半导体传感器芯片、半导体传感器芯片阵列、以及超声波诊断装置的制作方法

文档序号:16816780发布日期:2019-02-10 14:45阅读:260来源:国知局
半导体传感器芯片、半导体传感器芯片阵列、以及超声波诊断装置的制作方法

本发明涉及半导体传感器、半导体传感器芯片阵列以及使用该半导体传感器芯片阵列的超声波诊断装置。



背景技术:

超声波元件将供电布线、信号布线从元件连接至外部,并经由上述布线传递电信号。

在专利文献1的说明书摘要中记载如下:“根据用于封装cmut阵列的方法的实施方式,能够在被导入至cmut阵列的侧面上的同一封装基板上封装多个cmut阵列。封装基板是为了将cmut阵列连接于成为与外部装置的接口的i/o焊盘而以成膜导电层的方式在之上图案形成开口的电介质层。能够与cmut阵列一起封装辅助的系统构成要素。多个cmut阵列以及任意选择的多个辅助的系统构成要素能够通过用于批量制造的更大的支撑构造体而保持于适当部位。支撑构造体能够使用廉价的材料而制成任意尺寸。”。

现有技术文献

专利文献

专利文献1:日本特表2011-523544号公报



技术实现要素:

发明所要解决的课题

cmut(capacitivemicro-machinedultrasonictransducer,电容式微机械超声换能器)芯片是通过薄膜的层叠而制成的超声波收发器件。cmut芯片应用半导体制造技术和mems(microelectromechanicalsystem,微机电系统)技术来制成。对于该cmut芯片而言,由于能够利用半导体制造技术来呈栅格状地一并形成元件,所以从半导体晶片切出呈栅格状地排列的多个元件,并作为一个芯片被封装。

另一方面,作为超声波传感器,有高清地传感检测大面积的需求。例如,有模拟人手的触觉传感器、触摸传感器、能够一次检测大面积的超声波探伤仪、用于人、动物的医疗诊断的超声波诊断装置用探测器等。并且,半导体传感器作为cmos传感器(complementarymetaloxidesemiconductorsensor,互补金属氧化物半导体传感器)等光学传感器而应用于摄像机、数字照相机。这样的半导体传感器能够通过增大传感检测部的面积来实现高清化(高画质化)。

在半导体制造技术中,因晶片工艺中的异物、光刻不良,芯片的成品率降低。上述异物、不良是生产线特有的,芯片的面积变大而单位晶片的芯片获取数量减少,相应地成品率降低。若考虑经济性而欲使芯片获取中的成品率为预定值以上,则半导体传感器的面积受到制约。

因此,为了使芯片获取中的成品率为预定值以上并且增大半导体传感器的面积,排列多个较小的半导体晶片是有效的。此时,电连接多个半导体晶片的方法成为问题。

本发明的课题在于提供能够相互连接的半导体传感器芯片、增大传感检测面积来实现高清化的半导体传感器芯片阵列、以及超声波诊断装置。

用于解决课题的方案

为了解决上述的课题,本发明的超声波诊断装置具备超声波探头,

上述超声波探头构成为包括:

第一半导体传感器芯片,其在元件部排列有传感器单体;以及

第二半导体传感器芯片,其在元件部排列有传感器单体,与上述第一半导体传感器芯片相邻,而且与相邻于该传感器单体的上述第一半导体传感器芯片的传感器单体之间分别通过接合线电连接。

