用于损伤评估的系统和方法与流程

文档序号:13517011阅读:333来源:国知局
用于损伤评估的系统和方法与流程

相关申请

本申请要求于2014年11月3日提交的美国临时申请序列no.62/074,619的权益和优先权,该申请整体上通过引用并入本文。

本公开一般而言涉及消融可视化及监视系统及方法。



背景技术:

心房颤动(af)是世界上最常见的持续性心律失常,当前影响数百万人。在美国,af预计到2050年将影响1000万人。af与增加的死亡率、发病率和受损的生活质量相关联,并且是中风的独立风险因素。发展的af的严重长期风险突出了疾病的公共卫生负担,仅仅在美国,该疾病的年治疗费用就超过了70亿美元。

已知af患者的大多数发作是由源自延伸到肺静脉(pv)的肌袖内的病灶(focal)电活动引发的。心房颤动也可以由上腔静脉(superiorvenacava)或其它心房结构(即,心脏的传导系统内的其它心脏组织)内的病灶活动引发。这些病灶引发物还可以造成由折返性(reentrant)电活动(或转子)驱动的心房心动过速,折返性电活动然后可以分裂成作为心房颤动的特性的多个电子小波。此外,长时间的af可以造成心脏细胞膜的功能更改,并且这些改变进一步延续心房颤动。

射频消融(rfa)、激光消融和低温消融是医生用于治疗心房颤动的最常见的基于导管的标测和消融系统的技术。医生使用导管来指引能量,以或者破坏病灶引发物或者形成将引发物与心脏的剩余传导系统隔离的电隔离线。后一种技术常见地用于所谓的肺静脉隔离(pvi)。但是,af消融手术的成功率保持相对停滞,术后一年复发的估计高达30%至50%。导管消融后复发的最常见原因是pvi线中的一个或多个间隙。间隙通常是在手术期间可以暂时地阻断电信号但是随时间推移而愈合并促进心房颤动复发的低效或不完全的损伤(lesion)的结果。

在大多数使用冲洗消融导管的患者体内能够实现pv隔离(pvi),但随着时间的推移可能会发生af的复发。复发被认为是由于从恢复的部位、消融线中的间隙或者在初始手术期间未实现透壁性的被消融部位的pv重新连接。因此,损伤评估在导管消融手术中非常重要,使得操作者可以在肺静脉隔离手术期间递送可能的最佳损伤。改善的损伤质量可以减少心房颤动复发。

实时光学组织表征可以提供在消融期间的电极-组织接触和损伤进展的优异且先前不可能的评估。它还可以提供关于导管尖端的部位处的心肌、胶原蛋白、弹性蛋白组织成分的高度有价值的信息,并且代表对心脏消融的生物物理学的复杂性质的理解上的新的前沿。损伤深度与fnadh信号强度的降低直接相关。应当使用这个信息来优化消融功率和消融能量施用时间的选择,以最大化损伤形成并改善消融手术的成功。因此,需要用于实时光学组织表征的系统和方法。



技术实现要素:

提供了消融可视化及监视系统及方法。

根据本公开的一些方面,提供了一种方法,该方法包括将消融能量施加到组织以在组织中形成损伤;用光能(诸如,例如uv光)照射组织以激发组织中的nadh,其中组织在径向方向、轴向方向或两个方向上被照射;监视被照射的组织中的nadh荧光的水平,以确定nadh荧光的水平何时从消融开始时的基础水平降低到预定的较低水平;并且,当nadh荧光的水平达到预定的较低水平时停止对组织的消融。

根据本公开的一些方面,提供了一种用于监视组织消融的系统,该系统包括导管,该导管包括导管主体和定位在导管主体的远端处的远侧尖端,该远侧尖端限定具有一个或多个开口的照明腔,该一个或多个开口用于在照明腔和组织之间交换光能;与远侧尖端连通的消融系统,用于将消融能量递送至远侧尖端;可视化系统,包括光源、光测量仪器以及与光源和光测量仪器连通并且延伸通过导管主体进入远测尖端的照明腔的一根或多根光纤,其中该一根或多根光纤被配置为将光能传递入和传递出照明室;以及处理器,与消融能量源、光源和光测量仪器连通,该处理器被编程为收集从利用光能(诸如,例如uv光)照射的组织反射的光,其中照射该组织以激发组织中的nadh,同时消融能量被施加到组织以在组织中形成损伤;监视被照射的组织中的nadh荧光的水平,以确定nadh荧光的水平何时从消融开始时的基础水平降低到预定的较低水平;并且,当nadh荧光的水平达到预定的较低水平时使得组织的消融停止。

