侧部1104、和在顶部1105处的开口(能量源孔)。防护气体接合部分1106位于处理站1100的侧部1102上或者底部1104上。在一些情况下,防护气体接合部分1106可在其开口处具有联接部以与软管连接,所述联接部例如具有软管钩、螺丝接合部、夹环、或类似物。

防护气体1116通过防护气体接合部分1106提供到处理站1100。对于处理站1100的此实施例,防护气体可被选择为重于处理站1100附近的周围空气;例如为氩气。由于防护气体116重于周围空气,因而供应到防护气体接合部分1106的防护气体1116下沉到处理站1100底部,周围空气在防护气体1116上方。在进一步的情况下,防护气体接合部分1106可省略,防护气体可经由处理站1100顶部处的开口供应。

处理站1100包括第一开口1108a和第二开口1108b。开口1108位于处理站1100的相反侧1102上。开口1108形成供形状记忆材料穿过的材料通路1110。开口1108在尺寸上和形状上被构造为承接形状记忆材料。形状记忆材料进入第一开口1108a,穿过处理站1100,并经由第二开口1108b离开。

能量源1112位于开口1116上方。当形状记忆材料穿过处理站时,能量源1112将预定能量提供到形状记忆材料,使形状记忆材料的局部区域呈现出预定记忆,如在此所述。由于形状记忆材料在周围空气与防护气体1116的边界1114下方穿过处理站1100,因而形状记忆材料当受到能量源作用时被包围在防护气体1116中。

在处理站的进一步的实施例中,可存在多于一个能量源向形状记忆材料提供能量。相应地,在处理站中可存在等量的能量源孔定位以从能量源之一接纳能量。在一些情况下,多个能量源中的每个可被定位以作用在形状记忆材料的不同的侧上。在其它情况下,多于一个能量源可被定位以作用在形状记忆材料的相同的侧上;特别是当形状记忆材料具有矩形或平坦面、或者为片形式时。当存在多个能量源时,所有能量源可被构造为同时或在重叠时间起作用。在其它情况下,能量源可被构造为在不同时间起作用、或者在不同时间间隔中起作用,以例如提供对形状记忆材料的渐进式处理。

在其它实施例中,处理站和/或基底可包括用于提供人工或自动平移运动的结构。如图7中所示,平移运动可沿X轴750、Y轴752、Z轴754、或所有轴的组合进行。在一些情况下,处理站和基底中的至少一种可包括导轨、万向轮、或类似物,以提供沿X轴750和/或Y轴752的平移。预计的优点在于:沿X轴750和/或Y轴752的平移可用于使材料通路722、832、1110精确对准馈给组件710、810。预计优点还在于:沿X轴750和/或Y轴752的平移可用于使拟处理的形状记忆材料在能量源下精确定位。

在其它情况下,处理站和基底中的至少一种可包括:升降机、起重机、导轨、滑轮、或类似物,以提供沿Z轴754的平移。预计优点在于:沿Z轴754的平移可用于使材料通路精确对准馈给组件。进一步的预计优点在于:特别是在能量源为激光时,沿Z轴754的平移可用于使激光精确聚焦在形状记忆材料的用于接纳能量的区域上。平移运动可为优选的,以沿X轴和Y轴适当处理一表面。在一些情况下,所述表面可突出或具有裂缝,例如为圆滑表面,而且也可进行Z轴控制。

应进一步理解,以上所述的系统和方法可以适度修改以处理其它形式的形状记忆材料,包括:馈给穿过一缝的材料片,其方式类似于将线馈给穿过上述系统中的孔。

在此所述的系统、设备和方法意在提供一种紧凑的处理站,其至少部分地被封装,从而可使用防护气体,而不需要操作者使用密封工作站。这样,在此所述的系统、设备和方法意在增大产量、减少处理所需空间、和减少与制造相关联的成本。进一步地,由于在此所述的系统、设备和方法可以使用控制器或处理器实现MMM处理和制造自动化,因而在此所述的系统、设备和方法意在加速MMM制造、增大产出、和减少劳力成本。

