血压量测模块的制作方法

文档序号:22715788发布日期:2020-10-30 21:31阅读:130来源:国知局
血压量测模块的制作方法

【技术领域】

本案关于一种血压量测模块,尤指一种极薄型,用以与穿戴式电子装置或行动装置结合的血压量测模块。



背景技术:

近年来对于个人身体保健的意识逐渐抬头,因此衍生出希望能够常态性的对自身的身体状况进行检测,但目前对于检测身体状况的仪器大多为固定式,几乎都要去固定的医疗服务站或是医院,即便有家庭用的检测仪器,但体积偏大,携带不易,于目前讲求快速的社会,已经难以符合使用者的需求。

其中,最能反应身体状况的非血压莫属,每个人的身体中的血管就如同道路般遍布全身,血压就如同路况般,能够了解血液的输送状态,因此,身体若发生任何状况,血压最清楚。

有鉴于此,如何提供一种能够随时且精确测量血压的装置,并且能够与穿戴式装置或是可携式电子装置结合,让使用者能够随时随地、迅速地确认血压状况,实乃目前需要解决的问题。



技术实现要素:

本案的主要目的是提供一种血压量测模块,用以与可携式电子装置或是穿戴式电子装置结合,方便使用者携带,能够不受时间、地点等限制即可完成血压量测。

本案的一广义实施态样为一种血压量测模块,包括:一基座,具有一阀门承载区、一容置槽区、一进气孔及一穿置孔,其中该阀门承载区及该容置槽区分别设在不同表面,以及该进气孔及该穿置孔连通该容置槽区,而该阀门承载区上设有一第一凹置腔,且该第一凹置腔内贯穿设置多个第一通孔及突伸设置一第一凸出结构,以及该容置槽区内凹设一集气腔室,连通该多个第一通孔;一阀门片,设置承载于该阀门承载区之上,并设有一阀孔,且对应到该第一凸出结构的位置;一顶盖,设有一进气通道及一排气孔,彼此隔开设置,且顶盖具有一组配表面,封盖该阀门片,以及在组配表面对应到该进气通道处凹置一进气腔室,与该进气通道连通,以及在组配表面对应到该排气孔处凹置一排气腔室,与该排气孔连通,且该进气腔室与该排气腔室之间设有一连通通道连通,以及在该排气腔内突出设置一第二凸出结构,且该排气孔位于该第二凸出结构的中心位置,促使该阀门片与该第二凸出结构常态抵顶形成一预力作用,且封闭该排气孔,又该进气通道与血压测量的一气囊连接;一微型泵,设置于该容置槽区内,而封盖该集气腔室;一驱动电路板,封盖该容置槽区上,提供该微型泵的驱动信号而控制该微型泵的驱动运作;以及一压力传感器,设置于该驱动电路板上电性连接,并对应穿置于该基座的该穿置孔,经过一外接通道与该气曩连接做气体压力检测;其中,该微型泵受该驱动电路板控制驱动运作,形成一气体传输,让该基座外部气体由该进气孔导入至该容置槽区内,并经过该微型泵持续导入该集气腔室集中,且气体得以推动该阀门片的该阀孔与该第一凸出结构脱离抵触,此时气体并能经过该阀孔而持续导入该顶盖的该进气通道中,聚集至该气囊中,使该气囊充气膨胀且压迫使用者的皮肤,通过该压力传感器检测使用者的血压。