附图说明

将参考附图进一步解释目前公开的实施例,其中,贯穿若干视图,由相似的附图标记指代相似的结构。所示出的附图不一定是按比例的,而是将重点一般放在例示目前公开的实施例的原理上。

图1a例示了本公开的消融可视化及监视系统的实施例。

图1b是与本公开的消融可视化及监视系统结合使用的可视化系统的实施例的图。

图1c例示了适于与本公开的系统和方法结合使用的示例性计算机系统。

图2a-2e例示了本公开的导管的各种实施例。

图3例示了根据本公开的用于监视导管和组织之间的接触的示例性荧光频谱图。

图4例示了各种组织成分的示例性频谱图。

图5和图6分别例示了在形成心内膜损伤和心外膜损伤期间fnadh的随时间推移的图。

图7a、图7b和图7c例示了根据本公开的用于监视导管的稳定性的示例性荧光频谱图。

图8a和图8b例示了随着导管从健康组织行进到损伤的边缘并然后行进到损伤的中心的示例性fnadh信号。

图9是在施加消融能量期间随时间推移比较fnadh与阻抗的曲线图。

虽然上述附图阐述了目前公开的实施例,但是其它实施例也是预期的,如在讨论中所指出的。作为表示而非限制,本公开给出例示性的实施例。本领域技术人员可以设计出众多其它修改和实施例,这些修改和实施例落入目前公开的实施例的原理的范围和精神内。

具体实施方式

本公开提供了用于损伤评估的方法和系统。在一些实施例中,本公开的系统包括被配置为起到两个功能的导管:将消融治疗递送到靶组织的治疗功能以及从导管和组织的接触点收集特征频谱以访问损伤的诊断功能。在一些实施例中,本公开的系统和方法可被用于通过使用烟酰胺腺嘌呤二核苷酸氢(nadh)荧光(fnadh)对组织进行成像。一般而言,系统可以包括具有用于在组织和导管之间交换光的光学系统的导管。在一些实施例中,本系统允许由紫外线(uv)激发所诱导的组织的nadh荧光或其缺乏的直接可视化。从组织返回的nadh荧光特征可以被用来确定组织和导管系统之间的接触的质量。

在一些实施例中,导管在其远端处包括消融治疗系统并且被耦合到包括光源(诸如激光器)和光谱仪的诊断单元。导管可以包括从光源和光谱仪延伸到导管的远侧尖端的一根或多根光纤,以向导管和组织之间的接触点提供照射光并且从接触点接收并向光谱仪递送特征nadh频谱。特征nadh频谱可以被用来评估靶组织中的损伤。在一些实施例中,本公开的方法包括照射具有损伤的组织、接收组织的特征频谱以及基于来自组织的特征频谱执行损伤的定性评估。分析可以在消融损伤形成之前、期间和之后实时地发生。应当注意的是,虽然本公开的系统和方法是结合心脏组织和nadh频谱描述的,但是本公开的系统和方法可以与其它类型的组织和其它类型的荧光结合使用。

系统:诊断单元

参照图1a,用于提供消融治疗的系统100可以包括消融治疗系统110、可视化系统120以及导管140。在一些实施例中,系统100还可以包括一个或多个冲洗系统170、超声系统190以及导航系统200。系统还可以包括显示器180,其可以是单独的显示器或可视化系统120的一部分,如以下所描述的。在一些实施例中,该系统包括rf发生器、冲洗泵170、冲洗尖端消融导管140以及可视化系统120。

在一些实施例中,消融治疗系统110被设计为向导管140供应消融能量。消融治疗系统110可以包括一个或多个能量源,该一个或多个能量源可以生成射频(rf)能量、微波能量、电能、电磁能、低温能量、激光能量、超声能量、声能、化学能、热能或者可以被用来消融组织的任何其它类型的能量。在一些实施例中,导管140适于消融能量,其中消融能量是rf能量、低温能量、激光、化学、电穿孔、高强度聚焦超声或超声以及微波中的一种或多种。

