一种红外光控释载药平台及其制备方法和应用与流程

文档序号:16146329发布日期:2018-12-05 16:26阅读:246来源:国知局

本发明涉及一种红外光控释载药平台及其制备和应用,具体说,是涉及一种以生物医用钛基材料为基底,在其表面原位生长层状双氢氧化物载药薄膜,并进一步修饰光热元件金纳米棒后所得到的药物释放可被红外光调控的载药平台,属于金属材料表面改性技术领域。

背景技术

医用钛基材料例如镍钛合金具有良好的力学性能、生物相容性及独特的形状记忆效应,被广泛应用医用支架的制造当中,对由于恶性肿瘤侵袭造成的人体各种腔道的阻塞具有较好的姑息治疗效果(radiology1993,187:661-665.)。但镍钛合金支架本身并不具有抗癌能力,支架植入后易发生再阻塞,为防止这种现象的出现,载药支架逐渐成为目前研究的热点。药物释放的控制是制备载药支架所面临的主要问题之一,药物释放量过少起不到抗癌的效果,而药物释放量过大又会对正常组织造成损伤。因此开发可根据实际需求能够人为调控药物释放量的载药平台很有必要。

药物的控释通常以光、电、磁、力等外加刺激来实现。红外辐照是研究当中常用的外界刺激,其对皮肤透过率高,伤害小,临床应用较容易实现(advancedfunctionalmaterials2015,25:2520-2529)。红外辐照可使具有光热效应的材料温度升高,因此将光热材料修饰于对温度敏感的载药薄膜表面,便有可能实现红外光对药物释放的调控。

层状双氢氧化物是较为理想的载药薄膜构建材料。研究表明层状双氢氧化物在药物负载方面表现出巨大潜力,其层间距极大,药物分子可直接负载于其晶格内部。这一载药基底具有较高的载药效率和较大的载药能力,还可以有效的防止药物在生物体内降解(biomaterials2014,35:3331-3339)。毒理学研究表明,和其它常见无机载药基体如氧化铁、二氧化硅、碳纳米管相比,层状双氢氧化物具有更好的生物相容性(internationaljournalofmolecularsciences2014,15:7409-7428)。然而,目前还没有关于将负载于层状双氢氧化物中的药物可控释放的报道。



技术实现要素:

针对现有技术存在的问题,本发明的目的在于提供一种红外光控释载药平台及其制备方法和应用。

本申请提供了一种红外光控释载药平台,其包括:

医用钛基材料;

原位生长于所述医用钛基材料表面的层状双氢氧化物薄膜,所述层状双氢氧化物的晶格内部负载有药物,优选为抗癌药物,更优选为阴离子型抗癌药物;和

修饰于层状双氢氧化物表面的金纳米棒。

所述红外光控释载药平台,以医用钛基材料为基底,以层状双氢氧化物为载药层,药物分子负载于层状双氢氧化物晶格内部,分布均匀且负载量大,以金纳米棒为控释元件。红外光辐照的条件下,金纳米棒由于其表面等离子体共振效应产生热量,使材料温度升高。而层状双氢氧化物本身对热的敏感性较高,高温作用下,层状双氢氧化物会转变为层状氧化物,层间负载的药物分子随之释放。因此本发明所构建的载药平台的药物释放量可通过红外光进行调控。在有红外辐照的条件下,材料药物释放量大,可有效杀伤癌细胞,而且可利用热疗和药物释放的共同作用更好地实现对肿瘤组织的杀伤;而停止红外辐照后,药物释放量较小,对正常细胞负面作用较小,具有较好的生物相容性。

较佳地,所述医用钛基材料为纯钛或钛合金,优选为钛镍合金。

较佳地,所述载药层状双氢氧化物为片状结构,纳米片直径为0.5~2.0μm,厚度为20~40nm。

较佳地,所述金纳米棒长度为30~120nm,纳米棒直径为5~25nm,金纳米棒在层状双氢氧化物表面覆盖面积占总面积的20~80%。

本申请还提供上述红外光控释载药平台的制备方法,包括如下步骤:

