一种生物体内信息获取装置的制作方法

文档序号:11787266阅读:180来源:国知局
一种生物体内信息获取装置的制作方法
本发明涉及信息获取领域,具体涉及一种生物体内信息获取装置。
背景技术
:近年来,在内窥镜的领域中,提出了一种在胶囊形状的外壳内容纳摄像部、照明部、发送部等而构成的吞服型的胶囊型内窥镜,其中,上述摄像部获取被检体内部的图像信息,上述照明部对摄像部的拍摄部位进行照明,上述发送部无线发送由摄像部获取的图像信息。从作为被检体的患者的口中吞服该胶囊型内窥镜来将该胶囊型内窥镜导入到被检体内部。然后,在直到被自然排出为止的期间,该胶囊型内窥镜在体腔内随着其蠕动运动进行移动的同时依次拍摄体腔内的图像,并向体外无线发送所获取的图像信息。技术实现要素:为解决上述问题,本发明旨在提供一种生物体内信息获取装置。本发明的目的采用以下技术方案来实现:一种生物体内信息获取装置,包括细胞识别模块和信息获取模块,所述细胞识别模块用来确定生物种类,所述信息获取模块包括:信息获取部,其获取生物体内信息;电力源,其用于对上述信息获取部提供电力;磁传感器部,其检测从外部输入的磁信号,输出与该磁信号的检测状态相应的控制信号;脉冲数计数部,其对来自上述磁传感器部的脉冲信号的脉冲数进行计数;脉冲数判断部,其判断由上述脉冲数计数部计数得到的脉冲数是否为预定数以上;电力切断控制部,其在由上述脉冲数判断部判断为输入了预定数以上的脉冲的情况下,将上述电力源向上述信息获取部进行的电力提供从提供状态切换为切断状态。本发明的有益效果为:能够以简单的结构可靠地对被导入到被检体内部的生物体内信息获取装置的电源的接通或切断进行切换。附图说明利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。图1是本发明信息获取模块结构示意图;图2是细胞识别模块的结构示意图。附图标记:细胞识别模块1、细胞图像分割单元11、特征提取单元12、分类识别单元13。具体实施方式结合以下应用场景对本发明作进一步描述。应用场景1参见图1、图2,本应用场景的一个实施例的一种生物体内信息获取装置,包括细胞识别模块和信息获取模块,所述细胞识别模块用来确定生物种类,所述信息获取模块包括:信息获取部,其获取生物体内信息;电力源,其用于对上述信息获取部提供电力;磁传感器部,其检测从外部输入的磁信号,输出与该磁信号的检测状态相应的控制信号;脉冲数计数部,其对来自上述磁传感器部的脉冲信号的脉冲数进行计数;脉冲数判断部,其判断由上述脉冲数计数部计数得到的脉冲数是否为预定数以上;电力切断控制部,其在由上述脉冲数判断部判断为输入了预定数以上的脉冲的情况下,将上述电力源向上述信息获取部进行的电力提供从提供状态切换为切断状态。优选地,所述信息获取模块还包括间隔检测部,该间隔检测部检测来自上述磁传感器部的脉冲信号的输出间隔,所述脉冲数计数部在由上述间隔检测部检测出的输出间隔未超过预先设定的基准间隔的情况下,对上述脉冲信号的输出数进行更新。本优选实施例能够及时对数据进行更新。优选地,所述间隔检测部由计数器构成。本优选实施例获取信息更加准确。优选的,所述细胞识别模块1包括细胞图像分割单元11、特征提取单元12、分类识别单元13;所述细胞图像分割单元11用于区分由细胞图像采集模块采集的细胞图像中的背景、细胞核和细胞质;所述特征提取单元12用于对细胞图像的纹理特征进行提取;所述分类识别单元13用于根据纹理特征利用分类器实现对细胞图像分类识别。本优选实施例构建了细胞识别模块1的单元架构。优选的,所述细胞图像分割单元11包括图像转换子单元、噪声去除子单元、粗分割子单元、细胞核中心标定子单元、精确分割子单元,具体为:(1)图像转换子单元,用于将采集的细胞图像转化为灰度图像;(2)噪声去除子单元,用于对灰度图像进行去噪处理,包括:对于像素点(x,y),选取其3×3的邻域Sx,y和(2N+1)×(2N+1)的邻域Lx,y,N为大于等于2的整数;首先对像素点是否为边界点进行判断,设定阈值T,T∈[13,26],计算像素点(x,y)与其邻域Sx,y中每个像素点的灰度差值,并与阈值T进行比较,若灰度差值大于阈值T的个数大于等于6,则像素点(x,y)为边界点,否则,像素点(x,y)为非边界点;若(x,y)为边界点,则进行如下降噪处理:h(x,y)=Σq(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]q(i,j)k]]>式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(x,y)为降噪前像素点(x,y)的灰度值,σ为像素点(x,y)邻域Lx,y内灰度值标差,q(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点,k表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点的数量;若(x,y)为非边界点,则进行如下降噪处理:h(x,y)