参照图1b,可视化系统120可以包括光源122、光测量仪器124和计算机系统126。

在一些实施例中,光源122可以具有在靶荧光团(在一些实施例中是nadh)吸收范围内的输出波长,以便在健康心肌细胞中诱导荧光。在一些实施例中,光源122是可以生成uv光以激发nadh荧光的固态激光器。在一些实施例中,波长可以是大约355nm或355nm+/-30nm。在一些实施例中,光源122可以是uv激光器。激光器生成的uv光可以提供多得多的用于照明的功率,并且可以更高效地耦合到如在导管140的一些实施例中所使用的基于光纤的照明系统中。在一些实施例中,本系统可以使用具有高达150mw的可调节功率的激光器。

光源122上的波长范围可以由所关注的解剖结构界定,或者用户特定选择造成最大nadh荧光而不激发胶原蛋白的过多荧光的波长,其中胶原蛋白的荧光在仅稍短的波长处表现出吸收峰。在一些实施例中,光源122具有从300nm至400nm的波长。在一些实施例中,光源122具有从330nm至370nm的波长。在一些实施例中,光源122具有从330nm到355nm的波长。在一些实施例中,可以使用窄带的355nm的源。光源122的输出功率可以足够高,以产生可恢复的组织荧光特征,但还没有高到诱导细胞损害。如下面将要描述的,光源122可以耦合到光纤,以将光递送到导管140。

在一些实施例中,本公开的系统可以利用光谱仪作为光测量仪器124。在一些实施例中,光测量仪器124可以包括连接到计算机系统126的相机,用于分析和观察组织荧光。在一些实施例中,相机对于对应于nadh荧光的波长可以具有高的量子效率。一种这样的相机是andorixondv860。光谱仪124可以耦合到成像束,其中成像束可以延伸到导管140中,以进行组织的可视化。在一些实施例中,用于光谱的成像束和用于照明的光纤可以组合。在435nm和485nm之间(在一些实施例中,为460nm)的光学带通滤波器可以插入在成像束和相机之间,以阻挡nadh荧光发射带之外的光。换句话说,可以利用具有50nm带宽的、中心波长为460nm的滤波器。在一些实施例中,其它光学带通滤波器可以插入在成像束和相机之间,以阻挡根据正被成像的组织的峰值荧光选择的nadh荧光发射带之外的光。

在一些实施例中,光测量仪器124可以是ccd(电荷耦合器件)相机。在一些实施例中,可以选择光谱仪124,使得其能够收集尽可能多的光子并且对图像贡献最小的噪声。通常,对于活细胞的荧光成像,ccd相机应当在大约460nm处具有至少在50-70%之间的量子效率,指示30-50%的光子将被忽略。在一些实施例中,相机在460nm处具有大约90%的量子效率。相机可以具有80khz的采样率。在一些实施例中,光谱仪124可以具有8e-(电子)或更少的读出噪声。在一些实施例中,光谱仪124具有3e-的最小读出噪声。在本公开的系统和方法中可以使用其它光测量仪器。

光纤可以将收集的光递送到阻挡355nm的反射激发波长的长通滤波器,但是使得从组织发射的在滤波器的截止点(cutoff)之上的波长处的荧光通过。来自组织的经滤波的光可以然后由光测量仪器124捕获并分析。计算机系统126从光测量仪器124获取信息并将其显示给医生。

在一些实施例中,通过分析光数据所产生的数字图像可以被用来进行损伤的2d和3d重建,从而示出尺寸、形状和分析所需的任何其它特性。在一些实施例中,图像束可以连接到光测量仪器124,光测量仪器124可以从nadh荧光(fnadh)生成正在被检查的损伤的数字图像,该数字图像可以显示在显示器180上。在一些实施例中,这些图像可以实时地显示给用户。可以通过使用软件来分析图像,以获得实时细节(例如,在图像的特定部位的强度或辐射能量),以帮助用户确定是否需要或期望进一步的干预。在一些实施例中,nadh荧光可以被直接传送到计算机系统126。