MMM(特别是使用在此所述的处理方式制成的MMM)意在应用于广泛多种领域中,包括:在现有装置中提供改进的功能,以及在一些情况下能够完成当使用传统技术时不可能实现的装置升级。

在此所述的系统、设备和方法可用于正畸弓丝领域中。弓丝可用于正畸支架和其它正畸应用中以提供操作力。传统的正畸方式典型地在希望有不同的力时要求更换弓丝。重复更换增加了患者费用(因为他们不得不为新弓丝付费)和更换弓丝所需的牙科服务费用。而且,使用弓丝进行初始处置可能令人不快地痛苦,这是因为,初始处置典型地使用强力弓丝作用于患者牙齿和牙龈上。

使用MMM作为弓丝意在使沿弓丝长度的力能够更精确计划。预计优点在于:由于能够使不同的力作用在牙齿的不同区域上,因而可能希望沿弓丝长度具有不同的力构形。

在一个示例中,MMM的制造弓丝可涉及:调整沿弓丝的每个力,使得力构形在切牙附近最低而且在磨牙处最高。进行试验,包括对圆形弓丝截面(例如0.014英寸和0.018英寸)和方形弓丝截面(例如0.014英寸×0.025英寸和0.018英寸×0.025英寸)的力检测。图12例示出弓丝1202的示例性力构形,其中,MMM 1202的拉伸力被构造为实现:在后力区域1204的160MPa、在后力区域1204与前力区域1210之间的90MPa、和前部60MPa的力。在图12的示例中,弓丝1202被处理以呈现出四个不同的力,未处理的形状记忆材料则呈现出最高的力。弓丝可包括两个不同的内区域,其中,第一内区域1206接近于后力区域并具有约140MPa的力,第二内区域1208接近于前力区域并具有约90MPa的力。在此示例中,可在0.05mm的空间分辨率下进行处理,意在被容许而能够在一对齿(典型地分开1.5mm)之间实现力调整。

与传统弓丝材料相比,意在以对加载和卸载曲线特性的最小改变而准确实现目标力。与传统弓丝材料相比,力更恒定且能够调整至所希望的量级。

通过模拟每个独立齿在人口腔中在体温下经受的力而对MMM弓丝进行测试。这可通过使用独立载荷单元实现,在模拟的齿运动时,独立载荷单元测量水平力和竖直力。由此,沿每个方向经受的最大力和最小力可被量化和比较。在一些情况下,可使用适合的力构形,其典型地由正畸工作性质决定。各力值之间的距离代表相对力梯度。传统弓丝的竖直力的幅度将减小。类似地,与传统弓丝相比,MMM弓丝的摩擦力也将减小。

仍与传统弓丝相比,MMM弓丝的在空间上控制沿弓丝的力的能力好像能够实现弓丝的力构形的更大灵活性(flexibility)。

进一步地,MMM弓丝的腐蚀性能评估显示:MMM弓丝足够结实以承受人口腔中典型经历的腐蚀环境。镍钛合金MMM弓丝的长期镍离子释放在以体温培养的人造唾液溶液中进行测量。腐蚀性能评估显示:MMM弓丝对于临床应用而言是容许的,因为固有弓丝材料保持基本不变。

使用MMM弓丝,可制造出预扭矩的弓丝,在上弓的前部沿唇侧或舌侧施加扭矩。由于传统弓丝而经受的大力常常导致患者不适,正畸医生典型地常需要对此进行校正。不过,由于弓丝的复杂几何形状,因而精确降低扭力的方法在传统上是不切实际的。与此不同的是,由MMM弓丝提供的分辨率和处理灵活性能够为患者提供更可控的力。若使用MMM弓丝,则弓丝施加的扭矩量可能存在可控的减小,这可以当MMM弓丝达到约等于体温的相变温度时启动。预扭矩MMM弓丝可被制造为具有可变力,这可使患者更舒适并减少患者临床就医。