【附图说明】

图1为本案血压量测模块立体示意图。

图2a为本案血压量测模块分解示意图。

图2b为本案血压量测模块其另一角度分解示意图。

图3为本案血压量测模块压力传感器设置于驱动电路板示意图。

图4为本案血压量测模块阀门片设置于基座示意图。

图5为本案血压量测模块连接气囊的示意图。

图6a为本案气体检测模块的微型泵分解示意图。

图6b为本案气体检测模块的微型泵另一角度的分解示意图。

图7a为本案气体检测模块的微型泵的剖面示意图。

图7b为本案气体检测模块另一实施例的剖面示意图。

图7c至图7e为微型泵的作动示意图。

图8a为微机电泵的剖面示意图。

图8b为微机电泵的分解示意图。

图9a至图9c为微机电泵的作动示意图。

图10为本案血压量测模块俯视示意图。

图11为图10的aa剖面线的剖面示意图。

图12为图10的bb剖面线的剖面示意图。

图13为图10的cc剖面线的剖面示意图

图14a及图14b为本案血压量测模块的进气示意图。

图15为血压量测模块的泄气示意图。

图16为血压量测模块另一实施例示意图。

图17a为血压量测模块另一实施例的顶盖示意图。

图17b为血压量测模块另一实施例的顶盖另一角度示意图。

图18为血压量测模块另一实施例的剖面示意图。

图19为血压量测模块另一实施例的进气示意图。

图20为血压量测模块另一实施例的泄气示意图。

图21为血压量测模块连接外部装置示意图。

【具体实施方式】

体现本案特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本案能够在不同的态样上具有各种的变化,其皆不脱离本案的范围,且其中的说明及图示在本质上当作说明之用,而非用以限制本案。

请参阅图1至图2b所示,本案提供一种血压量测模块,包含一基座1、一阀门片2、一顶盖3、一微型泵4、一驱动电路板5及一压力传感器6。其中基座1、阀门片2、顶盖3、微型泵4、驱动电路板5及压力传感器6以微小材料制出的模块结构,且该模块结构具有一长度、一宽度及一高度,其中模块结构的长度、宽度及高度介于1厘米(mm)至999厘米(mm)之间,或者介于1微米(μm)至999微米(μm)之间,或者介于1纳米(nm)至999纳米(nm)之间,但不以此为限。于本实施例中,模块结构的长度介于1微米至999微米、宽度介于1微米至999微米以及高度介于1微米至999微米所构成的体积,或者模块结构的长度介于1纳米至999纳米、宽度介于1纳米至999纳米以及高度介于1纳米至999纳米所构成的体积,但不以此为限。

上述的基座1包含有一阀门承载区11、一容置槽区12、一进气孔13、一穿置孔14、一第一表面15及一第二表面16,第一表面15与第二表面16分别为相对的二表面,阀门承载区11位于第一表面15,容置槽区12位于第二表面16,进气孔13及穿置孔14分别自第一表面15贯穿至第二表面16且连通于容置槽区12,其中,第一阀门承载区11具有一第一凹置腔11a、多个第一通孔11b、一第一凸出结构11c及多个凸柱11d,第一凹置腔11a自阀门承载区11凹陷形成,于第一凹置腔11a中心突伸设置第一凸出结构11c,该多个第一通孔11b围绕第一凸出结构11c且贯穿至容置槽区12,凸柱11d则是分别邻设于阀门承载区11的角落,此外,容置槽区12凹设一集气腔室12a,集气腔室12a与该多个第一通孔11b相连通。

此外,阀门承载区11更包含一第二凹置腔11e,第二凹置腔11e与第一凹置腔11a间隔设置,且第二凹置腔11e贯穿至少一第二通孔11f,使第二凹置腔11e通过第二通孔11f与集气腔室12a相连通,增加集气腔室12a与阀门承载区11的通道,以加速集气腔室12a内的气体至阀门承载区11的速度。

请参阅图2a及图4,阀门片2设置于阀门承载区11,阀门片2具有一阀孔21及多个定位孔22,阀孔21与阀门承载区11的第一凸出结构11c垂直对应,该多个定位孔22则分别与该多个凸柱11d对应且套设于该多个凸柱11d。

如图17a及图17b所示,顶盖3具有一进气通道31、一排气孔32、一组配表面33、一连通通道34及多个定位孔35,进气通道31与排气孔32间隔设置,组配表面33封盖于阀门片2,且组配表面33于进气通道31周缘凹置与进气通道31相连通的一进气腔室31a、于排气孔32周缘凹置与排气孔32相通的排气腔室32a、及进气腔室31a与排气腔室32a之间凹设连通通道34,使进气腔室31a与排气腔室32a连通。此外,于排气腔室32a及排气孔32边缘处突出设置一第二凸出结构32b;请参阅图12,阀门片2承载于阀门承载区11上,并夹置于基座1与顶盖3之间定位不偏移,此时,排气孔32位于第二凸出结构32b的中心位置,第二凸出结构32b将顶抵阀门片2并封闭排气孔32,于常态下形成一预力作用。