其它方案在用于实施发明的方式中说明。

发明的效果如下。

根据本发明,可提供能够相互连接的半导体传感器芯片、增大传感检测面积来实现高清化的半导体传感器芯片阵列、以及超声波诊断装置。

附图说明

图1是示出超声波诊断装置和超声波探头的结构的框图。

图2是超声波诊断装置和超声波探头的外观图。

图3是示出超声波探头的简要结构的图。

图4是以五列排列的cmut芯片附近的立体图。

图5是示出超声波探头的制造方法的流程图。

图6是第一实施方式的cmut芯片相邻的部分的俯视图。

图7是将第一实施方式的cmut芯片相邻的部分放大的俯视图。

图8是第二实施方式的cmut芯片相邻的部分的俯视图。

图9是将第二实施方式的cmut芯片相邻的部分放大的俯视图。

图10是将第三实施方式的cmut芯片相邻的部分放大的俯视图。

图11是第四实施方式的cmut芯片相邻的部分的俯视图。

图12是将第四实施方式的cmut芯片相邻的部分放大的俯视图。

图13是将第五实施方式的cmut芯片相邻的部分放大的剖视图。

图14是将第六实施方式的cmut芯片相邻的部分放大的剖视图。

图15是第七实施方式的以二行五列呈格子状地排列的cmut芯片附近的立体图。

图16是第八实施方式的以三行五列呈格子状地排列的cmut芯片附近的立体图。

具体实施方式

以下,参照各图,对用于实施本发明的方式进行详细说明。

图1是示出超声波诊断装置8和超声波探头1的结构的框图。

超声波诊断装置8使用向被检体9内发送超声波并诊察而得到的回波信号来构成诊断部位的二维超声波图像、三维超声波图像或者各种多普勒图像并显示。具体而言,超声波诊断装置8构成为具备超声波收发部82、超声波图像形成部83、显示部85、控制部84、以及控制面板81。超声波探头1与超声波收发部82电连接。

超声波探头1诊察向被检体9发送超声波而反射出的回波。在超声波探头1搭载cmut芯片。cmut芯片是应用半导体制造技术和mems(microelectromechanicalsystem)技术并通过薄膜的层叠而制成的超声波收发器件。

超声波收发部82产生用于生成向被检体9发送的超声波信号的脉冲状的电信号。超声波收发部82具备将所产生的电信号发送至超声波探头1的超声波脉冲产生部821、和将超声波探头1所诊察后的回波信号变换至电信号的变换部822。超声波收发部82例如也可以是市面售卖的任意超声波收发器等。

超声波图像形成部83根据接收信号来形成二维超声波图像、三维超声波图像或者各种多普勒图像。超声波图像形成部83具体例如由cpu(centralprocessingunit)等构成。

显示部85显示超声波图像形成部83所形成的超声波图像。并且,在显示部85还一并显示通过后述的控制面板81而输入了的信息、其它诊断所需要的信息等。显示部85具体例如由lcd(liquidcrystaldisplay)、监视装置等构成。

控制部84基于通过后述的控制面板81而输入的控制信息来控制各机构。控制部84具体例如由cpu等构成。

控制面板81以使作业者能够对被检体9进行所希望的诊断的方式由作业者输入任意信息。而且,控制部84基于该输入了的信息来控制各机构。控制面板81具体例如由按压按钮、触摸面板等构成。

图2是超声波诊断装置8和超声波探头1的外观图。

示出将超声波诊断装置8和超声波探头1具体地应用于被检体9的状况。

操作人员通过控制面板81来输入诊断条件,并使用超声波探头1来扫描人体亦即被检体9。

超声波探头1经由电缆等而与超声波诊断装置8电连接,将超声波信号发送至人体亦即被检体9,并接收作为回波从该被检体9反射出的超声波信号。接收到的超声波信号由超声波诊断装置8变换成超声波图像,并显示于显示部85。由此,能够使被检体9的内部变得可视并进行诊断。

图3是示出超声波探头1的简要结构的图。

如图3所示,在超声波探头1的衬板11的前端具备多个cmut芯片2。cmut芯片2经由声学透镜75向被检体9照射超声波,并且接收从被检体9反射出的超声波。在下文中对这一点进行详细说明。cmut芯片2通过接合线6而与具有连接于连接器72的布线的柔性基板71连接。连接器72与电路基板73连接。而且,电路基板73上的连接端子74与超声波诊断装置8(参照图1)连接。

超声波诊断装置8(参照图2)对cmut芯片2赋予电信号使之振动,并且使从被检体9接收的波的信号形成为图像。在cmut芯片2的表面具备硅酮树脂的声学透镜75,该声学透镜75用于使从cmut芯片2产生的超声波聚焦于被检体9方向。cmut芯片2经由声学透镜75相对于人体等被检体9收发超声波。

