具有紧密间隔的微型双极电极的导管脊组件的制作方法

文档序号:11536134阅读:249来源:国知局
具有紧密间隔的微型双极电极的导管脊组件的制造方法与工艺

本发明涉及一种电生理导管,具体地讲,涉及一种具有电极构型的心脏电生理导管,所述电极构型提供更准确且更独立的分级信号感测。



背景技术:

电极导管已经普遍用于医疗实践多年。它们被用来刺激和标测心脏中的电活动,以及用来消融异常电活动的位点。

使用时,将电极导管插入主要的静脉或动脉(例如股动脉),然后导入所关注的心室。一旦导管被定位在心脏内,心脏内的异常电活动的位置就被定位。

一种定位技术涉及电生理学标测规程,由此从导电心内组织发出的电信号得到系统监测,并且这些信号形成标测图。通过分析该标测图,医师可识别干涉电通路。用于对来自导电心脏组织的电信号进行标测的常规方法是经由皮肤引入电生理学导管(电极导管),该电生理学导管的远侧末端上安装有标测电极。导管被操纵为使得这些电极与心内膜接触。通过监测心内膜处的电信号,可查明心律不齐所对应的异常导电组织位点。

对于通过安装在导管上的环形电极进行的感测,从环形电极传输信号的引线电连接到导管控制手柄的远侧端部中的合适连接器,该连接器电连接到ecg监测系统和/或合适的3d电生理(ep)标测系统,例如得自biosensewebster公司(irwindale,california)的carto、cartoxp或carto3。

相对于远场信号,紧密间隔的电极对允许更准确地检测近场电势,在试图处理心脏的特定区域时,这种检测可能非常重要。例如,近场肺静脉电势为极小的信号,而位于极接近肺静脉处的心房提供大得多的信号。因此,即使当导管被放置于肺静脉区域中时,电生理学家仍可能难以确定信号是小的近电势(来自肺静脉)还是较大的较远电势(来自心房)。紧密间隔的双极允许医师更准确地移除远场信号并获得局部组织中电活动的更准确读数。因此,通过具有紧密间隔的电极,能够精确瞄准具有肺静脉电势的心肌组织的位置,并且因此允许临床医生将治疗递送至特定组织。此外,紧密间隔的电极允许医师通过电信号确定心门的精确解剖位置。

然而,制造和组装具有紧密且精确间隔的环形电极的导管存在许多挑战。对于导管制造和组装,相邻电极之间的间距的准确性和一致性变得极为重要。常规方法通常使用粘合剂(诸如聚氨酯)来密封每个环形电极,这在相邻的电极或电极对之间形成边界,该边界可限制电极彼此间隔的紧密程度。通常,可使用此类常规方法在电极对之间实现1.0mm或更大的间距。然而,较小的间距,尤其是0.2mm或0.1mm的间距,则难以实现。对于此类较小间距,由于电极公差规范或者电极在组装期间的移位,当施加医疗级粘合剂诸如聚氨酯时或者在固化医疗环氧树脂时,相邻电极存在接触的风险。

此外,将引线附接到环形电极的常规方法也通常对相邻环形电极之间的间距公差有要求。此类附接方法通常导致形成锐角,引线必须以该锐角延伸以到达环形电极,这可致使产生应力,从而引起脱离或破损。

柔性电子器件也称为柔性电路,是一种用于通过将电子装置安装在柔性塑料基底(诸如,聚酰亚胺、peek或透明导电聚酯膜)上来组装电子电路的技术。此外,柔性电路可以是聚酯上的丝网印刷银电路。柔性印刷电路(fpc)采用光刻技术制成。制备柔性箔电路或柔性扁平电缆(ffc)的一种另选方法是在两层pet之间层合非常薄(0.07mm)的铜带。这些pet层通常为0.05mm厚,涂覆有热固性粘合剂,并且将在层合过程期间活化。单面柔性电路具有单个导体层,该导体层由柔性介电膜上的金属或导电性(填充有金属)聚合物制成。部件接线端特征结构只能从一个侧面使用。在基膜中可形成孔以允许部件引线穿过,从而(通常通过焊接)互连。