(1)在医用钛基材料表面构建载药层状双氢氧化物薄膜;

(2)在所得载药层状双氢氧化物薄膜表面负载金纳米棒。

根据上述制备方法,以医用钛基材料为基底,原位诱导载药层状双氢氧化物薄膜的生长,并进一步将具有光热效应的金纳米棒负载于载药薄膜表面。本发明中的红光控释载药平台的制备方法简单、成本低廉,利于大规模生产。

较佳地,所述步骤(1)包括:以含有一价或二价金属离子m1的可溶性盐、三价或四价金属离子m2的可溶性盐、尿素和药物的混合水溶液或水溶胶作为水热介质,水热处理医用钛基材料,构建载药镍钛层状双氢氧化物薄膜。

根据该制备方法,载药层状双氢氧化物通过一步水热法原位生长于医用钛基材料表面。医用钛基材料在水热过程中发生活化,表面形成大量ti-oh基团可为层状双氢氧化物的形成提供结合位点,促进层状双氢氧化物的形成。

优选地,一价或二价金属m1选自li+、ni2+、co2+、zn2+、mg2+和cu2+中的至少一种,三价或四价金属m2选自fe3+、al3+和ti4+中的至少一种。

优选地,m1与m2的摩尔比为1:1~5:1。

优选地,所述水热介质中二价金属离子m1的浓度为2~20mm。

优选地,尿素浓度为4~8g/l。

优选地,所述水热介质中药物浓度为1~50mm。

优选地,所述水热处理的温度为80~160℃,时间为12~36小时。

较佳地,所述步骤(2)包括:将表面构建有载药层状双氢氧化物薄膜的医用钛基材料先后浸泡于硅烷偶联剂溶液、阴离子型聚合物溶液和金纳米棒溶胶中,震荡条件下放置特定时间,从而将金纳米棒负载于载药层状双氢氧化物薄膜表面。

较佳地,所述硅烷偶联剂为具有水溶性的硅偶联剂,优选自氨丙基三乙氧基硅烷、缩水甘油醚基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、巯丙基三甲(乙)氧基硅烷、乙二胺丙基三乙氧基硅烷、乙二胺丙基甲基二甲氧基硅烷中的至少一种。

较佳地,硅烷偶联剂溶液的浓度为2~15v%,用量为1.5~4ml/cm2,在硅烷偶联剂溶液中室温超声浸泡1~4h。

较佳地,所述阴离子型聚合物为具有水溶性的带负电的聚合物,优选自聚苯乙烯磺酸及其盐、聚丙烯酸钠、聚甲基丙烯酸及其盐中的至少一种。

较佳地,所述阴离子型聚合物溶液是将阴离子型聚合物溶于含有3~15mm氯化钠的水溶液中而得,其中阴离子型聚合物的浓度为0.05~2g/ml,在阴离子型聚合物溶液中浸泡12~36小时,用量为1~3ml/cm2,温度为30~40℃。

较佳地,所述金纳米棒溶胶是将金纳米棒分散于20~200mm的氯化钠溶液而得,其中金纳米棒的浓度为0.01~1μg/ml,金纳米棒溶胶用量为0.8~2ml/cm2,在金纳米棒溶胶中浸泡40~60小时,温度为35~45℃。

较佳地,金纳米棒通过如下方法制备:

制备晶种溶液:将0.05~0.4m十六烷基三甲基溴化铵溶液和0.01~0.4mhaucl4溶液混合均匀,然后加入0.002~0.3mnabh4溶液,其中,十六烷基三甲基溴化铵溶液、haucl4溶液、nabh4溶液的体积比为(100~150):(1~6):(10~20),然后静置2~5小时;

制备生长液:将0.05~0.4m十六烷基三甲基溴化铵溶液、0.002~0.2m的agno3溶液和0.01~0.1m的haucl4溶液混合均匀,其中,十六烷基三甲基溴化铵溶液、agno3溶液、haucl4溶液的体积比为(40~120):(1~3):(4~6),然后逐滴加入0.05~0.2m抗坏血酸溶液直至溶液刚好褪色,搅拌后即得生长液;