图4是以五列排列的cmut芯片2a~2e附近的立体图。

对超声波探头1的多个cmut芯片2a~2e的附近的结构进行详细说明。五列的cmut芯片2a~2e呈一列地配置在衬板11上,并粘结于衬板11。该粘结例如使用片状粘结剂等。在cmut芯片2a~2e的内部分别包括矩形的cmut元件部21a~21e。在上述cmut元件部21a~21e中,呈栅格状地配置有作为传感器单体发挥功能的驱动电极。在cmut芯片2a~2e且在cmut元件部21a~21e的外侧,为了与该cmut芯片2a的外部连接而具备焊盘(参照图6)。

cmut芯片2a的焊盘与在列方向上相邻的cmut芯片2b的焊盘(参照图6)之间通过接合线4电连接。cmut芯片2b的焊盘与在列方向上相邻的cmut芯片2c的焊盘之间通过接合线4电连接。cmut芯片2c的焊盘与在列方向上相邻的cmut芯片2d的焊盘之间通过接合线4电连接。cmut芯片2d的焊盘与在列方向上相邻的cmut芯片2e的焊盘之间通过接合线4电连接。

图5是示出超声波探头1的制造方法的流程图。制造设备(未图示)实施该制造方法。

首先,制造设备在衬板11上呈一列地配置cmut芯片2a~2e(步骤s10),进行cmut芯片2a~2e彼此的对位(步骤s11)。若在衬板11紧贴柔性基板71(步骤s12),则制造设备对相邻的cmut芯片2彼此进行引线接合(步骤s13)。制造设备还对柔性基板71和cmut芯片2a~2e进行引线接合(步骤s14)。由此,构成图3所示的超声波探头1的一部分。

《第一实施方式》

图6是第一实施方式的cmut芯片2a、2b相邻的部分的俯视图。

图6所示的俯视图示出在列方向上相邻的cmut芯片2a、2b、焊盘32以及接合线4的关系。cmut芯片2a呈矩形,在内侧具备cmut元件部21a,并在其周边部配置有用于与外部电连接的焊盘32。各焊盘32通过曲柄状的内部布线31而与cmut元件部21a电连接。曲柄状的内部布线31相对于cmut芯片2a的各边倾斜地布线,并且在对置的边彼此之间点对称。

换言之,各个cmut芯片2具有电连接多个传感器单体而构成的信号的读取线。从该读取线所包括的传感器单体(驱动电极3)中的位于两端的传感器单体向cmut芯片2的外部进行的布线设为相对于读取线所延伸的大致方向形成预定角度。此外,形成预定角度的布线不需要为直线,也可以如图6所示地相对于读取线的方向呈曲柄状地向斜上方布线。

这样,通过排列各cmut芯片2,并连接与相同列的驱动电极连接的焊盘32彼此,能够一次传感检测较大的范围。另外,呈栅格状地配置各cmut芯片2,连接与相同列的驱动电极连接的焊盘32彼此,并且连接与相同行的驱动电极连接的焊盘32彼此。由此,超声波探头1能够一次传感检测较大的范围。

此外,图6、图8、图11中,为了明确地示出内部布线31而以实线示出,但该内部布线31未露出于上表面,由绝缘体覆盖,从而无法从外部观察确认。因而,图7、图9、图10、图12中,以虚线示出该内部布线31。

cmut芯片2b也与cmut芯片2a相同地构成,cmut芯片2a与所相邻的cmut芯片2b的焊盘32彼此通过接合线4连接。在后述的图7中对该连接进行详细说明。

图7是将第一实施方式的cmut芯片2a、2b相邻的部分a放大的图。

在cmut芯片2a且在cmut元件部21a的内部形成有用于驱动膜片(未图示)的驱动电极3e~3j等。以下,当不特别区别各驱动电极3e~3j等时,仅记载为驱动电极3。在cmut元件部21a的内部,呈栅格状地排列有未图示的驱动电极3。