因此,需要一种具有双极微电极对的电生理导管,所述双极微电极对间隔得非常紧密以最大程度减少对噪声和/或远场信号的检测。还需要一种制造和组装此类导管的方法,其中可以更高的精密度和准确性轻松且一致地实现电极之间的非常紧密的间距。



技术实现要素:

本发明涉及一种具有远侧电极组件的电生理导管,该远侧电极组件在可于组织表面区域上柔性地伸展的多个分散的脊上承载非常紧密地间隔的双极微电极,以便同时在多个位置处检测信号,并同时最大程度减少对不期望的噪声(包括远场信号)的检测。

在一些实施方案中,导管包括细长主体以及具有至少一个脊的远侧电极组件,所述至少一个脊具有柔性微电极面板。脊具有自由远侧端部,并且面板具有与脊的外表面适形的基底、至少一个微电极对、用于每个微电极的迹线以及用于每个微电极的焊盘,其中每条迹线电联接相应的微电极和相应的焊盘。

在一些详细的实施方案中,双极对的相邻微电极分开约300微米或更小(包括约200微米或更小)的空间间隙距离。在一些详细的实施方案中,该空间间隙距离在介于约50微米和100微米之间的范围内。在一些详细的实施方案中,该空间间隙距离为约50微米。

在一些详细的实施方案中,每个微电极具有约300微米的宽度、约200微米的宽度、或约100微米的宽度。

在一些详细的实施方案中,每个微电极具有被配置成覆盖迹线电连接件的放大部分。

在一些详细的实施方案中,每个脊具有圆形横截面。

在一些详细的实施方案中,每个脊具有矩形横截面。

在其它实施方案中,导管具有细长主体和远侧电极组件,该远侧电极组件具有多个分散的脊以及至少一个脊上的柔性面板,其中该面板具有与脊的外表面适形的基底、微电极对、以及与相应的微电极和相应的焊盘电联接的迹线,并且其中微电极对至少部分地围绕脊周向地缠绕,并且所述对中的微电极分开介于约50微米至200微米的范围内的空间间隙距离。

在详细的实施方案中,脊具有被配置成接触组织表面的平坦表面,并且所述微电极对定位在该平坦表面上。

在详细的实施方案中,整个微电极对都在平坦表面内。

在详细的实施方案中,每个微电极的宽度在介于约50微米至200微米的范围内。

在其它实施方案中,导管具有细长主体和远侧电极组件,该远侧电极组件具有多个脊,每个脊具有自由远侧端部以及朝向组件的纵向轴线的预成形向内弯曲部;以及至少一个脊上的柔性面板,该面板具有与脊的外表面适形的基底、微电极对、以及与相应的微电极和相应的焊盘电联接的迹线,其中微电极对至少部分地围绕脊周向地缠绕,并且所述对中的微电极分开介于约50微米至300微米、50微米至200微米或约50微米至100微米之间的范围内的空间间隙距离。

在一些详细的实施方案中,柔性面板具有纵向部分、至少远侧侧向部分、以及近侧基部部分,其中迹线定位在纵向部分中,微电极对定位在远侧侧向部分中,并且焊盘定位在远侧基部部分中。

附图说明

当结合附图考虑时,通过参考以下详细说明,将更好地理解本发明的这些和其它特征结构以及优势。应当理解,选择的结构和特征在某些附图中并没有示出,以便提供对其余的结构和特征的更好的观察。