向生长液中加入晶种溶液,搅拌,然后静置一段时间,即得金纳米棒。

本申请还提供上述红外光控释载药平台在制造与肿瘤组织接触的医用钛基器件中的应用。负载于层状双氢氧化物晶格内部药物的释放,可通过红外光辐照进行人为调控。可根据实际需求增加或减小药物释放量,在有肿瘤存在的情况下,增加辐照频率利用热疗和药物释放的共同作用实现对肿瘤组织的杀伤;而在肿瘤消失后停止辐照,药物释放量减小,使得材料不会对正常组织造成损伤,可应用于与肿瘤组织接触的生物医疗器械。

附图说明

图1是经本发明改性处理后的镍钛合金表面扫描电镜低倍和高倍形貌图。图中ldh表示经实施例1处理所得样品,ldh/b表示经实施例2处理所得样品,au@ldh表示经实施例3处理所得样品,au@ldh/b表示经实施例4处理所得样品;

图2是经本发明改性处理后的镍钛合金xrd图谱。图中ldh表示经实施例1处理所得样品,ldh/b表示经实施例2处理所得样品,au@ldh表示经实施例3处理所得样品,au@ldh/b表示经实施例4处理所得样品;

图3是经本发明改性处理后的镍钛合金红外图谱。图中ldh表示经实施例1处理所得样品,ldh/b表示经实施例2处理所得样品,au@ldh表示经实施例3处理所得样品,au@ldh/b表示经实施例4处理所得样品;

图4是经本发明改性处理前后镍钛合金在红外辐照下的升温曲线。图中niti表示未经处理的镍钛合金,ldh表示经实施例1处理所得样品,ldh/b表示经实施例2处理所得样品,au@ldh表示经实施例3处理所得样品,au@ldh/b表示经实施例4处理所得样品;

图5是经本发明改性处理后镍钛合金在红外辐照前后药物释放情况。图中ldh/b表示经实施例2处理所得样品,au@ldh/b表示经实施例4处理所得样品;

图6是癌细胞rbe在经本发明改性处理前后镍钛合金表面培养一段时间后,经红外光辐照0.5h(a)和4h(b)后的细胞活性。图中niti表示未经处理的镍钛合金,ldh表示经实施例1处理所得样品,ldh/b表示经实施例2处理所得样品,au@ldh表示经实施例3处理所得样品,au@ldh/b表示经实施例4处理所得样品;

图7是正常细胞hibepic在经本发明改性处理前后镍钛合金表面培养一段时间后的细胞增殖情况。图中niti表示未经处理的镍钛合金,ldh表示经实施例1处理所得样品,ldh/b表示经实施例2处理所得样品,au@ldh表示经实施例3处理所得样品,au@ldh/b表示经实施例4处理所得样品。

具体实施方式

以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

本发明人经研究发现,层状双氢氧化物对温度敏感性较高,在较高温度下,其会发生晶型转变,由层状双氢氧化物转变为层状氧化物,负载于层间的药物会随着晶型的转变释放出来,因此若能调控层状双氢氧化物的温度,则有可能实现负载于其层间的药物的可控释放;进一步地,如果在层状双氢氧化物上负载光热材料,则有可能实现红外光对药物释放的调控。

本发明在载药层状双氢氧化物薄膜上修饰光热材料金纳米棒,实现了负载于其层间的药物的红外光控释。即,红外光辐照时,载药层状双氢氧化物的晶型会发生转变,从层状双氢氧化物转变为层状双氧化物,之前储存于材料晶格内部的药物随之释放。金纳米棒具有较高的生物安全性,选用金纳米棒作为光热材料,可以维持层状双氢氧化物较好的生物相容性。

所述载药层状双氢氧化物薄膜可原位生长于医用钛基材料表面。即,根据本发明一实施方式的红外光控释载药平台包括:医用钛基材料;原位生长于所述医用钛基材料表面的载药层状双氢氧化物薄膜;和修饰于载药层状双氢氧化物薄膜表面的金纳米棒。