在此所述的系统、设备和方法也可用于牙髓锉或整孔钻。图13例示出使用MMM的牙髓锉1700的侧视图。牙髓锉包括手柄1702和锉杆1704。锉杆1704可沿其长度包括多个磨点1706。牙髓锉和整孔钻用于多目的,但特别用于清洁和成形患者根管。通常优选的是,牙髓锉在三维上适应于给定根管形状。利用MMM(例如MMM线)制成的牙髓锉或整孔钻可通过控制锉杆1704的灵活性而增强牙髓锉的适应性。使锉杆1704沿其长度具有不同的伪弹性性能以及挠性(flexibility),可增大锉杆1704对根管形状的适应性,而同时不会塑性过高而减小牙髓锉1700从根管去除材料的能力。

在此所述的系统、设备和方法也可用于医用内支架。图14A例示出沿其长度具有不同直径的动脉(例示图的作者为F.Aurichio)。由于直径不同,因而动脉可将不同压力提供到被插入动脉中的内支架上。动脉1802的示例性力构形例示在图14A中。如图14B中所示,由MMM1804制造的内支架可被构造为具有呈不同伪弹性的区域;在此示例中为较大弹性区域1806和较小弹性区域1808。这样,预定用于较小直径动脉的内支架部分可被构造为比预定用于较大直径动脉的内支架部分更具弹性。使内支架1804的伪弹性根据动脉直径而不同,可以使医生更简单地安装并避免可能的组织损伤和内支架损伤。

在此所述的系统、设备和方法也可用于眼镜领域。图15例示出使用MMM的眼镜1900的立体图。眼镜1900包括:具有两个臂的框架。所述臂的第一部分1902位于臂的近端处,可由未处理的形状记忆材料构成,使第一部分1092不具有相变温度。第二部分1904位于臂的侧端处,可使用在此所述的处理方式处理以具有形状记忆。在一个示例中,当第二部分1904处于室温时,第二部分1904与第一部分1902大致共线地对准。当第二部分1904与第一部分1902大致共线地对准时,眼镜1900可安置在用户的头部上,与在框架臂端处具有圆滑构形的传统眼镜相比更轻松,眼镜1900不必围绕用户耳部设置(maneuver)。在眼镜1900安置在用户头部上之后,用户的身体热量将使第二部分1904的温度升高。当第二部分1904的温度达到相变温度时,第二部分1904呈现出与传统眼镜类似的曲线构形。由于避免围绕用户耳部设置,因而第二部分1904的曲线可被构造为围绕用户耳部贴紧就位(snuggly seat),从而提供可靠匹配(secure fit)。此外,MMM的伪弹性挠性(flexibility)可增强眼镜1900对破损或断裂的抵抗性。

在此所述的系统、设备和方法也可用于致动器。图16例示出使用MMM的线性致动器2000的侧视图。线性致动器2000包括静止部分2002和致动部分2004。静止部分2002可由未处理的形状记忆材料构成,使得静止部分2002不具有相变温度。致动部分2004位于静止部分2002的侧端处,并可使用在此所述的处理方式处理以具有形状记忆。在一个示例中,在第一温度,致动部分2004的长度沿纵向轴线更致密。当采取第二温度时,致动部分2004的长度由于形状记忆材料达到相变温度而增大。在一些情况下,致动部分2004可被处理为具有多个相变温度,使得致动部分2004可被构造为:实现相对于静止部分2002的不同的长度。

在进一步的情况下,静止部分2002可被处理为具有相变温度。在这些情况下,致动部分2004可位于静止部分2002的腔中。当采取第二温度时,静止部分2002改变形状以将致动部分2004至少部分地推出静止部分2002的腔外,并使致动部分2004线性地致动。在其它情况下,MMM的相同原理可用于制造其它类型的致动器,例如旋转式致动器、阀致动器、或类似物。使用MMM的致动器可实现容易的制造、更少的成本、和更少的维护,这是因为与传统致动器相比具有更少的运动零件。MMM致动器可自身用于各种应用中,例如作为温度启动开口用于饮料容器。