图1为根据一个实施方案的本发明的导管的侧视图。

图2为沿线2—2截取的图1的导管的导管主体的端部剖面图。

图3为沿线3—3截取的图1的导管的偏转节段的端部剖面图。

图4为根据一个实施方案的位于本发明的导管的偏转节段与远侧电极组件之间的接合部的透视图,其中部分被剖开。

图5为根据一个实施方案的本发明的远侧电极组件的透视图。

图6为根据一个实施方案的在组装期间的柔性微电极面板和脊的详细视图。

图7为根据一个实施方案的柔性微电极面板的局部分解透视图。

图8为与组织表面接触的图5的远侧电极组件的侧视图。

图9为根据另一个实施方案的具有柔性微电极面板的脊的详细视图。

图10为根据另一个实施方案的与组织表面接触的远侧电极组件的侧视图。

图11为根据图9的实施方案的具有脊的远侧电极组件的局部分解透视图。

图12a、图12b、图12c和图12d为根据不同实施方案的微电极布置的顶部平面图。

图13为根据一个实施方案的脊支撑构件的详细视图。

具体实施方式

参见图1,在本发明的一些实施方案中,导管10包括导管主体12、中间偏转节段14、远侧电极组件15以及位于导管主体12近侧的控制手柄16。远侧电极组件15包括多个脊42,每个脊承载至少一对紧密间隔的双极微电极85,其中一对中的微电极在其间具有不大于约200微米的分离空间间隙距离。

在一些实施方案中,导管主体12包括具有单个轴上管腔或中心管腔18的细长管状构造,如图2所示。导管主体12是柔性的,即能够弯曲的,但是沿其长度方向基本上不可压缩。导管主体12可具有任何合适的构造并且可由任何合适的材料制成。目前优选的构造包括由聚氨酯或pebax制成的外壁17。外壁17包括由高强度钢、不锈钢等制成的嵌入式编织网,以增加导管主体12的抗扭刚度,以使得当旋转控制手柄16时导管10的偏转节段14将以相应的方式旋转。

导管主体12的外径并非决定性因素,但优选地为不大于约8f(弗伦奇),更优选地不大于约7f。同样,外壁17的厚度并非关键,但足够薄使得中心管腔18可容纳部件,所述部件包括例如一条或多条牵拉线、电极引线、冲洗管、以及任何其它线和/或缆线。外壁17的内表面衬有刚性管20,其可由任何合适的材料诸如聚酰亚胺或尼龙制成。刚性管20连同编织的外壁17提供改善的扭转稳定性,而同时使导管的壁厚最小化,因而使该中心管腔18的直径最大化。刚性管20的外径与外壁17的内径相比大致相同或略小。聚酰亚胺管材目前优选用于刚性管20,因为其壁可非常薄,而仍然提供极好的刚度。这使中心管腔18的直径最大化而不牺牲强度和刚度。正如本领域的技术人员将会认识到的,导管主体构造可根据需要修改。例如,可去除刚性管。

在一些实施方案中,中间偏转节段包括管19的较短节段,该较短节段如图3所示具有多个管腔,例如偏轴管腔21、22、23和24以及轴上管腔25。在一些实施方案中,管19由合适的非毒性材料制成,所述材料比导管主体12更具柔性。用于管19的合适材料为编织聚氨酯,即具有嵌入的编织高强度钢、不锈钢或类似材料的网的聚氨酯。偏转节段14的外径类似于导管主体12的外径。管腔的尺寸不是关键,并且可根据具体应用而变化。

各部件延伸穿过导管10。在一些实施方案中,部件包括引线30、远侧电极组件15、用于使偏转节段14偏转的一条或多条牵拉线32a和32b、用于容纳在偏转节段14的远侧端部处或附近的电磁位置传感器36的缆线34、以及导线管38。这些部件穿过导管主体12的中心管腔18,如图2所示。

在偏转节段14中,不同部件穿过管19的不同管腔,如图3所示。在一些实施方案中,引线30穿过第一管腔21,第一牵拉线32a穿过第二管腔32,导线管38穿过第三管腔23,缆线34穿过第四管腔24,并且第二牵拉线34b穿过第五管腔25。第二管腔22和第四管腔24彼此沿直径相对以提供对中间偏转节段14的双向偏转。