=Σ(i,j)∈Lx,yw(i,j)q(i,j)Σ(i,j)∈Lx,yw(i,j)]]>式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(i,j)代表图像中点(i,j)处的灰度值,w(i,j)为邻域Lx,y内点(i,j)对应的高斯权重;(3)粗分割子单元,用于对去噪后的细胞图像中的背景、细胞质、细胞核进行粗划分,具体为:将每个像素(x,y)用一个四维特征向量表示:u→(x,y)=[h(x,y),have(x,y),hmed(x,y),hsta(x,y)]]]>式中,h(x,y)代表(x,y)的灰度值,have(x,y)代表其邻域Sx,y灰度均值,hmed(x,y)代表其邻域Sx,y灰度中值,hsta(x,y)代表其邻域Sx,y灰度方差;采用K-means聚类法将其划分为背景、细胞质、细胞核三类;(4)细胞核中心标定子单元,用于对细胞核中心进行标定:由粗分割子单元得到细胞核大致区域,设细胞核区域包含n个点:(x1,y1),…,(xn,yn),对该区域进行灰度加权标定和几何中心标定,取其平均值作为细胞核中心(xz,yz):xz=12(Σi=1nxih(xi,yi)Σi=1nh(xi,yi)+Σi=1nxin)]]>yz=12(Σi=1nyih(xi,yi)Σi=1nh(xi,yi)+Σi=1nyin)]]>(5)精确分割子单元,用于对细胞核、细胞质进行精确分割;构建从细胞核中心(xz,yz)到细胞核和细胞质边界点(xp,yp)的有向线段的距离表示向下取整;沿线段以单位长度进行采样可以得到disp个点(x1,y1),…,若采样点的坐标不是整数,其灰度值通过周围像素线性插值得到;点(xi,yi)处沿线段方向的灰度差:hd(xi,yi)=h(xi-1,yi-1)-h(xi,yi)定义灰度差抑制函数:Y(x)=xifx≤00.5xifx>0]]>点(xi,yi)处沿线段方向的梯度gra(xi,yi):gra(xi,yi)=|Y(hd(xi,yi))|+|Y(hd(xi+1,yi+!))|2]]>选取梯度最大的值点作为细胞核和细胞质的精确边缘。本优选实施例设置噪声去除子单元,有效融合了中心像素与邻域像素的空间临近性和灰度相似性来进行降噪处理,在图像中的平坦区域,邻域内像素灰度值相差不大,采用高斯滤波器对灰度值进行加权滤波,在变化剧烈的边界区域,行边界保持滤波,有利于图像边缘的保持;采用K均值聚类提取细胞核和细胞质粗轮廓,可有效去除噪声的干扰;设置细胞核中心标定子单元,便于后续对细胞核和细胞质轮廓进行精确定位;精确分割子单元充分利用了方向信息,克服了炎症细胞对边缘图的干扰,能够准确提取出细胞核和细胞质边缘。优选的,所述对细胞图像的纹理特征进行提取,包括:(1)基于改进的灰度共生矩阵法求取细胞图像的综合灰度共生矩阵,所述综合灰度共生矩阵体现了细胞在不同方向上的纹理特征:设在0°、45°、90°、135°四个方向上的灰度共生矩阵分别为h(x,y,d,0°)、h(x,y,d,45°)、h(x,y,d,90°)、h(x,y,d,135°),所对应的矩阵元素项目为X1、X2、X3、X4,则综合灰度共生矩阵的计算公式为:H(x,y,d)=w1h(x,y,d,0°)+w2h(x,y,d,45°)+w3h(x,y,d,90°)+w4h(x,y,d,135°)综合灰度共生矩阵元素数目为:X=Σi=14wiXi]]>式中,d表示距离,d的取值范围为[2,4],wi为加权系数,i=1,2,3,4,其由四个方向中的每个方向上的灰度共生矩阵对应的对比度参数计算,设四个方向上的灰度共生矩阵对应的对比度参数分别为Di,均值为i=1,2,3,4,则加权系数wi的计算公式为:wi=1|Di-D‾|+1/Σi=141|Di-D‾|+1]]>(2)利用所述综合灰度共生矩阵和矩阵元素项目获取所需的四个纹理特征参数:对比度、方差和、能量和均值;(3)对所述四个纹理特征参数进行归一化处理,最终获得归一化的纹理特征值。本优选实施例基于改进的灰度共生矩阵法,采用设置加权系数的方式求取细胞图像的综合灰度共生矩阵,进而提取细胞在指定四个方向上的纹理特征,解决了由于外部干扰(如细胞图像采集时光照角度造成的影响、气体的流动干扰等)造成的细胞的纹理特征参数值在不同方向上有较大差别的问题,提高了细胞图像纹理特征提取的精度;选定对比度、方差和、能量和均值四个纹理特征,去掉了冗余和重复的特征参数;对所述四个纹理特征参数进行归一化处理,方便了后续的细胞图像的分类识别处理。在此应用场景中,设定阈值T=13,d=2,图像去噪效果相对提高了5%,细胞图像特征的提取精度提高了8%。应用场景2参见图1、图2,本应用场景的一个实施例的一种生物体内信息获取装置,包括细胞识别模块和信息获取模块,所述细胞识别模块用来确定生物种类,所述信息获取模块包括:信息获取部,其获取生物体内信息;电力源,其用于对上述信息获取部提供电力;磁传感器部,其检测从外部输入的磁信号,输出与该磁信号的检测状态相应的控制信号;脉冲数计数部,其对来自上述磁传感器部的脉冲信号的脉冲数进行计数;脉冲数判断部,其判断由上述脉冲数计数部计数得到的脉冲数是否为预定数以上;电力切断控制部,其在由上述脉冲数判断部判断为输入了预定数以上的脉冲的情况下,将上述电力源向上述信息获取部进行的电力提供从提供状态切换为切断状态。