在一些情况下,线性致动器2000在功能上可类似于电动致动器。线性致动器2000可连接到电路。当电流从电路通过进入线性致动器中时,电阻式加热可发生在线性致动器2000的至少一部分中。电阻式加热可使得线性致动器2000的部件达到相变温度并由此致动线性致动器2000。与马达驱动、气动、或以类似方式致动的致动器相比,具有电动致动器将可以降低成本和减少维护需求。电阻式加热可用于任何MMM应用以使MMM达到相变温度;进一步的示例性应用可包括:电动开关、阀、或类似物。

在此所述的系统、设备和方法也可用于织物领域中。图17例示出使用MMM的织物2100(在此情况下为外衣)的立体图。织物2100包括:第一翼片2102和第二翼片2104。织物2100的覆盖翼片2102、2104的材料可使用在此所述的处理方式处理,以具有各种相变温度。在“正常”温度下,翼片2102、2104可被构造为覆盖织物2100中的相应的孔。当温度改变时,翼片2102、2104可被构造为露出织物2100中的相应的孔。在一些情况下,第一翼片2102可具有不同于第二翼片2104的相变温度。通过这种方式,当用户穿着织物2100而且用户体温和/或周围温度达到预定阈值时,翼片2102、2104自动张开以允许用户纳凉。在一些情况下,翼片2102、2104可连接到电路而使得:当电流通过至翼片2102、2104中时(自动进行或由用户选择进行),翼片2102、2104进行电阻式加热并达到相变温度。

在此所述的系统、设备和方法也可用于运动装备领域中。图18例示出使用MMM的高尔夫球杆2200的侧视图。高尔夫球杆2200包括杆2202和头2204。头2204包括主体2206和安装到主体2206的前部处的面2208。在进一步的情况下,面2208可集成到主体2206。在此示例中,面2208由MMM平面片构成或者由附贴到一起的各MMM条构成。面2208可被构造为使得面2208的不同区域具有不同的伪弹性性能。将面2208的不同区域构造为具有不同伪弹性性能可允许高尔夫装备制造者改变面2208的不同区域的特性;例如,面2208的不同区域可以具有不同的球吸收时间、不同的弹性性能、不同的硬度、或类似特性。将面2208的不同区域构造为具有不同伪弹性性能将可允许特定的运动优点;例如,当面2208的中心被击打时允许更大的抛射距离,而无需使面2208的其余部分过度塑形。

在此所述的系统和方法以及整体使用这种处理方式生产的MMM的前述应用和用途仅为可预想应用类型的样本示例。

在以上描述中,处于阐释目的,提出多个细节以提供对各实施例的透彻理解。不过,对于本领域技术人员应显见的是,可以不需要这些具体细节。在其它情况下,公知的电结构和电路以结构示意图显示,以避免混淆理解。例如,对于在此所述实施例的方案是否作为软件例程、硬件电路、固件、或它们的组合来实施,并未提供具体细节。

本公开内容的各实施例可实现为存储于机器可读介质(也被称为在其中实施有计算机可读程序代码的计算机可读介质、处理器可读介质、或计算机可用介质)中的计算机程序产品。机器可读介质可为任意适合的实体的、非暂时性介质,包括磁、光、或电存储介质,包括:磁盘、光盘只读存储器(CD-ROM)、存储装置(易失性的或非易失性的)、或类似的存储机构。机器可读介质可容纳多组指令、编码序列、配置信息、或其它数据,其在被执行时使处理器执行根据本公开内容的实施例的方法中的步骤。本领域技术人员应认识到,实施所述实施方案所必要的其它指令和操作也可存储在机器可读介质上。存储在机器可读介质上的指令可由处理器或其它适合处理装置执行,并可与执行所述任务的电路交互。

上述实施例仅作为示例。对于特定实施例,本领域技术人员可进行改变、修改和变化。权利要求书的范围应不局限于在此所述的特定实施例,而是应按照与说明书相一致的方式作为整体理解。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1