远侧电极组件15位于偏转节段14远侧,其包括安装杆46,该安装杆呈短管的形式并且安装在中间偏转节段14的管19的远侧端部上。(就这一点而言,应当理解,在导管10不具有偏转节段14的情况下,安装杆46安装在导管主体12的远侧端部上。)杆46具有中心管腔48以容纳各种部件。中间节段14和杆46通过胶等附接。杆46可由任何合适材料构成,包括镍钛诺。如图4所示,杆46容纳各种部件,包括电磁位置传感器36,以及用于牵拉线32a和牵拉线32b的远侧锚定件。

在所公开的实施方案中,远侧锚定件包括一个或多个垫圈,例如远侧垫圈50d和近侧垫圈50p,其中垫圈中的每一个具有多个通孔,所述通孔允许部件在偏转节段14与杆46之间通过,同时使这些部件相对于导管10的纵向轴线40保持轴向对准。通孔包括孔52和孔54,所述孔分别与管19的第二管腔22和第四管腔24轴向对准,以分别接收牵拉线32a和牵拉线32b的远侧端部。应当理解,牵拉线可形成单个拉伸构件,该拉伸构件具有穿过孔52和孔54的远侧u形弯曲节段。利用由牵拉线的u形弯曲节段施加于垫圈50d和50p上的张力,垫圈牢固且固定地邻接偏转节段14的管19的远侧端部,以朝远侧锚定u形弯曲节段。

每个垫圈包括通孔51,该通孔与第一管腔21轴向对准并且允许引线30从偏转节段14通过并进入杆46的管腔48中。每个垫圈还包括通孔55,该通孔与管19的第五管腔25轴向对准并且允许传感器缆线34从偏转节段14通过,进入其中容纳电磁位置传感器36的杆46的管腔48中。每个垫圈还包括轴上通孔53,该通孔与第三管腔23轴向对准并且允许导线管38从偏转节段14通过并进入杆45的管腔48中。标记带或环形电极27可承载于导管外表面上中间偏转节段14的远侧端部处或附近,如在本领域中所已知。

如图4所示,远侧电极组件15的细长脊42从杆46的远侧端部延伸。每个脊具有支撑构件43和沿每个脊42延伸的非导电覆盖件44。每个脊具有朝近侧延伸到杆46的管腔48中的近侧部分。脊的非导电覆盖件44也可朝近侧延伸到管腔48中。每个脊42可以以与相邻脊42等径向距离的方式围绕杆46的远侧开口均匀地布置。例如,在具有五个脊的情况下,每个脊可与相邻脊间隔开约72度。可使用合适的粘合剂(例如,聚氨酯)来封装和锚定脊42的近侧端部及其非导电覆盖件44。合适的粘合剂密封杆46的远侧端部,该远侧端部被形成为使导线管38的远侧端部敞开。

每个脊支撑构件43由具有形状记忆(即在施加力时可从其初始形状暂时变直或弯曲并能够在不存在该力或移除该力后基本恢复至其初始形状)的材料制成。一种用于支撑构件的合适材料为镍/钛合金。此类合金通常包含约55%的镍和45%的钛,但也可包含约54%至约57%的镍,剩余为钛。镍/钛合金为具有优异的形状记忆性以及延展性、强度、耐腐蚀性、电阻率和温度稳定性的镍钛诺。非导电覆盖件44可由任何合适的材料制成,并且优选地由生物相容性塑料诸如聚氨酯或pebax制成。

承载于脊42上的微电极85的引线30延伸穿过导管主体12以及受非导电护套60保护的偏转节段14。引线30朝着远侧电极组件15延伸穿过聚合物管68,如图4所示。引线30在聚合物管68的远侧端部分散并朝着它们的相应脊42延伸。

如图5和图6所示,每个脊42包括面板80形式的柔性微电极构件,该面板附连到脊42的外表面,与脊42的形状适形。如图7中更好地展示,柔性电极面板80包括由合适材料(例如,聚酰亚胺或peek)构成的生物相容性柔性塑料基底81、以及至少一对紧密间隔的微电极85,所述微电极于其间分开间隙空间s。