优选地,所述信息获取模块还包括间隔检测部,该间隔检测部检测来自上述磁传感器部的脉冲信号的输出间隔,所述脉冲数计数部在由上述间隔检测部检测出的输出间隔未超过预先设定的基准间隔的情况下,对上述脉冲信号的输出数进行更新。本优选实施例能够及时对数据进行更新。优选地,所述间隔检测部由计数器构成。本优选实施例获取信息更加准确。优选的,所述细胞识别模块1包括细胞图像分割单元11、特征提取单元12、分类识别单元13;所述细胞图像分割单元11用于区分由细胞图像采集模块采集的细胞图像中的背景、细胞核和细胞质;所述特征提取单元12用于对细胞图像的纹理特征进行提取;所述分类识别单元13用于根据纹理特征利用分类器实现对细胞图像分类识别。本优选实施例构建了细胞识别模块1的单元架构。优选的,所述细胞图像分割单元11包括图像转换子单元、噪声去除子单元、粗分割子单元、细胞核中心标定子单元、精确分割子单元,具体为:(1)图像转换子单元,用于将采集的细胞图像转化为灰度图像;(2)噪声去除子单元,用于对灰度图像进行去噪处理,包括:对于像素点(x,y),选取其3×3的邻域Sx,y和(2N+1)×(2N+1)的邻域Lx,y,N为大于等于2的整数;首先对像素点是否为边界点进行判断,设定阈值T,T∈[13,26],计算像素点(x,y)与其邻域Sx,y中每个像素点的灰度差值,并与阈值T进行比较,若灰度差值大于阈值T的个数大于等于6,则像素点(x,y)为边界点,否则,像素点(x,y)为非边界点;若(x,y)为边界点,则进行如下降噪处理:h(x,y)=Σq(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]q(i,j)k]]>式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(x,y)为降噪前像素点(x,y)的灰度值,σ为像素点(x,y)邻域Lx,y内灰度值标差,q(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点,k表示邻域lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点的数量;若(x,y)为非边界点,则进行如下降噪处理:h(x,y)=Σ(i,j)∈Lx,yw(i,j)q(i,j)Σ(i,j)∈Lx,yw(i,j)]]>式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(i,j)代表图像中点(i,j)处的灰度值,w(i,j)为邻域Lx,y内点(i,j)对应的高斯权重;(3)粗分割子单元,用于对去噪后的细胞图像中的背景、细胞质、细胞核进行粗划分,具体为:将每个像素(x,y)用一个四维特征向量表示:u→(x,y)=[h(x,y),have(x,y),hmed(x,y),hsta(x,y)]]]>式中,h(x,y)代表(x,y)的灰度值,have(x,y)代表其邻域Sx,y灰度均值,hmed(x,y)代表其邻域Sx,y灰度中值,hsta(x,y)代表其邻域Sx,y灰度方差;采用K-means聚类法将其划分为背景、细胞质、细胞核三类;(4)细胞核中心标定子单元,用于对细胞核中心进行标定:由粗分割子单元得到细胞核大致区域,设细胞核区域包含n个点:(x1,y1),…,(xn,yn),对该区域进行灰度加权标定和几何中心标定,取其平均值作为细胞核中心(xz,yz):xz=12(Σi=1nxih(xi,yi)Σi=1nh(xi,yi)+Σi=1nxin)]]>yz=12(Σi=1nyih(xi,yi)Σi=1nh(xi,yi)+Σi=1nyin)]]>(5)精确分割子单元,用于对细胞核、细胞质进行精确分割;构建从细胞核中心(xz,yz)到细胞核和细胞质边界点(xp,yp)的有向线段的距离表示向下取整;沿线段以单位长度进行采样可以得到disp个点(x1,y1),…,若采样点的坐标不是整数,其灰度值通过周围像素线性插值得到;点(xi,yi)处沿线段方向的灰度差:hd(xi,yi)=h(xi-1,yi-1)-h(xi,yi)定义灰度差抑制函数:Y(x)=xifx≤00.5xifx>0]]>点(xi,yi)处沿线段方向的梯度gra(xi,yi):gra(xi,yi)=|Y(hd(xi,yi))|+|Y(hd(xi+1,yi+!))|2]]>选取梯度最大的值点作为细胞核和细胞质的精确边缘。本优选实施例设置噪声去除子单元,有效融合了中心像素与邻域像素的空间临近性和灰度相似性来进行降噪处理,在图像中的平坦区域,邻域内像素灰度值相差不大,采用高斯滤波器对灰度值进行加权滤波,在变化剧烈的边界区域,行边界保持滤波,有利于图像边缘的保持;采用K均值聚类提取细胞核和细胞质粗轮廓,可有效去除噪声的干扰;设置细胞核中心标定子单元,便于后续对细胞核和细胞质轮廓进行精确定位;精确分割子单元充分利用了方向信息,克服了炎症细胞对边缘图的干扰,能够准确提取出细胞核和细胞质边缘。