请参阅图2a、图2b及图11所示,该多个定位孔35分别位于组配表面33的四个角落并分别与阀门承载区11的该多个凸柱11d对应,并供该多个凸柱11d套置其中。

请参阅图2b及图5,顶盖3亦包含有一共用通道36,共用通道36与进气通道31连通并构成一体,共用通道36的一端延伸至压力传感器6并且封盖压力传感器6(如图13所示),另一端则为连接端36a(如图10所示),用以气囊10连接,促使压力传感器6通过共用通道36连通气囊10做气体压力检测,以进一步做血压测量。

请参阅图6a及图6b,微型泵4包含有包括一进气板41、一共振片42、一压电致动器43、一第一绝缘片44、一导电片45及第二绝缘片46等结构,其中压电致动器43对应于共振片42而设置,并使进气板41、共振片42、压电致动器43、第一绝缘片44、导电片45及第二绝缘片46等依序堆叠设置。

进气板41具有至少一进气孔411、至少一汇流排槽412及一汇流腔室413,于本实施例中,进气孔411的数量以4个为较佳,但不以此为限。进气孔411是贯穿进气板41,用以供气体顺应大气压力的作用而自进气孔411流入微型泵4内。进气板41上具有至少一汇流排槽412,其数量与位置与进气板41另一表面的进气孔411对应设置,本实施例的进气孔411其数量为4个,与其对应的汇流排槽412其数量亦为4个;汇流腔室413位于进气板41的中心处,前述的4个汇流排槽412的一端连通于对应的进气孔411,其另一端则连通于进气板41的中心处的汇流腔室413,借此可将自进气孔411进入汇流排槽412的气体引导并汇流集中至汇流腔室413。于本实施例中,进气板41具有一体成型的进气孔411、汇流排槽412及汇流腔室413。

于一些实施例中,进气板41的材质可为不锈钢材质所构成,但不以此为限。于另一些实施例中,汇流腔室413的深度与汇流排槽412的深度相同,但不以此为限。

共振片42是由一可挠性材质所构成,但不以此为限,且于共振片42上具有一中空孔421,是对应于进气板41的汇流腔室413而设置,供气体通过。于另一些实施例中,共振片42是可由一铜材质所构成,但不以此为限。

压电致动器43是由一悬浮板431、一外框432、至少一支架433以及一压电元件434所共同组装而成;悬浮板431为一正方形型态,并可弯曲振动,外框432环绕悬浮板431设置,至少一支架433连接于悬浮板431与外框432之间,提供弹性支撑的效果,压电元件434亦为正方形型态,贴附于悬浮板431的一表面,用以施加电压产生形变以驱动悬浮板431弯曲振动,且压电元件434的边长小于或等于悬浮板431的边长;其中,悬浮板431、外框432及支架433之间具有多个空隙435,空隙435供气体通过;此外,压电致动器43更包含一凸部436,凸部436设置于悬浮板431的另一表面,并与压电元件434相对设置于悬浮板431的两表面。

如图7a所示,进气板41、共振片42、压电致动器43、第一绝缘片44、导电片45、第二绝缘片46依序推叠设置,压电致动器43的悬浮板431其厚度小于外框432的厚度,当共振片42堆叠于压电致动器43时,压电致动器43的悬浮板431、外框432与共振片42之间可形成一腔室空间47。

请再参阅图7b,图7b为微型泵4的另一实施例,其元件与前一实施例(图6a)相同,故不加以赘述,其差异在于,于未作动时,其压电致动器43的悬浮板431以冲压方式以远离共振片42的方向延伸,并未与外框432位于同一水平,其延伸距离可由支架433所调整,且支架433与悬浮板431之间呈现非平行,使得压电致动器43呈凸出状。

为了了解上述微型泵4提供气体传输的输出作动方式,请继续参阅图7c至图7e所示,请先参阅图7c,压电致动器43的压电元件434被施加驱动电压后产生形变带动悬浮板431向上位移,此时腔室空间47的容积提升,于腔室空间47内形成了负压,便汲取汇流腔室413内的气体进入腔室空间47内,同时共振片42受到共振原理的影响被同步向上带动,连带增加了汇流腔室413的容积,且因汇流腔室413内的气体进入腔室空间47的关系,造成汇流腔室413内同样为负压状态,进而通过进气孔411及汇流排槽412来吸取气体进入汇流腔室413内。请再参阅图7d,压电元件434带动悬浮板431向下位移,压缩腔室空间47,同样的,共振片42被悬浮板431因共振而向下位移,同步推挤腔室空间47内的气体往下通过空隙435向上输送,将气体由微型泵4排出。最后请参阅图7e,当悬浮板431回复原位时,共振片42仍因惯性而向下位移,此时的共振片42将使压缩腔室空间47内的气体向空隙435移动,并且提升汇流腔室413内的容积,让气体能够持续地通过进气孔411、汇流排槽412来汇聚于汇流腔室413内,通过不断地重复上述图7c至图7e所示的微型泵提供气体传输作动步骤,使微型泵能够使气体连续自进气孔411进入进气板41及共振片42所构成流道产生压力梯度,再由空隙435向上输送,使气体高速流动,达到微型泵4传输气体的效果。