在一些实施方案中,基底81通常延长有纵向(较薄的“t”)部分82、以大体上垂直的角度横交纵向部分82的至少一个远侧侧向(较宽的“w”)部分83、以及近侧(较窄的“lw”)基部部分84,该近侧基部部分相比纵向部分82具有稍大的侧向尺寸(图7所示的t、w和lw)。纵向部分82被配置成沿着脊42的长度延伸,并且侧向部分83被配置成围绕脊42的远侧部分周向地缠绕。基部部分84定位在脊42的近侧端部部分上,并且因此在安装杆46的管腔48内受到保护。焊片88位于基部部分84上,每个引线30一个焊片,引线的远侧端部焊接到相应的焊片88上。因此,焊片88在安装杆46的管腔48内受到保护并绝缘。应当理解,出于清楚起见,图4中仅示出了一个脊构件42,并且可适当地调节聚合物管68的尺寸以接收从管19延伸的所有脊构件42的近侧端部,其中在本发明的一些实施方案中,所述多个脊构件42可在介于两个和八个之间的范围内。

在其它实施方案中,最近侧的纵向部分82可显著延长使得基部部分84更朝近侧地定位在偏转节段14中、导管主体12中、或者甚至控制手柄16中,视具体情况或需要而定。

在每个侧向部分83的外表面上,附连或者以其它方式设置有与侧向部分83对准的相应的薄细长微电极85(微电极带)对,使得当侧向部分83围绕脊42周向地缠绕时,每个微电极大体上形成环形微电极r(图6)。应当理解,纵向部分82可与侧向部分83一样宽,但表面区域覆盖量和/或基底厚度影响脊42的柔性。

在一些实施方案中,一对微电极中的每个微电极分开的空间间隙距离s在介于约50微米和300微米之间的范围内。在一些实施方案中,该空间间隙距离在介于约100微米至200微米之间的范围内。在一些实施方案中,该空间间隙距离为约50微米。此外,在一些实施方案中,每个微电极本身的宽度w可在介于约50微米至100微米之间的范围内。在每个脊42上设置有至少一对紧密间隔的双极微电极85。在图示实施方案中,每个脊承载四对双极对,总共八个微电极。

在一些实施方案中,面板80的长度为约8.0cm,其中纵向部分82的长度为约5.0cm并且宽度不大于约1.0mm,并且基部部分84的长度为约3.0cm并且宽度为约1.2mm。每个微电极对与相邻微电极对间隔开约5.0mm的距离,其中每个微电极的宽度为约50微米并且长度为约2.56mm。

在一些实施方案中,基底81包括多个层,例如,第一层或外层81a、第二层或中间层81b以及第三层或内层81c,每个层均具有第一表面91和第二表面92。应当理解,字母“a”、“b”和“c”表示基底81的层81a、81b和81c中的对应特征结构。微电极85被施加到或以其它方式沉积在外层81a的第一表面91a上以覆盖形成在层81a中的通孔86a以便能够连接电迹线87b,所述电迹线沿着第二层81b的纵向部分82b的第一表面91b在对应的微电极85与承载于第三层81c的基部部分84c的第二表面92c上的焊盘88之间延伸。另外的迹线87c沿着第三层81c的第一表面91c延伸。通孔86b、89b(未示出)和89c形成在层81b和81c中以便能够将电迹线87b和87c连接到更近侧的微电极85以及更近侧的焊盘(图7中未示出)。应当理解,所述多个层81取决于其上可用来容纳所述连接微电极85和焊盘88的多条迹线87的表面和空间的量。还应当理解,在层增多的情况下,可降低脊的柔性。因此,用于容纳多个微电极的多个层针对脊的柔性进行平衡,所述脊的柔性能够实现对组织表面的适形但会随着基底厚度增加而降低。在图7的图示实施方案中,基底81具有三个层,每个层81承载四条迹线。应当理解,针对每个微电极85,存在一条对应的迹线87和一个对应的焊盘88。每条引线30被焊接到对应的焊盘。就这一点而言,还应当理解,迹线可视需要或具体情况以不同的方式、不同的图案布置和/或布置在不同的层中。