优选的,所述对细胞图像的纹理特征进行提取,包括:(1)基于改进的灰度共生矩阵法求取细胞图像的综合灰度共生矩阵,所述综合灰度共生矩阵体现了细胞在不同方向上的纹理特征:设在0°、45°、90°、135°四个方向上的灰度共生矩阵分别为h(x,y,d,0°)、h(x,y,d,45°)、h(x,y,d,90°)、h(x,y,d,135°),所对应的矩阵元素项目为X1、X2、X3、X4,则综合灰度共生矩阵的计算公式为:H(x,y,d)=w1h(x,y,d,0°)+w2h(x,y,d,45°)+w3h(x,y,d,90°)+w4h(x,y,d,135°)综合灰度共生矩阵元素数目为:X=Σi=14wiXi]]>式中,d表示距离,d的取值范围为[2,4],wi为加权系数,i=1,2,3,4,其由四个方向中的每个方向上的灰度共生矩阵对应的对比度参数计算,设四个方向上的灰度共生矩阵对应的对比度参数分别为Di,均值为i=1,2,3,4,则加权系数wi的计算公式为:wi=1|Di-D‾|+1/Σi=141|Di-D‾|+1]]>(2)利用所述综合灰度共生矩阵和矩阵元素项目获取所需的四个纹理特征参数:对比度、方差和、能量和均值;(3)对所述四个纹理特征参数进行归一化处理,最终获得归一化的纹理特征值。本优选实施例基于改进的灰度共生矩阵法,采用设置加权系数的方式求取细胞图像的综合灰度共生矩阵,进而提取细胞在指定四个方向上的纹理特征,解决了由于外部干扰(如细胞图像采集时光照角度造成的影响、气体的流动干扰等)造成的细胞的纹理特征参数值在不同方向上有较大差别的问题,提高了细胞图像纹理特征提取的精度;选定对比度、方差和、能量和均值四个纹理特征,去掉了冗余和重复的特征参数;对所述四个纹理特征参数进行归一化处理,方便了后续的细胞图像的分类识别处理。在此应用场景中,设定阈值T=15,d=2,图像去噪效果相对提高了6%,细胞图像特征的提取精度提高了8%。应用场景3参见图1、图2,本应用场景的一个实施例的一种生物体内信息获取装置,包括细胞识别模块和信息获取模块,所述细胞识别模块用来确定生物种类,所述信息获取模块包括:信息获取部,其获取生物体内信息;电力源,其用于对上述信息获取部提供电力;磁传感器部,其检测从外部输入的磁信号,输出与该磁信号的检测状态相应的控制信号;脉冲数计数部,其对来自上述磁传感器部的脉冲信号的脉冲数进行计数;脉冲数判断部,其判断由上述脉冲数计数部计数得到的脉冲数是否为预定数以上;电力切断控制部,其在由上述脉冲数判断部判断为输入了预定数以上的脉冲的情况下,将上述电力源向上述信息获取部进行的电力提供从提供状态切换为切断状态。优选地,所述信息获取模块还包括间隔检测部,该间隔检测部检测来自上述磁传感器部的脉冲信号的输出间隔,所述脉冲数计数部在由上述间隔检测部检测出的输出间隔未超过预先设定的基准间隔的情况下,对上述脉冲信号的输出数进行更新。本优选实施例能够及时对数据进行更新。优选地,所述间隔检测部由计数器构成。本优选实施例获取信息更加准确。优选的,所述细胞识别模块1包括细胞图像分割单元11、特征提取单元12、分类识别单元13;所述细胞图像分割单元11用于区分由细胞图像采集模块采集的细胞图像中的背景、细胞核和细胞质;所述特征提取单元12用于对细胞图像的纹理特征进行提取;所述分类识别单元13用于根据纹理特征利用分类器实现对细胞图像分类识别。本优选实施例构建了细胞识别模块1的单元架构。优选的,所述细胞图像分割单元11包括图像转换子单元、噪声去除子单元、粗分割子单元、细胞核中心标定子单元、精确分割子单元,具体为:(1)图像转换子单元,用于将采集的细胞图像转化为灰度图像;(2)噪声去除子单元,用于对灰度图像进行去噪处理,包括:对于像素点(x,y),选取其3×3的邻域Sx,y和(2N+1)×(2N+1)的邻域Lx,y,N为大于等于2的整数;首先对像素点是否为边界点进行判断,设定阈值T,T∈[13,26],计算像素点(x,y)与其邻域Sx,y中每个像素点的灰度差值,并与阈值T进行比较,若灰度差值大于阈值T的个数大于等于6,则像素点(x,y)为边界点,否则,像素点(x,y)为非边界点;若(x,y)为边界点,则进行如下降噪处理:h(x,y)=Σq(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]q(i,j)k]]>式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(x,y)为降噪前像素点(x,y)的灰度值,σ为像素点(x,y)邻域Lx,y内灰度值标差,q(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点,k表