同样,在cmut芯片2b且在cmut元件部21b的内部形成有用于驱动膜片的驱动电极3p~3u等。

cmut芯片2a的驱动电极3f通过内部布线31f而与焊盘32f连接。该焊盘32f的纸面的上下位置配置于驱动电极3f与所相邻的驱动电极3e之间,并且配置于由驱动电极3e~3i等构成的cmut元件部21a的外部(纸面右侧)。其它驱动电极3g~3i也相同地通过各内部布线31g~31i而与各焊盘32g~32i连接,并且相同地配置。以下,当不特别区别各内部布线31g~31i等时,仅记载为内部布线31。

cmut芯片2b的驱动电极3q通过内部布线31q而与焊盘32q连接。该焊盘32q的纸面的上下位置配置于驱动电极3q与所相邻的驱动电极3r之间,并且配置于由驱动电极3p~3u等构成的cmut元件部21b的外部(图的左侧)。其它驱动电极3p、3r~3t也相同地通过各内部布线31p、31r~31t而与各焊盘32p、32r~32t连接,并且相同地配置。

为了电连接驱动电极3f与所相邻的驱动电极3q,利用接合线4f来连接焊盘32f与焊盘32q。为了电连接其它驱动电极3g~3i与分别所相邻的驱动电极3r~3t,焊盘32g~32i与焊盘32r~32t分别通过接合线4g~4i连接。以下,当不特别区别接合线4g~4i等时,仅记载为接合线4。

焊盘32f相对于驱动电极3f向纸面上侧偏离,焊盘32q相对于驱动电极3q向纸面下侧偏离。即,焊盘32f和焊盘32q倾斜地配置。因此,即使缩小芯片间隔b,也能够确保接合线4f的长度b1,从而能够以引线接合方式进行连接。

其它焊盘32g~32j的位置也相对于各驱动电极3g~3j向纸面上侧偏离,并且焊盘32p、32r~32t的位置也相对于各驱动电极3p、3r~3t向纸面下侧偏离。

在相连地形成超声波图像的方面,cmut芯片2a与cmut芯片2b之间的芯片间隔b优选较窄。焊盘32f相对于驱动电极3f配置于斜右上方,并通过内部布线31f连接。并且,焊盘32q相对于驱动电极3q配置于斜左下方,并通过内部布线31q连接。由此,当不使纸面的上下位置偏离地配置驱动电极3f和驱动电极3q后,能够确保接合线4f的长度b1,从而能够以引线接合方式进行连接。

并且,在相连地形成超声波图像的方面,cmut芯片2a的驱动电极3f与cmut芯片2b的驱动电极3q的距离优选为驱动电极3的宽度u的整数倍。在第一实施方式中,如图7所示,cmut芯片2a的驱动电极3f与cmut芯片2b的驱动电极3q的距离为宽度u的2倍。此时,cmut芯片2a、2b配置为分离芯片间隔b。

《第二实施方式》

图8是第二实施方式的cmut芯片2a、2b相邻的部分的俯视图。

图8所示的俯视图示出相邻的cmut芯片2a、2b、焊盘34、36以及接合线4的关系。cmut芯片2a呈矩形,在内侧具备cmut元件部21a。在cmut芯片2a的上边和右边配置有用于与外部电连接的焊盘34,并在下边和左边配置有用于与外部电连接的焊盘36。各焊盘34通过直线状的内部布线33而与cmut元件部21a电连接。各焊盘36通过曲柄状的内部布线35而与cmut元件部21a电连接。曲柄状的内部布线35相对于cmut芯片2a的各边倾斜地布线。cmut芯片2b也与cmut芯片2a相同地构成。

cmut芯片2a的各焊盘34与所相邻的cmut芯片2b的焊盘36通过接合线4连接。在后述的图9中对该连接进行详细说明。

图9是将第二实施方式的cmut芯片2a、2b相邻的部分放大的俯视图。

图9所示的相邻配置cmut芯片2a、2b的内容与图7所示的第一实施方式相同。与第一实施方式的不同之处在于:cmut芯片2a所具备的焊盘34和cmut芯片2b所具备的焊盘36分别配置为与驱动电极3并列。

cmut芯片2a的焊盘34f配置于驱动电极3f的旁边,cmut芯片2b的焊盘36q配置于驱动电极3r的旁边。也就是说,焊盘34f和焊盘36q配置为相互倾斜地偏离。但是,焊盘36q与驱动电极3q通过内部布线35q连接,焊盘36q与焊盘34f通过接合线4f电连接。因而,cmut芯片2a的驱动电极3f与cmut芯片2b的驱动电极3q电连接,并被联动地驱动。同样,cmut芯片2a的驱动电极3e、3g~3i与cmut芯片2b的驱动电极3p、3r~3t也电连接,并被联动地驱动。因此,能够同时驱动cmut芯片2a、2b的侧向一列的驱动电极3。此时,各接合线4e~4i的长度为c1,能够确保接合线4f的最短长度以上,从而能够以引线接合方式进行连接。