所述医用钛基材料包括但不限于纯钛或钛合金,优选为钛镍合金。镍钛合金具有良好的力学性能、生物相容性及独特的形状记忆效应,在其表面构建红外光控释载药平台可以很好地应用于置于肿瘤环境中(例如与肿瘤组织接触)的医用支架,可以满足目前生物材料市场对生物医用镍钛合金可控释载药支架的需求。

层状双氢氧化物薄膜原位生长于医用钛基材料表面。层状双氢氧化物(layereddoublehydroxides)通常也称为水滑石类化合物,是由两种价态不同的金属元素构成的氢氧化物。它是一类典型的阴离子型插层材料,金属氢氧化物构成主体层板,阴离子以及一些水分子等客体嵌入到层间而形成独特的层状结构。层状双氢氧化物中同时含有两种金属离子,一种为一价或二价金属离子,例如li+、ni2+、co2+、zn2+、mg2+或cu2+;另一种为三价或四价金属离子,例如fe3+、al3+或ti4+。层状双氢氧化物的层间(晶格内部)可装载客体分子。在本发明中,层状双氢氧化物可作为载药层,在其晶格内部负载有药物。应理解,这里所述的药物也包括了生物分子。所述药物优选为抗癌药物,从而赋予红外光控释载药平台抗癌能力。另外,所述药物优选为阴离子型药物。这是由于层状双氢氧化物层间填充有可交换的阴离子,因此阴离子型药物可与板层间的阴离子发生交换,从而更好地负载于层状双氢氧化物中。作为药物的示例,可举出5-氟尿嘧啶、丁酸钠、羧酸化阿霉素等。

层状双氢氧化物为片状结构。纳米片直径可为0.5~2.0μm,厚度可为20~40nm。在医用钛基材料表面,层状双氢氧化物整体形成为薄膜,其厚度可为1~20μm。

金纳米棒修饰于层状双氢氧化物表面,其具有光热效应,作为控释元件。金纳米棒的长度可为30~120nm,纳米棒直径可为5~25nm,长径比可为2~10。这种尺寸的金纳米棒对波长为800nm左右的近红外光吸收较强,而800nm左右的近红外光对人体组织透过率最高。因此,选用这种尺寸的金纳米棒可使植入体内的材料也可维持较佳的光热效应。金纳米棒在材料表面覆盖面积可占薄膜总面积的20~80%。若覆盖的太少,则红外控释效果可能不明显,若覆盖的太多,则在近红外光辐照下升温过高,易造成组织损伤。另外,通过调节金纳米棒的覆盖率,可以调节红外光控释的效果。

以下示例性地说明本发明提供的红外光控释载药平台的制备方法。

本发明所构建的红外光控释载药平台的制备主要包含:医用钛基材料表面载药层状双氢氧化物薄膜的构建、以及金纳米棒在载药层状双氢氧化物表面的负载。

在本发明的一实施方式中,可通过一步水热法在医用钛基材料表面构建载药层状双氢氧化物。具体而言,以含有一价或二价金属离子m1的可溶性盐、三价或四价金属离子m2的可溶性盐、尿素和药物的混合水溶液或水溶胶作为水热介质,水热处理医用钛基材料,构建载药层状双氢氧化物薄膜。本实施方式中,通过一步水热法形成载药层状双氢氧化物,使得工艺简单高效。但应理解,也可以先制备无载药的层状双氢氧化物,再于其中装载药物,例如将无载药的层状双氢氧化物(或负载有金纳米棒的无载药的层状双氢氧化物)与药物溶液充分混合,再去除溶剂,从而将药物装载于层状双氢氧化物中。

一价或二价金属m1可为li+、ni2+、co2+、zn2+、mg2+或cu2+。三价或四价金属m2为fe3+、al3+或ti4+。m1、m2的可溶性盐可为该金属的硝酸盐、硫酸盐、碳酸盐、氯化物、溴化物、氟化物等一切在水中有一定溶解性的盐类。