如图5和图6所示,基底81附连到脊42的非导电覆盖件44,其中纵向部分82沿着脊42纵向地延伸并且横向部分83围绕脊42周向地缠绕。就这一点而言,横向部分83的侧向尺寸或宽度w,并且更显著的是微电极85的侧向尺寸或宽度w,相当于脊42的周长,以使得微电极的相对端部85e可到达彼此处或者至少紧密接触,从而大体上形成或用作承载于脊42上的环形微电极r。在图5的图示实施方案中,基底81附连到脊的适于接触组织的朝前或远侧侧面,但应当理解,如果微电极足够长,能够围绕脊缠绕,那么基底的放置侧面就不太重要。在下文进一步讨论的另一个实施方案中,如果侧向尺寸w被调节并且被视需要或具体情况减小以减少围绕脊42的周向覆盖,那么基底的放置侧面就较为重要。

如图5所示,每个脊42预成形有略微向内弯曲部,使得远侧电极组件15具有类似于打开的伞的大体上稍凹的构型。当抵靠组织表面朝远侧推进导管时,这种预成形构型使每个脊42能够大体上沿着其整个长度接合组织表面93,如图8所示。在不具有该预成形构型的情况下,远侧电极组件15可趋于向外翻转(非常类似于在强风下内部外翻的伞)并且当抵靠组织表面朝远侧推动导管时失去组织接触。

如图8所示,微电极的端部85e可不与使微电极暴露于不期望的检测噪声(例如远场信号)的组织表面接触。因此,图9和图11示出另选实施方案的远侧电极组件117,该远侧电极组件提供了更大的平坦表面来进行组织接触,从而最大程度地减少了微电极在噪声和远场信号中的暴露。应当理解,本文为了便于讨论,远侧电极组件17与远侧电极组件117之间的类似部件采用类似的参考标号来表示。

虽然图6的脊42具有偏圆形的横截面,但图9的脊142具有偏矩形的横截面,这种横截面提供了较大的平坦表面100,面板180形式的柔性微电极构件可选择性地施加或附连在该平坦表面上。有利的是,整个微电极185(包括其端部180e)被限定于平坦表面100的表面区域,并且因此,当平坦表面100与组织193接触时,大体上整个微电极185都与组织接触,如图10所示。

支撑构件143具有矩形横截面,热缩性非导电覆盖件144采用该矩形横截面来提供较大的平坦表面100。在一些实施方案中,如图11所示的面板180具有基底181、微电极185、迹线187和焊盘188(未示出),这些部件的构造类似于上文针对面板80所述的那些相应部件的构造。基底181包括多个层,例如,第一层或外层181a、第二层或中间层181b以及第三层或内层181c,每个层均具有第一表面191和第二表面192。然而,一个不同之处在于,基底181不具有侧向部分,其中纵向部分182的侧向尺寸w相当于或者至少不大于平坦表面100的侧向尺寸以使得基底181保持限制在平坦表面100上。微电极185是细长且薄的。为了在一对中的相邻微电极185之间实现最小空间间隙s并同时容纳通孔186,微电极185具有放大部分或端部189,如图11所示,所述放大部分或端部的尺寸大于通孔186以跨越并覆盖通孔186,由此使得迹线187b和187c可连接到微电极185。在一个实施方案中,微电极具有约50微米的宽度,而放大部分189具有约100微米的宽度。

微电极的放大部分或端部189可向右延伸(形成“右侧微电极”185r)或向左延伸(形成“左侧微电极”185l),如图11所示。一对可包括右侧微电极185r和左侧微电极185l,如图11所示;或者两个右侧微电极185r-185r,如图12b和图12c所示;或者两个左侧微电极185l-185l,如图12a和图12d所示。一对中的微电极可以任何形式布置,包括例如镜像对(图11)、上下颠倒对(图12a、图12b、图12c和图12d)、并排对(图11、图12a和图12b)、或层叠对(图12c和图12d)。在任何情况下,放大部分端部都朝外转远离彼此,使得可最大程度减小相邻线性边缘之间所限定的空间间隙距离。