并且,在相连地形成超声波图像的方面,cmut芯片2a的驱动电极3f与cmut芯片2b的驱动电极3q的距离优选为驱动电极3的宽度u的整数倍。在第二实施方式中,如图9所示,cmut芯片2a的驱动电极3f与cmut芯片2b的驱动电极3q的距离为宽度u的2倍。此时,cmut芯片2a、2b配置为分离芯片间隔c。

《第三实施方式》

图10是将第三实施方式的cmut芯片2a、2b相邻的部分放大的俯视图。

与第二实施方式相同,焊盘34e~34i分别配置为与驱动电极3e~3j并列。另外,焊盘34p~34t分别配置为与驱动电极3p~3t并列。焊盘34e~34i与驱动电极3e~3j通过内部布线33e~33i连接,并且焊盘34p~34t与驱动电极3p~3t通过内部布线33p~33t连接。焊盘34e~34i与焊盘34p~34t分别通过接合线4e~4i连接。由此,能够电连接并列地配置的驱动电极3e~3j与驱动电极3p~3t并使它们联动。

此处,对接合线4的最短必要长度与芯片间隔的关系进行说明。在图7所示的第一实施方式中,通过将接合线4的长度b1设定为最短长度以上,能够设定芯片间隔b。

在图9所示的第二实施方式中,为了确保接合线4的长度d1为最短长度以上,cmut芯片2a、2b的间隔成为芯片间隔d。由于接合线4的长度b1与长度d1相等,所以芯片间隔d比芯片间隔b长。

优选如第一、第二实施方式所示,在相对于倾斜的焊盘倾斜地连接接合线4的情况下,能够缩小相邻的cmut芯片的间隔。但是,在需要从焊盘至芯片端部的距离的半导体传感器、cmut芯片的情况下,也可以使用图10所示的第三实施方式的接合线4的连接方法。

并且,在相连地形成超声波图像的方面,cmut芯片2a的驱动电极3f与cmut芯片2b的驱动电极3q的距离优选为驱动电极3的宽度u的整数倍。在第三实施方式中,如图10所示,cmut芯片2a的驱动电极3f与cmut芯片2b的驱动电极3q的距离为宽度u的3倍。

《第四实施方式》

图11是第四实施方式的cmut芯片2a、2b相邻的部分的俯视图。

图11所示的俯视图示出相邻的cmut芯片2a、2b、焊盘32以及接合线4的关系。cmut芯片2a呈矩形,为了与外部电连接而在上边和右边配置有焊盘32,并且为了与外部电连接而在下边和左边配置有焊盘38。各焊盘32通过曲柄状的内部布线31而与cmut元件部21a电连接。各焊盘38通过曲柄状的内部布线37而与cmut元件部21a电连接。曲柄状的内部布线31相对于cmut芯片2a的各边倾斜地布线。曲柄状的内部布线37相对于cmut芯片2a的各边比内部布线31更倾斜地布线。cmut芯片2b也与cmut芯片2a相同地构成。

cmut芯片2a的各焊盘32与所相邻的cmut芯片2b的焊盘38通过接合线4连接。在后述的图12中对该连接进行详细说明。

图12是将第四实施方式的cmut芯片2a、2b相邻的部分放大的俯视图。

焊盘32f~32i分别通过内部布线31f~31i而与驱动电极3f~3i连接。焊盘38p~38s分别通过内部布线37p~37s而与驱动电极3p~3s连接。上述焊盘32f~32i与焊盘38p~38s分别通过接合线4f~4i电连接。

即,焊盘32f越过斜右下的焊盘32p而与更下侧的焊盘38q连接。焊盘32g越过斜右下的焊盘32q而与更下侧的焊盘38r连接。这在必需与第一实施方式的接合线4的长度b1相比进一步增大接合线4的长度e1的情况下是有效的方法。