在一些实施例中,可以分析由光测量仪器124获取的光学数据,以提供关于在消融期间和之后的损伤的信息,包括但不限于损伤深度和损伤尺寸。在一些实施例中,可以分析来自光测量仪器的数据,以确定导管140是否与心肌表面接触,以及导管尖端对心肌表面施加多少压力。在一些实施例中,分析来自光测量仪器124的数据,以确定组织中存在胶原蛋白或弹性蛋白。在一些实施例中,分析来自光测量仪器的数据,并经由图形用户界面以向用户提供关于损伤进展、损伤质量、心肌接触、组织胶原蛋白含量和组织弹性蛋白含量的实时反馈的方式可视化地呈现给用户。

返回去参照图1a,在一些实施例中,本公开的系统100还可以包括超声系统190。导管140可以配备有与超声系统190连通的超声换能器。在一些实施例中,超声可以示出组织深度,组织深度与代谢活动或损伤深度相结合可以被用来确定损伤是否是透壁的。在一些实施例中,超声换能器可以位于导管140的远侧区段中,并且可选地位于远侧电极的尖端中。超声换能器可以被配置为或者在导管尖端的下方或者在邻近导管尖端处评估组织厚度。在一些实施例中,导管140可以包括适于提供覆盖其中导管尖端相对垂直于心肌或相对平行于心肌的情况的深度信息的多个换能器。

参照图1a,如上面所指出的,系统100还可以包括冲洗系统170。在一些实施例中,冲洗系统170将生理盐水泵入导管140中,以在消融治疗期间冷却尖端电极。这可以有助于防止形成蒸汽爆裂(steampops)和炭(char)(即,粘附到尖端的凝块,该凝块可以最终离开原位(dislodge)并造成溶栓事件)。在一些实施例中,冲洗流体相对于导管140外部的压力维持在正压力,用于连续地冲刷一个或多个开口154。

参照图1a,系统100还可以包括用于定位和导航导管140的导航系统200。在一些实施例中,导管140可以包括与导航系统200连通的一个或多个电磁位置传感器。在一些实施例中,电磁位置传感器可以被用来在导航系统200中定位导管的尖端。传感器从源位置拾取电磁能量,并通过三角测量或其它手段计算位置。在一些实施例中,导管140包括多于一个适于在导航系统显示器上给出导管主体142的位置和导管主体的曲率的换能器。在一些实施例中,导航系统200可以包括一个或多个磁体,并且由磁体在电磁传感器上产生的磁场的更改可以将导管的尖端偏转到期望的方向。还可以采用其它导航系统,包括手动导航。

计算机系统126可以被编程为对系统100的各种模块进行控制,包括例如对光源122的控制、对光测量仪器124的控制,对应用特定软件的执行、对超声、导航和冲洗系统的控制以及类似操作。

作为示例,图1c示出了可以结合本公开的方法和系统使用的典型处理体系架构308的图。计算机处理设备340可以耦合到显示器340aa,以进行图形输出。处理器342可以是能够执行软件的计算机处理器342。典型的示例可以是计算机处理器(诸如处理器)、asic、微处理器等。处理器342可以耦合到存储器346,存储器346通常是用于在处理器342执行时储存指令和数据的易失性ram存储器。处理器342还可以耦合到储存设备348,储存设备348可以是非易失性储存介质,诸如硬盘驱动器、flash驱动器、带驱动器、dvdrom或类似设备。尽管没有示出,但是计算机处理设备340通常包括各种形式的输入和输出。i/o可以包括网络适配器、usb适配器、蓝牙无线电收发装置、鼠标、键盘、触摸板、显示器、触摸屏、led、振动设备、扬声器、麦克风、传感器,或用于与计算机处理设备340一起使用的任何其它输入或输出设备。处理器342还可以耦合到其它类型的计算机可读介质,包括但不限于电子、光学、磁或其它能够为处理器(诸如处理器342)提供计算机可读指令的储存或传输设备。各种其它形式的计算机可读介质可以向计算机传输或运送指令,包括有线的和无线的路由器、专用或公共网络或者其它传输设备或信道。指令可以包括来自任何计算机编程语言(包括例如c、c++、c#、visualbasic、java、python、perl和javascript)的代码。