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点的数量;若(x,y)为非边界点,则进行如下降噪处理:h(x,y)=Σ(i,j)∈Lx,yw(i,j)q(i,j)Σ(i,j)∈Lx,yw(i,j)]]>式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(i,j)代表图像中点(i,j)处的灰度值,w(i,j)为邻域Lx,y内点(i,j)对应的高斯权重;(3)粗分割子单元,用于对去噪后的细胞图像中的背景、细胞质、细胞核进行粗划分,具体为:将每个像素(x,y)用一个四维特征向量表示:u→(x,y)=[h(x,y),have(x,y),hmed(x,y),hsta(x,y)]]]>式中,h(x,y)代表(x,y)的灰度值,have(x,y)代表其邻域Sx,y灰度均值,hmed(x,y)代表其邻域Sx,y灰度中值,hsta(x,y)代表其邻域Sx,y灰度方差;采用K-means聚类法将其划分为背景、细胞质、细胞核三类;(4)细胞核中心标定子单元,用于对细胞核中心进行标定:由粗分割子单元得到细胞核大致区域,设细胞核区域包含n个点:(x1,y1),…,(xn,yn),对该区域进行灰度加权标定和几何中心标定,取其平均值作为细胞核中心(xz,yz):xz=12(Σi=1nxih(xi,yi)Σi=1nh(xi,yi)+Σi=1nxin)]]>yz=12(Σi=1nyih(xi,yi)Σi=1nh(xi,yi)+Σi=1nyin)]]>(5)精确分割子单元,用于对细胞核、细胞质进行精确分割;构建从细胞核中心(xz,yz)到细胞核和细胞质边界点(xp,yp)的有向线段的距离表示向下取整;沿线段以单位长度进行采样可以得到disp个点(x1,y1),…,若采样点的坐标不是整数,其灰度值通过周围像素线性插值得到;点(xi,yi)处沿线段方向的灰度差:hd(xi,yi)=h(xi-1,yi-1)-h(xi,yi)定义灰度差抑制函数:Y(x)=xifx≤00.5xifx>0]]>点(xi,yi)处沿线段方向的梯度gra(xi,yi):gra(xi,yi)=|Y(hd(xi,yi))|+|Y(hd(xi+1,yi+!))|2]]>选取梯度最大的值点作为细胞核和细胞质的精确边缘。本优选实施例设置噪声去除子单元,有效融合了中心像素与邻域像素的空间临近性和灰度相似性来进行降噪处理,在图像中的平坦区域,邻域内像素灰度值相差不大,采用高斯滤波器对灰度值进行加权滤波,在变化剧烈的边界区域,行边界保持滤波,有利于图像边缘的保持;采用K均值聚类提取细胞核和细胞质粗轮廓,可有效去除噪声的干扰;设置细胞核中心标定子单元,便于后续对细胞核和细胞质轮廓进行精确定位;精确分割子单元充分利用了方向信息,克服了炎症细胞对边缘图的干扰,能够准确提取出细胞核和细胞质边缘。优选的,所述对细胞图像的纹理特征进行提取,包括:(1)基于改进的灰度共生矩阵法求取细胞图像的综合灰度共生矩阵,所述综合灰度共生矩阵体现了细胞在不同方向上的纹理特征:设在0°、45°、90°、135°四个方向上的灰度共生矩阵分别为h(x,y,d,0°)、h(x,y,d,45°)、h(x,y,d,90°)、h(x,y,d,135°),所对应的矩阵元素项目为X1、X2、X3、X4,则综合灰度共生矩阵的计算公式为:H(x,y,d)=w1h(x,y,d,0°)+w2h(x,y,d,45°)+w3h(x,y,d,90°)+w4h(x,y,d,135°)综合灰度共生矩阵元素数目为:X=Σi=14wiXi]]>式中,d表示距离,d的取值范围为[2,4],wi为加权系数,i=1,2,3,4,其由四个方向中的每个方向上的灰度共生矩阵对应的对比度参数计算,设四个方向上的灰度共生矩阵对应的对比度参数分别为Di,均值为i=1,2,3,4,则加权系数wi的计算公式为:wi=1|Di-D‾|+1/Σi=141|Di-D‾|+1]]>(2)利用所述综合灰度共生矩阵和矩阵元素项目获取所需的四个纹理特征参数:对比度、方差和、能量和均值;(3)对所述四个纹理特征参数进行归一化处理,最终获得归一化的纹理特征值。本优选实施例基于改进的灰度共生矩阵法,采用设置加权系数的方式求取细胞图像的综合灰度共生矩阵,进而提取细胞在指定四个方向上的纹理特征,解决了由于外部干扰(如细胞图像采集时光照角度造成的影响、气体的流动干扰等)造成的细胞的纹理特征参数值在不同方向上有较大差别的问题,提高了细胞图像纹理特征提取的精度;选定对比度、方差和、能量和均值四个纹理特征,去掉了冗余和重复的特征参数;对所述四个纹理特征参数进行归一化处理,方便了后续的细胞图像的分类识别处理。在此应用场景中,设定阈值T=18,d=3,图像去噪效果相对提高了7%,细胞图像特征的提取精度提高了7%。