如上文关于图7所述,图9和图11的微电极185类似地附连到第一层181a的纵向部分182a的前表面191a,并且焊盘188附连到第三层181c的基部部分184c的第二表面192c。迹线187b和187c分别沿着第二层181b和第三层181c延伸。通孔186a、189b和189c分别形成在层181a、181b和181c中以使迹线能够连接到微电极185和焊盘188(未示出)。同样,应当理解,所述多个层181取决于其上可用来容纳所述连接微电极185和焊盘188的多条迹线187的表面和空间的量,所述容纳针对脊142的所需柔性进行平衡,其中应当理解,基底的厚度增加可降低脊42的柔性。在图9和图11的图示实施方案中,每个层181容纳四条迹线,总共八条迹线,用于八个微电极和八个焊盘。

在每个脊142预成形有略微向内弯曲部使得远侧电极组件115具有类似于打开的伞的大体上稍凹的构型的情况下,平坦表面100以及其上的微电极185可完全接合并与组织表面发生接触,从而在不内部外翻的情况下最大程度地减少微电极在噪声和远场信号中的暴露,如图8所示。基底181选择性地附连到脊142的朝前或远侧侧面,其中平坦表面100适于在微电极185最少地暴露于噪声和远场信号的情况下接触组织表面。

远侧电极组件115具有横截面为矩形的脊142,其中沿平坦表面100的x尺寸大于与其垂直的y尺寸,如图9所示,这样的远侧电极组件也尤其适于最大程度减少脊在其位于杆146的远侧端部的稍远侧的最大弯曲度或分散度d区域(参见图10)处的扭结和应力。

应当理解,根据需要或需求,任何给定的脊可承载如上所述的相同或不同实施方案的一个或多个柔性电极面板。

在一些实施方案中,脊支撑构件43/143由单个细长中空圆柱或管90形成,如图13所示,该单个细长中空圆柱或管具有完整的近侧圆柱形部分102(其可形成远侧电极组件的杆46/146)以及具有成形的细长延伸部或指状物106的远侧部分104,所述细长延伸部或指状物用作所述多个支撑构件43,所述多个支撑构件由其间的空间间隙分离,所述空间间隙由圆柱90的侧壁中的纵向切口形成,或者通过从圆柱90的侧壁移除(例如,激光切除)细长纵向条带105来形成。每个指状物106的形状被设计为在其近侧端部处或附近向外分散或张开,并且被设计为具有略微向内弯曲部,如图5所示。

在示出的实施方案中,延伸穿过导管主体12的中心管腔18和偏转节段14中的第一管腔21的引线30可包封在护套60内,以防止与导管中的其它部件接触。护套60可用任何合适的材料制成,优选的材料为聚酰亚胺。正如本领域的技术人员将会认识到的,护套可根据需要被消除。

微电极85可由任何合适的固体导电材料制成,诸如铂或金,优选为铂和铱的组合。相对于远场心房信号,紧密间隔的微电极对允许更准确地检测近场肺静脉电势,这在试图治疗心房纤颤时非常有用。具体地,近场肺静脉电势为极小的信号,而位于极接近肺静脉处的心房提供大得多的信号。因此,甚至当标测阵列被放置于肺静脉区域中时,医师仍可能难以确定信号是小的近电势(来自肺静脉)还是较大的较远电势(来自心房)。紧密间隔的双极微电极允许医师更准确地确定其正观察近信号还是远信号。因此,通过具有紧密间隔的微电极,能够更好地瞄准具有肺静脉电势的心肌组织的位置,并且因此允许临床医生将治疗递送至特定组织。此外,紧密间隔的微电极允许医师通过电信号更好地确定心门的解剖位置。

如上所述,电磁位置传感器36容纳在杆46的管腔48中,如图4所示。传感器缆线34从位置传感器的近侧端部延伸,并且通过垫圈50d和50p的通孔55(未示出)、偏转节段14的管19的第五管腔25(参见图3)和导管主体12的中心管腔18(参见图2)。缆线34附接到控制手柄16中的如在本领域中已知的印刷电路板。在一些实施方案中,一个或多个远侧电磁位置传感器可容纳在远侧电极组件中,例如容纳在脊42的一个或多个远侧部分中。