程序349可以是包含指令和/或数据的计算机程序或计算机可读代码,并且可以储存在储存设备348上。指令可以包括来自任何计算机编程语言(包括例如c、c++、c#、visualbasic、java、python、perl和javascript)的代码。在典型的场景中,处理器204可以将程序349的指令和/或数据的一些或全部加载到存储器346中,以供执行。程序349可以是任何计算机程序或进程,包括但不限于web浏览器、浏览器应用、地址登记进程、应用或者任何其它计算机应用或进程。程序349可以包括各种指令和子例程,当其被加载到存储器346中并由处理器342执行时,使得处理器342执行各种操作,其中一些或全部操作可以实现本文公开的用于管理医疗护理的方法。程序349可以储存在任何类型的非瞬态计算机可读介质上,诸如但不限于硬盘驱动器、可移除驱动器、cd、dvd或任何其它类型的计算机可读介质。

在一些实施例中,计算机系统可以被编程为执行本公开的方法的步骤,并且控制本系统的各个部分,以执行实现本公开的方法的必要操作。在一些实施例中,处理器可以被编程为收集由组织反射的光(其中利用uv光照射组织以激发组织中的nadh),同时将消融能量施加到组织以在组织中形成损伤;监视被照射的组织中的nadh荧光的水平,以确定nadh荧光的水平何时从消融开始时的基础水平降低到预定的较低水平;并且当nadh荧光的水平达到预定的较低水平时(自动地或通过提示用户)使得组织的消融停止。在一些实施例中,可以收集从被照射的组织反射的荧光(包括但不限于nadh荧光)的频谱,以区分组织类型。在一些实施例中,利用具有在大约300nm和大约400nm之间的波长的光照射组织。在一些实施例中,监视具有在大约450nm和470nm之间的波长的反射光的水平。在一些实施例中,被监视的频谱可以在410nm和520nm之间。附加地或可替代地,可以监视更宽的频谱,诸如(作为非限制性示例)在375nm和575nm之间。在一些实施例中,可以同时向用户显示nadh荧光频谱和更宽的频谱。在一些实施例中,可以通过选自由射频(rf)能量、微波能量、电能、电磁能、低温能量、激光能量、超声能量、声能、化学能、热能及其组合所组成的组的消融能量来创建损伤。在一些实施例中,处理器可以在nadh荧光峰被检测到时(自动地或通过提示用户)开始手术,因此它可以在整个手术中被监视。如上面所指出的,这些方法可以与其它诊断方法(诸如超声监视)结合使用。

系统:导管

如上面所讨论的,导管140可以基于容纳光纤的标准消融导管,其中光纤用于照明和光谱。在一些实施例中,导管140是可转向的冲洗rf消融导管,其可以经由标准的经中隔手术(transseptalprocedure)和常见的进入工具(accesstools)通过护套被递送到心内膜空间。在导管147的手柄上,为了治疗,可以存在针对标准rf发生器和冲洗系统170的连接。导管手柄147还使光纤通过,光纤然后连接到诊断单元,以获得组织测量。

返回去参照图1a,导管140包括具有近端144和远端146的导管主体142。导管主体142可以由生物相容性材料制成,并且可以足够柔软以能够将导管140转向和推进到消融的部位。在一些实施例中,导管主体142可以具有刚度可变的区。例如,导管140的刚度可以从近端144朝着远端146增加。在一些实施例中,导管主体142的刚度被选择为使得能够将导管140递送到期望的心脏位置。在一些实施例中,导管140可以是可转向的冲洗射频(rf)消融导管,其可以通过护套被递送到心内膜空间,并且在心脏左侧的情况下,经由使用常见的进入工具的标准的经中隔手术。导管140可以包括在近端144处的手柄147。手柄147可以与导管的一个或多个内腔连通,以允许仪器或材料传递通过导管140。在一些实施例中,为了治疗,手柄147可以包括针对标准rf发生器和冲洗系统170的连接。在一些实施例中,导管140还可以包括一个或多个被配置为容纳用于照明和光谱的光纤的适配器。

参照图1a,在远端146处,导管140可以包括远侧尖端148,该远侧尖端148具有侧壁156和前壁158。前壁158可以是例如扁平的、锥形的或圆顶状的。在一些实施例中,远侧尖端148可以被配置为充当用于诊断目的(诸如用于电描记图感测)、用于治疗目的(诸如用于发射消融能量)或二者兼有的电极。在需要消融能量的一些实施例中,导管140的远侧尖端148可以用作消融电极或消融元件。

在实施rf能量的实施例中,将远侧尖端148耦合到rf能量源(在导管的外部)的布线可以被传递通过导管的内腔。远侧尖端148可以包括与导管的一个或多个内腔连通的端口。远侧尖端148可以由任何生物相容性材料制成。在一些实施例中,如果远侧尖端148被配置为充当电极,则远侧尖端148可以由金属(包括但不限于铂、铂-铱、不锈钢、钛或类似材料)制成。