并且,在相连地形成超声波图像的方面,cmut芯片2a的驱动电极3f与cmut芯片2b的驱动电极3q的距离优选为驱动电极3的宽度u的整数倍。在第四实施方式中,如图12所示,cmut芯片2a的驱动电极3f与cmut芯片2b的驱动电极3q的距离为宽度u的2倍。此时,cmut芯片2a、2b配置为分离芯片间隔e。

《第五实施方式》

图13是将第五实施方式的cmut芯片2a、2b相邻的部分放大的剖视图。

该剖视图示出相邻的cmut芯片2a、2b、焊盘32以及接合线4的关系。cmut芯片2a在内侧(纸面左侧)具备cmut元件部21a,并在其周边部(纸面右侧)配置有用于电连接的焊盘32a。焊盘32a通过内部布线31a而与cmut元件部21a的驱动电极3电连接。

cmut芯片2b在内侧(纸面右侧)具备cmut元件部21b,并在其周边部(纸面右侧)配置有用于与外部电连接的焊盘32b。焊盘32b通过内部布线31b而与cmut元件部21b的驱动电极3电连接。

cmut芯片2a的焊盘32a与所相邻的cmut芯片2b的焊盘32b通过接合线4电连接。由于第五实施方式的cmut芯片2b的焊盘32b配置于比cmut芯片2a的焊盘32a低的位置,所以能够确保接合线4的长度。

《第六实施方式》

图14是将第六实施方式的cmut芯片2a、2b相邻的部分放大的剖视图。

该剖视图示出相邻的cmut芯片2a、2b、焊盘32以及接合线4的关系。cmut芯片2a在内侧(纸面左侧)具备cmut元件部21a,并在其周边部(纸面右下侧),侧向地配置有用于电连接的焊盘32a。焊盘32a通过内部布线31a而与cmut元件部21a的驱动电极3电连接。

cmut芯片2b在内侧(纸面右侧)具备cmut元件部21b,并在其周边部(纸面右侧),侧向地配置有用于与外部电连接的焊盘32b。焊盘32b通过内部布线31b而与cmut元件部21b的驱动电极3电连接。

cmut芯片2a与所相邻的cmut芯片2b的焊盘32彼此通过接合线4电连接。由于第六实施方式的cmut芯片2b的焊盘32b配置于比cmut芯片2a的焊盘32a高的位置,所以与第六实施方式相同,能够确保接合线4的长度。

《第七实施方式》

图15是第七实施方式的以二列呈格子状地排列的cmut芯片2a~2j附近的立体图。

cmut芯片2a~2j以芯片列22a和芯片列22b呈二列地配置。构成芯片列22a的cmut芯片2a~2e与构成芯片列22b的cmut芯片2f~2j通过接合线6电连接。芯片列22a内的cmut芯片2a~2e中相邻的芯片彼此通过接合线4电连接。并且,芯片列22b内的cmut芯片2f~2j中相邻的芯片彼此也相同地通过接合线4电连接。

也就是说,各cmut芯片2a~2j通过接合线4以及接合线6电连接。通过接合线4连接的一列驱动电极3和通过接合线6连接的一行驱动电极3能够联动地驱动cmut的膜片。这样,通过以二列呈栅格状地使五个芯片列22a、22b形成为阵列,能够提供具有比图4所示的第一实施方式大的面积的超声波收发面的超声波探头1。由于超声波探头1的诊断范围较大,所以能够一次检测高精细的超声波信息。

《第八实施方式》

图16是第八实施方式的以三列呈格子状地排列的cmut芯片2a~2o附近的立体图。

cmut芯片2a~2o以芯片列22a~22c这三列呈格子状地配置。构成芯片列22a的cmut芯片2a~2e与构成芯片列22b的cmut芯片2f~2j通过接合线6电连接。构成芯片列22b的cmut芯片2f~2j与构成芯片列22c的cmut芯片2k~2o通过接合线6电连接。

这样,通过以三列呈栅格状地使芯片列22a~22c形成为阵列,能够一次传感检测比图15所示的第七实施方式更大的范围。

(变形例)