应用场景4参见图1、图2,本应用场景的一个实施例的一种生物体内信息获取装置,包括细胞识别模块和信息获取模块,所述细胞识别模块用来确定生物种类,所述信息获取模块包括:信息获取部,其获取生物体内信息;电力源,其用于对上述信息获取部提供电力;磁传感器部,其检测从外部输入的磁信号,输出与该磁信号的检测状态相应的控制信号;脉冲数计数部,其对来自上述磁传感器部的脉冲信号的脉冲数进行计数;脉冲数判断部,其判断由上述脉冲数计数部计数得到的脉冲数是否为预定数以上;电力切断控制部,其在由上述脉冲数判断部判断为输入了预定数以上的脉冲的情况下,将上述电力源向上述信息获取部进行的电力提供从提供状态切换为切断状态。优选地,所述信息获取模块还包括间隔检测部,该间隔检测部检测来自上述磁传感器部的脉冲信号的输出间隔,所述脉冲数计数部在由上述间隔检测部检测出的输出间隔未超过预先设定的基准间隔的情况下,对上述脉冲信号的输出数进行更新。本优选实施例能够及时对数据进行更新。优选地,所述间隔检测部由计数器构成。本优选实施例获取信息更加准确。优选的,所述细胞识别模块1包括细胞图像分割单元11、特征提取单元12、分类识别单元13;所述细胞图像分割单元11用于区分由细胞图像采集模块采集的细胞图像中的背景、细胞核和细胞质;所述特征提取单元12用于对细胞图像的纹理特征进行提取;所述分类识别单元13用于根据纹理特征利用分类器实现对细胞图像分类识别。本优选实施例构建了细胞识别模块1的单元架构。优选的,所述细胞图像分割单元11包括图像转换子单元、噪声去除子单元、粗分割子单元、细胞核中心标定子单元、精确分割子单元,具体为:(1)图像转换子单元,用于将采集的细胞图像转化为灰度图像;(2)噪声去除子单元,用于对灰度图像进行去噪处理,包括:对于像素点(x,y),选取其3×3的邻域Sx,y和(2N+1)×(2N+1)的邻域Lx,y,N为大于等于2的整数;首先对像素点是否为边界点进行判断,设定阈值T,T∈[13,26],计算像素点(x,y)与其邻域Sx,y中每个像素点的灰度差值,并与阈值T进行比较,若灰度差值大于阈值T的个数大于等于6,则像素点(x,y)为边界点,否则,像素点(x,y)为非边界点;若(x,y)为边界点,则进行如下降噪处理:h(x,y)=Σq(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]q(i,j)k]]>式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(x,y)为降噪前像素点(x,y)的灰度值,σ为像素点(x,y)邻域Lx,y内灰度值标差,q(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点,k表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点的数量;若(x,y)为非边界点,则进行如下降噪处理:h(x,y)=Σ(i,j)∈Lx,yw(i,j)q(i,j)Σ(i,j)∈Lx,yw(i,j)]]>式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(i,j)代表图像中点(i,j)处的灰度值,w(i,j)为邻域Lx,y内点(i,j)对应的高斯权重;(3)粗分割子单元,用于对去噪后的细胞图像中的背景、细胞质、细胞核进行粗划分,具体为:将每个像素(x,y)用一个四维特征向量表示:u→(x,y)=[h(x,y),have(x,y),hmed(x,y),hsta(x,y)]]]>式中,h(x,y)代表(x,y)的灰度值,have(x,y)代表其邻域Sx,y灰度均值,hmed(x,y)代表其邻域Sx,y灰度中值,hsta(x,y)代表其邻域Sx,y灰度方差;采用K-means聚类法将其划分为背景、细胞质、细胞核三类;(4)细胞核中心标定子单元,用于对细胞核中心进行标定:由粗分割子单元得到细胞核大致区域,设细胞核区域包含n个点:(x1,y1),…,(xn,yn),对该区域进行灰度加权标定和几何中心标定,取其平均值作为细胞核中心(xz,yz):xz=12(Σi=1nxih(xi,yi)Σi=1nh(xi,yi)+Σi=1nxin)]]>yz=12(Σi=1nyih(xi,yi)Σi=1nh(xi,yi)+Σi=1nyin)]]>(5)精确分割子单元,用于对细胞核、细胞质进行精确分割;构建从细胞核中心(xz,yz)到细胞核和细胞质边界点(xp,yp)的有向线段的距离表示向下取整;沿线段以单位长度进行采样可以得到disp个点(x1,y1),…,若采样点的坐标不是整数,其灰度值通过周围像素线性插值得到;点(xi,yi)处沿线段方向的灰度差:hd(xi,yi)=h(xi-1,yi-1)-h(xi,yi)定义灰度差抑制函数:Y(x)=xifx≤00.5xifx>0]]>点(xi,yi)处沿线段方向的梯度gra(xi,yi):gra(xi,yi)=|Y(hd(xi,yi))|+|Y(hd(xi+1,yi+!))|2]]>选取梯度最大的值点作为细胞核和细胞质的精确边缘。