参照图2a,光纤或成像束150可以从可视化系统120被传递通过导管主体142,并进入由远侧尖端148限定的照明腔或隔室152。远侧尖端148可以设有一个或多个开口154,用于在照明腔152与组织之间交换光能。在一些实施例中,即使具有多个开口154,远侧尖端148作为消融电极的功能也不受连累。开口可以安置在前壁156上、侧壁158上或两者上。开口154还可以用作冲洗端口。光被光纤150递送到远侧尖端148,在那里它照射远侧尖端148附近的组织。该照明光或者被反射或者使组织发荧光。由组织反射和由组织发荧光的光可以由远侧尖端148内的光纤150收集并被运送回可视化系统120。在一些实施例中,相同的光纤或光纤束150可以被用来既指引远侧尖端外部的光以照射导管140外部的组织,又收集来自组织的光。

参照图2a,在一些实施例中,导管140可以具有可视化内腔161,可以通过该可视化内腔161将光纤150推进通过导管主体142。可以将光纤150推进通过可视化内腔161,进入照明腔152,以照射组织并通过开口154接收反射光。根据需要,可以推进光纤150通过开口154超过照明腔152。

如图2a和图2b中所示,除了可视化内腔161,导管140还可以包括用于将冲洗流体从冲洗系统170传递到远侧尖端148中的开口154(冲洗端口)的冲洗内腔163和用于诸如例如通过将用于rf消融能量的导线传递通过消融内腔164将消融能量从消融治疗系统110传递到远侧尖端148的消融内腔164。应当注意的是,导管的内腔可以被用于多个用途,并且多于一个内腔可以被用于相同的用途。此外,虽然图2a和图2b示出内腔是同心的,但是可以使用内腔的其它配置。

如图2a和图2b中所示,在一些实施例中,导管的中心内腔可以被用作可视化内腔161。在一些实施例中,如图2c中所示,可视化内腔161可以相对于导管140的中心通路偏离地设定。

在一些实施例中,光也可以被直接径向地指引离开侧壁156中的开口154,可替代地或附加地,被指引通过前壁158中的开口。以这种方式,照明腔152和组织之间的光能交换可以相对于导管的纵向中心轴线轴向地、径向地或两者兼有地在多条路径上发生,如图2e中所示。当解剖结构不允许导管尖端与靶部位正交时,这是有用的。当需要增加的照明时,这也可以是有用的。在一些实施例中,附加的光纤150可以被使用并且可以在相对于导管140的径向方向上偏转,以允许照明和返回的光沿着导管的长度离开和进入。

参照图2d,为了使得能够(相对于导管的纵向中心轴线轴向地和径向地)在多条路径上在照明腔152与组织之间进行光能交换,可以在照明腔152中设置光指引构件160。光指引构件160可以将照明光指引到组织,并且将通过远侧尖端148内的一个或多个开口154返回的光指引到光纤150。光指引构件160也可以由任何生物相容性材料(诸如例如不锈钢、铂、铂合金、石英、蓝宝石、熔融石英、金属化塑料或其它类似材料)制成,其具有反射光或可以被修改成反射光的表面。光指引构件160可以是圆锥形的(即,光滑的)或是具有任意数量的侧面的有小面的(faceted)。光指引构件160可以被成形为使光以任何期望的角度弯曲。在一些实施例中,光指引构件160可以被成形为将光反射成仅通过一个或多个开口。在一些实施例中,用于光指引构件160的材料选自当暴露于310nm至370nm之间的照明时不发荧光的材料。在一些实施例中,如图2d中所示,光指引构件160可以包括通过反射镜的中心线的一个或多个孔162,这些孔允许照明和反射光在两个方向,即轴向地,直接与导管140对齐地,通过。当远侧尖端148的最远表面与解剖结构接触时,这种轴向路径可以是有用的。当解剖结构不允许远侧尖端148的最远表面与靶部位接触时,如有时候在治疗心房颤动时常见的肺静脉隔离手术期间患者的左心房的情况下,替代的径向路径(如图2e中所示)可以是有用的。在一些实施例中,透镜作用(lensing)可能不是在所有通路中都是必需的,并且光学系统与冲洗系统170是相容的,因为光通过冷却流体(其常常是生理盐水)。冲洗系统170还可以用来从孔162冲刷血液,从而保持光学部件清洁。