在水热介质中,m1与m2的摩尔比可为1:1~5:1。在水热介质中,m1溶液的浓度为2~20mm。

尿素的浓度可为4~8g/l。其中尿素浓度对载药层状双氢氧化物薄膜形成的影响较大,需要进行精确调控。尿素浓度太低会导致水热过程中ph过低,层状双氢氧化物无法形成。而尿素浓度过高,会导致环境中cno-离子浓度过高,该离子会和药物发生竞争,使得药物难以插入层状双氢氧化物晶格之中。

药物的浓度可为1~50mm。药物的具体浓度可根据所需的载药量进行选择。

水热处理所用的设备可为反应釜,填充度可为30~80%。水热反应温度可为80~160℃,时间可为12~36小时。

在本发明的一实施方式中,将所构建的载药层状双氢氧化物薄膜先后浸泡于硅烷偶联剂溶液、阴离子型聚合物溶液和金纳米棒溶胶中,放置特定时间,从而将特定量的金纳米棒负载于载药层状双氢氧化物薄膜表面。另外,为促进浸泡效率,可在震荡和/或超声条件下放置。

在本实施方式中,硅烷偶联剂可以同时与层状双氢氧化物和金纳棒连接,使金纳米棒固定于层状双氢氧化物表面,阴离子型聚合物可以通过静电作用力增大金纳米棒的负载量。

所述硅烷偶联剂可为氨丙基三乙氧基硅烷、缩水甘油醚基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、巯丙基三甲(乙)氧基硅烷、乙二胺丙基三乙氧基硅烷、乙二胺丙基甲基二甲氧基硅烷等具有水溶性的硅偶联剂。

硅烷偶联剂溶液的溶剂可为水,浓度可为2~15v%(体积百分比)。硅烷偶联剂溶液的用量可为1.5~4ml/cm2(即每cm2的薄膜使用1.5~4ml硅烷偶联剂溶液)。可将所构建的载药层状双氢氧化物薄膜在硅烷偶联剂溶液中于室温下超声浸泡1~4h。通过调节硅烷偶联剂溶液的浓度、硅烷偶联剂溶液的用量和/或浸泡时间等,可以调节硅烷偶联剂在薄膜上的附着量。浸泡后,可洗涤以除去表面残余的游离硅烷偶联剂。

所述阴离子型聚合物可为聚苯乙烯磺酸及其盐、聚丙烯酸钠、聚甲基丙烯酸及其盐等具有水溶性的带负电的聚合物。

阴离子型聚合物浓度可为0.05~2g/ml,溶于含有3~15mm(例如6mm)氯化钠的水溶液中。阴离子型聚合物溶液的用量为1~3ml/cm2。材料浸泡时间可为12~36h,温度可为30~40℃。通过调节阴离子型聚合物溶液的浓度、阴离子型聚合物溶液的用量和/或浸泡时间等,可以调节阴离子型聚合物在薄膜上的附着量。浸泡后,可洗涤以除去表面残余的游离阴离子型聚合物。

金纳米棒溶胶可以是将金纳米棒分散于20~200mm的氯化钠溶液而形成。浸泡时所用的金纳米棒溶胶浓度可为0.01~1μg/ml。金纳米棒溶胶的用量可为0.8~2ml/cm2。浸泡时间可为40~60h,温度可为35~45℃。通过调节硅烷偶联剂在薄膜上的附着量、阴离子型聚合物在薄膜上的附着量、金纳米棒溶胶的浓度、金纳米棒溶胶的用量和/或浸泡时间等,可以调节金纳米棒在薄膜上的负载量(覆盖率)。

上述金纳米棒的制备方法没有特别限定,只要能获得所需尺寸的金纳米棒即可。在本发明的一实施方式中,上述金纳米棒可通过以氯金酸为原料,通过硼氢化钠还原来制备。金纳米棒制备过程包括晶种溶液的制备和生长液(亦称成长液)的制备。