本发明不限定于上述的实施方式,包括各种变形例。例如上述的实施方式是为了容易理解地说明本发明而进行了详细说明的,不限定为必需具备所说明的所有结构。能够将某实施方式的结构的一部分置换成其它实施方式的结构,也能够在某实施方式的结构的基础上追加其它实施方式的结构。并且,也能够对各实施方式的结构的一部分进行其它结构的追加、删除、置换。

在各实施方式中,控制线、信息线示出认为在说明上需要的控制线、信息线,不限定为在产品上示出所有的控制线、信息线。实际上,也可以认为基本所有的结构相互连接。

在上述的实施方式的超声波探头1中,呈一列、二列、三列地配置有cmut芯片2,但并不限定于此,也可以配置为任意列数。并且,在图4、图15、图16所示的实施方式中,分别排列地配置有五个cmut芯片2,但并不限定于此,也可以配置任意个数。

本发明的呈一列或者多列地配置多个cmut芯片不限定于cmut芯片,在半导体传感器芯片中也有效。在通过接合线连接相邻的半导体传感器芯片间的焊盘彼此的情况下,若相对于倾斜方向的焊盘进行连接,则能够确保接合线的长度。因此,能够缩小相邻的芯片的间隔,从而能够减少多个半导体传感器芯片的设置面积。

半导体传感器芯片、cmut芯片使用半导体制造工序来制造,但芯片的大小影响成品率。在半导体制造工序中,有时在晶片的任意部位产生不良。当在晶片面内散布多个的情况下,若芯片的面积较大且从一片晶片取得的芯片取得个数的总量较少,则不良率也增大。例如,在从8英寸晶片取得100个芯片的情况下,当不良散布于五处时,剩余的95个芯片合格,从而合格率为95%。另一方面,在从8英寸晶片取得500个芯片的情况下,若不良存在于五处,则495个芯片合格,从而合格率为99%。因此,在芯片尺寸较小的情况下,成品率变高。

并且,对如本发明那样排列较小的芯片的优点进行说明。通过半导体工艺而制造出的晶片因成膜后的膜的特性、膜厚而在面内产生分布。在cmos传感器中,检测灵敏度有时根据从晶片面内切出的切出位置而不同。在cmut芯片中,在被上下两个电极所夹的空洞的高度处存在晶片面内的差别。在cmut的情况下,上下的电极对应于驱动电极和固定电极,施加直流电压来使驱动电极侧的膜片挠曲。在该状态下施加交流电压,使驱动电极侧的膜片振动,从而产生超声波。因此,空洞的高度在cmut元件的特性方面是重要的。因此,空洞的高度能够根据上下的电极的静电电容来测定。空洞的高度还能够根据扫描施加电压时的静电电容的最大值来评价。因此,通过测定静电电容,测定各cmut芯片的差别,并且选定静电电容特性相近的cmut芯片进行排列,能够提供具有更均匀的特性的cmut芯片阵列。

因cmos传感器、cmut芯片的晶片面内差别,有时各芯片的特性不同。在这样的情况下,若使用本发明的排列地配置多个芯片的方法,则可以挑选特性相近的芯片进行配置。由此,作为一个传感器,能够提供稳定的特性。并且,上述的差别并非特定为晶片面内差别,也能够应用于各晶片的每个批量、每个批次。

另外,通过应用本发明,能够并列地配置具有驱动频率特性的cmut芯片,同时能够进行不同频率的超声波收发,从而能够应用于两波长诊断等。

并且,根据本发明,通过排列较小的芯片,能够代替较大的芯片,从而能够提高使用了半导体传感器芯片、cmut芯片的测量器、超声波探头的成品率。

符号的说明

1—超声波探头,11—衬板,2、2a~2o—cmut芯片,21、21a~21e—cmut元件部,22a~22c—芯片列,3、3e~3j、3p~3u—驱动电极(传感器单体),32、34、36、38—焊盘,31、33、35、37—内部布线,4、6—接合线,71—柔性基板,72—连接器,73—电路基板,74—连接端子,75—声学透镜,8—超声波诊断装置,81—控制面板,82—超声波收发部,821—超声波脉冲产生部,822—变换部,83—超声波图像形成部,84—控制部,85—显示部,9—被检体。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1