使用的方法

在一些实施例中,提供了用于监视组织消融的方法。这种方法可以通过显示nadh荧光的水平来提供能够影响损伤形成的各种因素的实时可视化反馈,如下所述。

在一些实施例中,该方法包括向组织施加消融能量以在组织中形成损伤;用uv光照射组织以激发组织中的nadh,其中组织在径向方向、轴向方向或两个方向上被照射;监视被照射的组织中的nadh荧光的水平,以确定nadh荧光的水平何时从消融开始时的基础水平降低到预定的较低水平;并且当nadh荧光的水平达到预定的较低水平时停止对组织的消融。在一些实施例中,可以收集从被照射的组织反射的荧光(包括但不限于nadh荧光)的频谱,以区分组织类型。在一些实施例中,利用具有在大约300nm和大约400nm之间的波长的光照射组织。在一些实施例中,监视具有在大约450nm和470nm之间的波长的反射光的水平。在一些实施例中,被监视的频谱可以在410nm和520nm之间。附加地或可替代地,可以监视更宽的频谱,诸如(作为非限制性示例)在375nm和575nm之间。在一些实施例中,可以通过选自由射频(rf)能量、微波能量、电能、电磁能、低温能量、激光能量、超声能量、声能、化学能、热能及其组合所组成的组的消融能量来创建损伤。在一些实施例中,方法可以在nadh荧光峰被检测到时开始,因此它可以在整个手术中被监视。如上面所指出的,这些方法可以与其它诊断方法(诸如超声监视)结合使用。

损伤前解剖评估

在大约350至大约360nm波长处的心脏组织的照明可以引起来自存在于心肌细胞的线粒体中的nadh的自动荧光响应。心肌fnadh响应的变化性可以指示导管被定位成抵着组织。在一些实施例中,可以捕获从350nm至850nm(或者如图3中所示从400nm至700nm)范围的整个频谱特征,其中nadh的峰值荧光在460nm左右出现。循环系统中的血液能够吸收光,因此当导管在血池中时不会检测到荧光,这将指示导管和组织之间没有接触。当导管接触心肌时,引起特性组织荧光频谱特征,这将指示良好的接触响应。另一方面,如果以过大的力推动导管而造成隆起,则短暂的缺血会导致荧光升高,并且频谱特征偏移到基线之上。这种反馈的使用可以帮助减少在导管消融和操纵期间穿孔的风险,将帮助避免在次优的组织接触部位处的消融,并因此减少rf消融时间。

损伤形成评估

返回频谱的信息内容可以在损伤形成期间实时获得。频谱的分析和显示可以添加损伤的定性评估,因为是它实时形成的。图4示出了在损伤形成期间来自355nm的照明源的返回频谱。fnadh峰在大约450nm和550nm之间。在消融期间,当形成成功的损伤时,在近似450nm和550nm之间的返回频谱的幅值随时间的推移显著下降。该效果是由于当细胞被消融时的代谢活动的减少以及因此fnadh的减少。该下降可以被用作何时停止消融的指示。在一些实施例中,可以在fnadh信号减少80%或更多时停止消融。在一些实施例中,fnadh信号减少超过50%并且所得的稳态fnadh信号实现超过特定时间段(诸如5秒或10秒)可以被用作停止点。在一些实施例中,fnadh信号经特定时间段(诸如长达10秒)减少60%或更多并且所得的稳态fnadh信号超过5秒可以被使用。

参照图4,在一些实施例中,可以在更宽的频谱上收集频谱特征。例如,胶原蛋白组织的频谱图案不同于在健康心肌上察看到的频谱图案。当对胶原蛋白组织进行成像时,频谱的峰向左偏移。这可以被用户用来识别被视为主要是心肌的区域或者被更难消融的胶原蛋白覆盖的区域。