如图3和图4所示,提供牵拉线32a和32b(无论是作为两个独立的拉伸构件还是单个拉伸构件的部分)用于中间节段14的双向偏转。牵拉线由控制手柄16中的机构致动,所述机构响应于拇指控制旋钮或偏转控制旋钮11(参见图1)。美国专利6,123,699、6,171,277、6,183,435、6,183,463、6,198,974、6,210,407和6,267,746中公开了合适的控制手柄,这些专利的全部公开内容均以引用方式并入本文。牵拉线32a和32b延伸穿过导管主体12的中心管腔18(参见图2)并且分别穿过偏转节段14的管19的第二管腔22和第四管腔24(参见图3)。它们分别延伸穿过垫圈50d和50p的通孔52和54(参见图4)。在牵拉线为单个拉伸构件的一部分的情况下,单个拉伸构件在远侧垫圈50d的远侧面处具有u形弯曲部,该u形弯曲部锚固牵拉线的远侧端部。就这一点而言,u形弯曲部延伸穿过短保护管70。另选地,在牵拉线为独立拉伸构件的情况下,其远侧端部可经由如在本领域中已知的并在例如美国专利8,603,069中描述的t形条锚固,该专利的全部内容以引用方式并入本文。在任一种情况下,牵拉线均可由任何合适的金属制成,诸如不锈钢或镍钛诺,并且各自优选地涂覆有特氟隆等。涂层赋予牵拉线润滑性。牵拉线的直径优选地在约0.006英寸至约0.010英寸的范围内。

压缩线圈66处于导管主体12的中心管腔18内,与每根牵拉线32a和32b成环绕关系,如图3所示。每个压缩线圈66从导管主体12的近侧端部延伸至中间节段14的近侧端部。压缩线圈66由任何合适的金属制成,优选的金属为不锈钢。每个压缩线圈66紧紧地缠绕在它自身上,以提供柔性,即弯曲性,但可抗压缩。压缩线圈66的内径优选地稍大于其牵拉线的直径。每根牵拉线上的特氟隆涂层允许其在其压缩线圈内自由滑动。

压缩线圈66通过近侧胶接头(未示出)在其近侧端部处锚固到导管主体12的外壁17,并且通过远侧胶接头(未示出)在其远侧端部处锚固到中间节段14。两个胶接头均可包括聚氨酯胶等。可使用注射器等通过在导管主体12和管19的侧壁形成的孔来施加胶。此孔可通过例如刺穿被充分加热以形成永久性孔的侧壁的针等形成。然后将胶通过孔引入到压缩线圈66的外表面,并围绕外圆周芯吸,以围绕压缩线圈的整个圆周形成胶接头。

在中间节段14的第二管腔22和第四管腔24内,每根牵拉线32a和32b延伸穿过塑料(优选特氟隆)的牵拉线护套39(图3),该牵拉线护套防止牵拉线在偏转节段14偏转时切入偏转节段14的管19的侧壁中。

已参考本发明的当前优选实施方案来呈现前述描述。本发明所属技术领域内的技术人员将会认识到,在未有意脱离本发明的原则、实质和范围的前提下,可对所描述的结构作出变更和更改。在一个实施方案中公开的任何特征或结构可根据需要或适当情况并入以代替或补充任何其它实施例的其它特征。应该理解,可应用本发明的特征以增加牵拉线、收缩线的线性运动,或增加需要插入、去除或张紧的医疗装置中任何其它物体的线性运动,所述医疗装置包括所公开的电生理学导管。如本领域的普通技术人员所理解的,附图未必按比例绘制。因此,上述描述不应视为仅与附图中描述和说明的精确结构有关,而应视为符合以下具有最全面和合理范围的权利要求书并且作为权利要求书的支持。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1