在一个示例中,晶种溶液制备时,向5ml0.05~0.4m的十六烷基三甲基溴化铵(ctab)溶液中加入0.04~0.24ml(例如0.12ml)0.01~0.4m的haucl4溶液,搅拌并加入1~10ml蒸馏水。然后滴加0.1~1ml冷冻过的0.002~0.3mol/l的nabh4溶液,即得晶种溶液。配好的溶液于27~30℃环境中静置2~5h即可使用。

在一个示例中,生长液制备时,向50ml的锥形瓶中加入30ml的ctab溶液,搅拌并依次加入0.5~1ml(例如0.75ml)0.002~0.2m的agno3溶液和0.8~2.4ml(例如1.5ml)0.01~0.1m的haucl4溶液,然后逐滴加入0.05~0.2m(例如0.1m)抗坏血酸溶液直至溶液刚好褪色,搅拌后即得纳米棒的生长液。

在一个示例中,向生长液中加入25~100μl晶种溶液,继续搅拌10~30s,将溶液在25~27℃环境中静置12~24h即可得到金纳米棒溶液。

本发明所制备的红外光控释载药平台,充分结合了金纳米棒和层状双氢氧化物的理化性能。利用金纳米棒的表面等离子体共振效应,将入射的红外光转化为热量使整个材料体系温度提高;利用层状双氢氧化物较大的层间距负载药物,同时利用其对温度的敏感性,使其在红外辐照的条件下发生晶相转变,导致储存于其内部的药物发生释放。该载药平台药物释放可控性强,将热疗与化疗有机地结合在一起,在红外光辐照条件下表现出较好的抗癌效果,而且材料本身生物相容性较好,使其在与肿瘤组织接触的镍钛合金器件中表现出极佳的应用前景。

下面进一步例举实施例以详细说明本发明。应理解,以下实施例只用于对本发明进行进一步说明,而不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1

将直径为12mm厚度为1mm的镍钛合金圆片,依次用酒精、去离子水和超声清洗干净,每次15min。以6mmnicl2,2mmticl4,6.5g/l尿素混合溶液作为水热介质进行水热处理,水热温度为120℃,时间为24h。水热釜的填充度35%。

图1(ldh)是经本实施例改性处理得到的样品表面形貌低倍和高倍扫描电镜图片。从图中可以看到,所制备的载药薄膜呈现出片状结构,片层长度和宽度约为2μm,而厚度为20~40nm。图2(ldh)给出了经本实施例处理后制备样品的xrd谱图,从图中可以看到对应于层状双氢氧化物(003)和(006)晶面的特征峰。图3(ldh)为经本实施例处理后所得到样品的红外图谱。在1385cm-1处的峰对应于co2-的伸缩震荡,说明该组样品表面层状双氢氧化物层间离子主要为碳酸根。

实施例2

将直径为12mm厚度为1mm的镍钛合金圆片,依次用酒精、去离子水和超声清洗干净,每次15min。以6mmnicl2,2mmticl4,6.5g/l尿素,3mm丁酸钠的混合溶液作为水热介质进行水热处理。其它工艺参数如实施例1所述。

图1(ldh/b)是经本实施例改性处理得到的样品表面形貌低倍和高倍扫描电镜图片。从图中可以看到,经本实施例处理后的样品形貌与经实施例1处理得到的样品形貌完全一致,均由纳米片构成。图2(ldh/b)给出了经本实施例处理后制备样品的xrd谱图,从图中可以看到对应于层状双氢氧化物(003)晶面的特征峰劈裂为两个峰,其中较低度数的峰位于11.29°,对应的晶面间距为0.783nm。该间距符合丁酸根离子的尺寸,可从侧面印证丁酸根离子已经进入层状双氢氧化物晶格之中。图3(ldh/b)为经本实施例处理后所得到样品的红外图谱。在1406cm-1和1558cm-1处的两个峰分别对应于丁酸根中coo-基团的对称伸缩震荡和非对称伸缩震荡;位于2939cm-1的峰对应于-ch2-基团的非对称伸缩震荡,2964cm-1处的峰对应于-ch3基团的非对称伸缩震荡。上述数据可说明所采用的模型药物丁酸钠已经成功插入层状双氢氧化物的晶格之中。