图5和图6还分别例示了在心内膜和心外膜表面上成功的rf损伤形成期间的该现象。在两组图中,与fnadh(450nm至470nm)相关的波长的峰幅值被归一化并相对于消融时间绘制。如在图5中可以看到的,在前10秒钟内存在峰幅值的急剧下降,并且在向心内膜施加能量的持续时间始终存在持续的低水平。图6示出了相同的图,但是rf能量被施加到心外膜。此外,在两个图中效果是类似的,从而示出本系统和方法对于从心脏的任一表面消融心律失常的技术会是有益的。这可能是重要的,因为损伤可以在比原来认为的更短的时间里良好地形成,并且持续的能量施加可能是过多的(参见下面关于阻抗的讨论)。在文献中已经充分记录了对血池或组织或二者的过多消融能量会导致显著的负面结果和手术性并发症,诸如心内蒸汽爆裂、心内膜下腔形成(心脏的内膜的心内膜剥脱(denudation))、血栓(凝块)形成、栓塞(凝块迁移)、中风,甚至死亡。因此,在确保最佳或甚至足够的损伤的同时限制能量递送的能力在心脏消融中是有益的。

参照图7a、图7b和图7c,在一些实施例中,可以监视频谱特征,以确定损伤形成期间的导管稳定性。例如,如图7a中所示,平滑的响应对应于稳定的导管,因为fnadh强度的逐渐减少指示消融损伤随着时间的推移形成。图7b示出了更尖锐、更嘈杂的响应,其对应于相对于组织间歇的或偏移的导管的尖端。图7c示出导管移动也可以在消融期间基于fnadh被拾取,当导管跳到不同的位置时,看到fnadh的瞬时偏移。

损伤后解剖评估

最后,询问组织以识别不良消融或不充分损伤形成的区域(即,残留间隙和导电区)的能力是当今消融范例中的挑战。使用多个导管仅是电可行的,并且耗时、费力,并利用相当多的透视(x射线辐射曝光)。该系统可以光学和可视化地识别间隙,而无需电询问,从而产生对先前消融中遗漏的区域的更快、更安全和更好的识别。这在急性手术以及重复消融或者先前失败的消融手术的情况下都具有重要意义。

图8a和图8b示出了本公开的系统和方法如何可以被用来评估先前形成的损伤,无论它们是慢性的还是新产生的。图8a示出了当导管尖端从健康心肌移动到现有损伤的边缘以及然后在现有损伤的中心上方时的导管尖端的顺序示意表示。图8b示出了在355nm照明下返回的光谱的归一化峰幅值的合成。fnadh中心的波长在与导管尖端接触的心肌的状态完全相关的信号幅度方面有显著差异。

与阻抗的比较

作为非限制性示例,图9对比在损伤形成期间的fnadh响应与治疗阻抗。阻抗是全世界的消融手术期间使用的标准指标。通常测量从导管的尖端到粘附到患者躯干的消融接地垫。医生预计在消融能量发作后的前2秒或3秒中看到近似10ohm至15ohm的下降。如果阻抗没有下降,则医生知道这可能是由于导管与心肌接触不良,于是损伤尝试被中断,并且导管被重新定位。可以使用上述方法来确保导管和组织之间的更好接触。如果阻抗确实下降并维持新的水平,则医生继续施加损伤形成能量达通常固定的时间(30秒至60秒或更长时间)。如果阻抗随着时间的推移而上升,则这是导管的尖端潜在过热的指标,并且如果不减弱的话会导致蒸汽形成的危险情况,从而导致心脏壁破裂或导管顶端的炭的积累,其中炭可能离开原位并变成栓塞体(embolicbody)。

如图9中所示,与治疗阻抗信噪比(snr)相比,fnadh光学响应的snr将表明fnadh是损伤形成质量的良好指标。fnadh幅值的幅度改变近似为80%,其中相同下降在归一化的阻抗上是小于10%。光学特征与阻抗的该比较也指示了相对于阻抗的对组织中的活动的更直接反映,因为阻抗常常更多是从电极通过血池到接地垫的电气路径的反映。通过使用光学方案,如果维持良好的接触,则光特征中的所有都来自组织,而没有任何源自血池。照此,光学特征比阻抗特征更加能高度反映组织中的活动。

阐述前述公开仅仅是为了例示本公开的各种非限制性实施例,而不是旨在作为限制。由于本领域普通技术人员可以想到结合本公开的精神和实质的本公开实施例的修改,因此目前公开的实施例应当被解释为包括在所附权利要求及其等同物的范围内的所有内容。本申请中引用的所有参考文献都整体上通过引用并入本文。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1