本优选实施例设置噪声去除子单元,有效融合了中心像素与邻域像素的空间临近性和灰度相似性来进行降噪处理,在图像中的平坦区域,邻域内像素灰度值相差不大,采用高斯滤波器对灰度值进行加权滤波,在变化剧烈的边界区域,行边界保持滤波,有利于图像边缘的保持;采用K均值聚类提取细胞核和细胞质粗轮廓,可有效去除噪声的干扰;设置细胞核中心标定子单元,便于后续对细胞核和细胞质轮廓进行精确定位;精确分割子单元充分利用了方向信息,克服了炎症细胞对边缘图的干扰,能够准确提取出细胞核和细胞质边缘。优选的,所述对细胞图像的纹理特征进行提取,包括:(1)基于改进的灰度共生矩阵法求取细胞图像的综合灰度共生矩阵,所述综合灰度共生矩阵体现了细胞在不同方向上的纹理特征:设在0°、45°、90°、135°四个方向上的灰度共生矩阵分别为h(x,y,d,0°)、h(x,y,d,45°)、h(x,y,d,90°)、h(x,y,d,135°),所对应的矩阵元素项目为X1、X2、X3、X4,则综合灰度共生矩阵的计算公式为:H(x,y,d)=w1h(x,y,d,0°)+w2h(x,y,d,45°)+w3h(x,y,d,90°)+w4h(x,y,d,135°)综合灰度共生矩阵元素数目为:X=Σi=14wiXi]]>式中,d表示距离,d的取值范围为[2,4],wi为加权系数,i=1,2,3,4,其由四个方向中的每个方向上的灰度共生矩阵对应的对比度参数计算,设四个方向上的灰度共生矩阵对应的对比度参数分别为Di,均值为i=1,2,3,4,则加权系数wi的计算公式为:wi=1|Di-D‾|+1/Σi=141|Di-D‾|+1]]>(2)利用所述综合灰度共生矩阵和矩阵元素项目获取所需的四个纹理特征参数:对比度、方差和、能量和均值;(3)对所述四个纹理特征参数进行归一化处理,最终获得归一化的纹理特征值。本优选实施例基于改进的灰度共生矩阵法,采用设置加权系数的方式求取细胞图像的综合灰度共生矩阵,进而提取细胞在指定四个方向上的纹理特征,解决了由于外部干扰(如细胞图像采集时光照角度造成的影响、气体的流动干扰等)造成的细胞的纹理特征参数值在不同方向上有较大差别的问题,提高了细胞图像纹理特征提取的精度;选定对比度、方差和、能量和均值四个纹理特征,去掉了冗余和重复的特征参数;对所述四个纹理特征参数进行归一化处理,方便了后续的细胞图像的分类识别处理。在此应用场景中,设定阈值T=20,d=4,图像去噪效果相对提高了8%,细胞图像特征的提取精度提高了6%。应用场景5参见图1、图2,本应用场景的一个实施例的一种生物体内信息获取装置,包括细胞识别模块和信息获取模块,所述细胞识别模块用来确定生物种类,所述信息获取模块包括:信息获取部,其获取生物体内信息;电力源,其用于对上述信息获取部提供电力;磁传感器部,其检测从外部输入的磁信号,输出与该磁信号的检测状态相应的控制信号;脉冲数计数部,其对来自上述磁传感器部的脉冲信号的脉冲数进行计数;脉冲数判断部,其判断由上述脉冲数计数部计数得到的脉冲数是否为预定数以上;电力切断控制部,其在由上述脉冲数判断部判断为输入了预定数以上的脉冲的情况下,将上述电力源向上述信息获取部进行的电力提供从提供状态切换为切断状态。优选地,所述信息获取模块还包括间隔检测部,该间隔检测部检测来自上述磁传感器部的脉冲信号的输出间隔,所述脉冲数计数部在由上述间隔检测部检测出的输出间隔未超过预先设定的基准间隔的情况下,对上述脉冲信号的输出数进行更新。本优选实施例能够及时对数据进行更新。优选地,所述间隔检测部由计数器构成。本优选实施例获取信息更加准确。优选的,所述细胞识别模块1包括细胞图像分割单元11、特征提取单元12、分类识别单元13;所述细胞图像分割单元11用于区分由细胞图像采集模块采集的细胞图像中的背景、细胞核和细胞质;所述特征提取单元12用于对细胞图像的纹理特征进行提取;所述分类识别单元13用于根据纹理特征利用分类器实现对细胞图像分类识别。本优选实施例构建了细胞识别模块1的单元架构。优选的,所述细胞图像分割单元11包括图像转换子单元、噪声去除子单元、粗分割子单元、细胞核中心标定子单元、精确分割子单元,具体为:(1)图像转换子单元,用于将采集的细胞图像转化为灰度图像;(2)噪声去除子单元,用于对灰度图像进行去噪处理,包括:对于像素点(x,y),选取其3×3的邻域Sx,y和(2N+1)×(2N+1)的邻域Lx,y,N为大于等于2的整数;首先对像素点是否为边界点进行判断,设定阈值T,T∈[13,26],计算像素点(x,y)与其邻域Sx,y中每个像素点的灰度差值,并与阈值T进行比较,若灰度差值大于阈值T的个数大于等于6,则像素点(x,y)为边界点,否则,像素点(x,y)为非边界点;若(x,y)为边界点,则进行如下降噪处理:h(x,y)=Σq(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]q(i,j)k]]>式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(x,y)为降噪前像素点(x,y)的灰度值,σ为像素点(x,y)邻域Lx,y内灰度值标差,q(i,j)∈[q(x,y)-1.5σ,q(