实施例3

向5ml0.1m的ctab溶液中加入0.12ml0.02m的haucl4溶液,搅拌并加入2.5ml蒸馏水。然后滴加0.6ml冷冻过的0.01m的nabh4溶液,此时溶液由深黄色变为棕黄色,继续搅拌2min,即得金纳米棒晶种溶液。配好的溶液于30℃环境中静置4h即可使用。在室温条件下,往50ml的锥形瓶中加入30ml的ctab溶液,搅拌并依次加入0.75ml0.01m的agno3溶液和1.5ml0.02m的haucl4溶液,溶液迅速变为红色,然后逐滴加入0.1m抗坏血酸溶液直至溶液刚好褪色,搅拌2min即得纳米棒的成长液。向成长液中加入72μl晶种溶液,继续搅拌10s,将溶液在25℃环境中静置18h,获得金纳米棒溶胶。将金纳米棒溶胶离心后弃上清液,重新分散于100mm的氯化钠溶液中备用。

将实施例1制备的样品放置于4ml离心管中,向离心管内加入2ml5v%的氨丙基三乙氧基硅烷(aps)溶液,超声处理2h;将aps溶液去除,用大量水将材料表面残余的游离aps清洗干净,向离心管内加入1.5ml0.1g/ml的聚苯乙烯磺酸钠(pss)溶液(pss溶于6mmnacl溶液中),37℃下在摇床上放置24h。将样品表面残余pss用大量去离子水去除,样品干燥后,将其竖直放于4ml离心管内。向离心管中加入1.2ml金纳米棒溶液,37℃下在摇床上放置48h。

图1(au@ldh)是经本实施例改性处理得到的样品表面形貌低倍和高倍扫描电镜图片。从图中可以看到,经本实施例处理后的样品表面的纳米片结构并没有遭到破坏,同时纳米片表面出现大量纳米棒结构,纳米棒长度约为50nm,直径约为10nm。图2(au@ldh)给出了经本实施例处理后制备样品的xrd谱图,相较于经实施例1处理的样品,经本实施例处理的样品对应于层状双氢氧化物的(003)峰的峰强减弱,但峰位没有发生改变,同时在38°和44°新出现两个峰,分别对应于单质金的(111)和(200)晶面,说明材料表面的纳米棒为金纳米棒。图3(au@ldh)为经本实施例处理后所得到样品的红外图谱。该组样品的红外光谱峰位于经实施例1处理样品的峰位完全一致,说明其层间离子同样为碳酸根。

实施例4

利用实施例3所示的工艺参数与实验方法,向经实施例2处理所得到的样品表面负载金纳米棒。

图1(au@ldh/b)是经本实施例改性处理得到的样品表面形貌低倍和高倍扫描电镜图片。从图中可以看到,经本实施例处理后的样品表面形貌与经实施例3处理所的样品一致。图2(au@ldh/b)给出了经本实施例处理后制备样品的xrd谱图,其对应于层状双氢氧化物的(003)峰的峰位与经实施例2处理所得样品一致,同时在其表面也可以探测到对应于单质金的特征峰。图3(au@ldh/b)为经本实施例处理后所得到样品的红外图谱。该组样品的红外光谱峰位于经实施例2处理样品的峰位完全一致,说明其层间负载物质同样为模型药物丁酸钠。

实施例5

分别测试未处理的样品niti和经过实施例1~4处理的样品在红外辐照条件下表面温度变化,各组样品均浸泡于0.5ml磷酸缓冲液中(pbs),红外光的功率为1w、波长为808nm,辐照时长为10min。

图4是处理前后各组样品的升温曲线,经实施例1、2处理的样品的升温曲线和未处理的对照样niti没有区别,经过红外辐照后温度最高只能升到38℃左右,而经实施例3、4处理的样品经红外辐照后可将周围溶液的温度升到52℃。以上数据说明金纳米棒修饰可赋予材料光热效应,使材料可将光能转换成热能。