x,y)+1.5σ]表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点,k表示邻域Lx,y内灰度值落于区间[q(x,y)-1.5σ,q(x,y)+1.5σ]的点的数量;若(x,y)为非边界点,则进行如下降噪处理:h(x,y)=Σ(i,j)∈Lx,yw(i,j)q(i,j)Σ(i,j)∈Lx,yw(i,j)]]>式中,h(x,y)为降噪后像素点(x,y)的灰度值,q(i,j)代表图像中点(i,j)处的灰度值,w(i,\)为邻域lx,y内点(i,j)对应的高斯权重;(3)粗分割子单元,用于对去噪后的细胞图像中的背景、细胞质、细胞核进行粗划分,具体为:将每个像素(x,y)用一个四维特征向量表示:u→(x,y)=[h(x,y),have(x,y),hmed(x,y),hsta(x,y)]]]>式中,h(x,y)代表(x,y)的灰度值,have(x,y)代表其邻域Sx,y灰度均值,hmed(x,y)代表其邻域Sx,y灰度中值,hsta(x,y)代表其邻域Sx,y灰度方差;采用K-means聚类法将其划分为背景、细胞质、细胞核三类;(4)细胞核中心标定子单元,用于对细胞核中心进行标定:由粗分割子单元得到细胞核大致区域,设细胞核区域包含n个点:(x1,y1),…,(xn,yn),对该区域进行灰度加权标定和几何中心标定,取其平均值作为细胞核中心(xz,yz):xz=12(Σi=1nxih(xi,yi)Σi=1nh(xi,yi)+Σi=1nxin)]]>yz=12(Σi=1nyih(xi,yi)Σi=1nh(xi,yi)+Σi=1nyin)]]>(5)精确分割子单元,用于对细胞核、细胞质进行精确分割;构建从细胞核中心(xz,yz)到细胞核和细胞质边界点(xp,yp)的有向线段的距离表示向下取整;沿线段以单位长度进行采样可以得到disp个点(x1,y1),…,若采样点的坐标不是整数,其灰度值通过周围像素线性插值得到;点(xi,yi)处沿线段方向的灰度差:hd(xi,yi)=h(xi-1,yi-1)-h(xi,yi)定义灰度差抑制函数:Y(x)=xifx≤00.5xifx>0]]>点(xi,yi)处沿线段方向的梯度gra(xi,yi):gra(xi,yi)=|Y(hd(xi,yi))|+|Y(hd(xi+1,yi+!))|2]]>选取梯度最大的值点作为细胞核和细胞质的精确边缘。本优选实施例设置噪声去除子单元,有效融合了中心像素与邻域像素的空间临近性和灰度相似性来进行降噪处理,在图像中的平坦区域,邻域内像素灰度值相差不大,采用高斯滤波器对灰度值进行加权滤波,在变化剧烈的边界区域,行边界保持滤波,有利于图像边缘的保持;采用K均值聚类提取细胞核和细胞质粗轮廓,可有效去除噪声的干扰;设置细胞核中心标定子单元,便于后续对细胞核和细胞质轮廓进行精确定位;精确分割子单元充分利用了方向信息,克服了炎症细胞对边缘图的干扰,能够准确提取出细胞核和细胞质边缘。优选的,所述对细胞图像的纹理特征进行提取,包括:(1)基于改进的灰度共生矩阵法求取细胞图像的综合灰度共生矩阵,所述综合灰度共生矩阵体现了细胞在不同方向上的纹理特征:设在0°、45°、90°、135°四个方向上的灰度共生矩阵分别为h(x,y,d,0°)、h(x,y,d,45°)、h(x,y,d,90°)、h(x,y,d,135°),所对应的矩阵元素项目为X1、X2、X3、X4,则综合灰度共生矩阵的计算公式为:H(x,y,d)=w1h(x,y,d,0°)+w2h(x,y,d,45°)+w3h(x,y,d,90°)+w4h(x,y,d,135°)综合灰度共生矩阵元素数目为:X=Σi=14wiXi]]>式中,d表示距离,d的取值范围为[2,4],wi为加权系数,i=1,2,3,4,其由四个方向中的每个方向上的灰度共生矩阵对应的对比度参数计算,设四个方向上的灰度共生矩阵对应的对比度参数分别为Di,均值为i=1,2,3,4,则加权系数wi的计算公式为:wi=1|Di-D‾|+1/Σi=141|Di-D‾|+1]]>(2)利用所述综合灰度共生矩阵和矩阵元素项目获取所需的四个纹理特征参数:对比度、方差和、能量和均值;(3)对所述四个纹理特征参数进行归一化处理,最终获得归一化的纹理特征值。本优选实施例基于改进的灰度共生矩阵法,采用设置加权系数的方式求取细胞图像的综合灰度共生矩阵,进而提取细胞在指定四个方向上的纹理特征,解决了由于外部干扰(如细胞图像采集时光照角度造成的影响、气体的流动干扰等)造成的细胞的纹理特征参数值在不同方向上有较大差别的问题,提高了细胞图像纹理特征提取的精度;选定对比度、方差和、能量和均值四个纹理特征,去掉了冗余和重复的特征参数;对所述四个纹理特征参数进行归一化处理,方便了后续的细胞图像的分类识别处理。在此应用场景中,设定阈值T=26,d=2,图像去噪效果相对提高了7.5%,细胞图像特征的提取精度提高了8%。最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1