实施例6

将经过实施例2、4处理的样品浸泡于pbs中,每隔一段时间,取出浸提液,通过紫外分光光度计测量浸提液中模型药物丁酸钠的浓度。浸泡一定时间后,用808nm红外光激光器辐照浸泡样品,激光功率为1w,辐照时间为10min,辐照结束后立即测定丁酸钠的释放量,从而检测红外光辐照对药物释放的影响。

图5给出了两组材料药物释放的情况,对于经实施例2处理的样品,其药物释放不会受到红外辐照的影响;而经实施例4处理的样品,在红外辐照后药物释放量明显上升。这说明对于修饰金纳米棒的载药层状双氢氧化物薄膜,可将红外光作为启动药物释放的“开关”,从而实现药物的释放的人为调控。

实施例7

采用人胆管癌细胞rbe体外培养实验评估未处理样品niti和经上述实施例1~4制备的样品对癌细胞活性的影响,利用阿尔玛蓝试剂盒检测细胞在样品表面增殖情况,将已灭菌的样品放入24孔培养板中,每孔滴加1ml密度为5×104cell/ml癌细胞悬液;细胞4天后,将每组样品等分为两部,一部分用强度为1w的红外光(波长808nm)辐照10min,另一部不做任何处理;之后吸去原培养液,加入含有10%阿尔玛蓝染液的新培养液,将培养板置于培养箱中培养0.5h和4h后,从每孔取出100μl培养液放入96孔板中;利用酶标仪(bio-tek,elx800)测量各孔的荧光强度(激发:560nm;发射590nm),细胞活性与荧光强度成正比。

图6中的a是红外辐照半小时后,各组样品表面癌细胞的活性状态。红外辐照对经过实施例1、2处理的样品表面培养细胞没有明显作用,而对经过实施例3、4处理的样品表面培养的细胞表现出明显的抑制作用。如实施例5所示,红外辐照会使经实施例3、4处理所得样品表面温度升高,致使材料对其表面培养细胞产生抑制作用。

图6中的b为红外辐照4小时后各样品表面的细胞活性,此时经实施例3处理样品表面的细胞活性得以恢复,而经实施例4处理的样品表面培养细胞活性进一步降低。如实施例6所述,经实施例4处理的样品在红外辐照下会释放出药物,在高温和药物的双重作用下,使得经实施例4处理的样品在红外辐照后具有长效的抗癌能力。而经实施例3处理所得的样品,没有负载药物,当停止红外辐照后,材料温度降低从而导致其对癌细胞的抑制功能逐渐降低。实施例2处理的样品虽然同样负载了药物,但其药物释放不能被红外光调控,药物释放量较低,因此经实施例2处理的样品在红外辐照条件下对癌细胞的抑制能力要低于经实施例4处理所得样品。

以上数据说明,单纯负载药物或单纯通过红外辐照升高材料表面温度都不足以杀死癌细胞,而将两者有机结合后,材料对癌细胞则可表现出长效的抑制作用。

实施例8

采用人肝内胆管上皮细胞hibepic体外培养实验评估未处理样品niti和经上述实施例1~4制备的样品对正常细胞活性的影响,细胞在样品表面培养1、4天后利用阿尔玛蓝试剂盒检测细胞在样品表面增殖情况,具体操作见实施例7。

图7为正常细胞在各组样品表面增殖情况,细胞在样品表面培养1天后,经实施例1、2处理的样品对正常细胞有一定的抑制作用,而经实施例3、4处理的样品对正常细胞几乎没有负面影响。培养4天后之后,经实施例4处理的样品对正常细胞的增殖甚至表现出一定的促进作用。以上数据说明本发明所构建的载药平台在没有红外光辐照的情况下,对正常细胞没有损伤,具有较好的生物相容性。

细胞实验表明本发明所制备的药物控释系统具有较好的生物相容性,同时在红外光辐照下可实现对癌细胞的杀伤。因此本发明可广泛应用于与肿瘤组织接触的钛基医疗器械例如镍钛合金医疗器械的表面设计。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1