本案的微型泵4的另一实施例可为一微机电泵4a,请参阅图8a及图8b,微机电泵4a包含有一第一基板41a、一第一氧化层42a、一第二基板43a以及一压电组件44a。本实施例的微机电泵4a是通过半导体制程中的磊晶、沉积、微影及蚀刻等制程一体成型制出,理应无法拆解,为了详述其内部结构,特以图8b所示的分解图详述。

第一基板41a为一硅芯片(siwafer),其厚度介于150至400微米(μm)之间,第一基板41a具有多个流入孔411a、一第一表面412a最后如一第二表面413a,于本实施例中,该多个流入孔411a的数量为4个,但不以此为限,且每个流入孔411a皆由第二表面413a贯穿至第一表面412a,而流入孔411a为了提升流入效果,将流入孔411a自第二表面413a至第一表面412a呈现渐缩的锥形。

第一氧化层42a为一二氧化硅(sio2)薄膜,其厚度介于10至20微米(μm)之间,第一氧化层42a叠设于第一基板41a的第一表面412a上,第一氧化层42a具有多个汇流通道421a以及一汇流腔室422a,汇流通道421a与第一基板41a的流入孔411a其数量及位置相互对应。于本实施例中,汇流通道421a的数量同样为4个,4个汇流通道421a的一端分别连通至第一基板41a的4个流入孔411a,而4个汇流通道421a的另一端则连通于汇流腔室422a,让气体分别由流入孔411a进入之后,通过其对应相连的汇流通道421a后汇聚至汇流腔室422a内。

第二氧化层432a为一氧化硅层其厚度介于0.5至2微米(μm)之间,形成于硅芯片层431a上,呈中空环状,并与硅芯片层431a定义一振动腔室4321a。硅材层433a呈圆形,位于第二氧化层432a且结合至第一氧化层42a,硅材层433a为二氧化硅(sio2)薄膜,厚度介于2至5微米(μm)之间,具有一穿孔4331a、一振动部4332a、一固定部4333a、一第三表面4334a及一第四表面4335a。穿孔4331a形成于硅材层433a的中心,振动部4332a位于穿孔4331a的周边区域,且垂直对应于振动腔室4321a,固定部4333a则为硅材层433a的周缘区域,由固定部4333a固定于第二氧化层432a,第三表面4334a与第二氧化层432a接合,第四表面4335a与第一氧化层42a接合;压电组件44a叠设于硅芯片层431a的致动部4311a。

压电组件44a包含有下电极层441a、压电层442a、绝缘层443a及上电极层444a,下电极层441a叠置于硅芯片层431a的致动部4311a,而压电层442a叠置于下电极层441a,两者通过其接触的区域做电性连接,此外,压电层442a的宽度小于下电极层441a的宽度,使得压电层442a无法完全遮蔽住下电极层441a,在于压电层442a的部分区域以及下电极层441a未被压电层442a所遮蔽的区域上叠置绝缘层443a,最后在于绝缘层443a以及未被绝缘层443a遮蔽的压电层442a的区域上叠置上电极层444a,让上电极层444a得以与压电层442a接触来电性连接,同时利用绝缘层443a阻隔于上电极层444a及下电极层441a之间,避免两者直接接触造成短路。

请参考图9a至图9c,图9a至图9c为微机电泵4a其作动示意图。请先参考图9a,当压电组件44a的下电极层441a及上电极层444a接收驱动电路板5所传递的驱动电压及驱动信号(未图示)后,将其传导至压电层442a,压电层442a接受驱动电压及驱动信号后,因逆压电效应的影响开始产生形变,会带动硅芯片层431a的致动部4311a开始位移,当压电组件44a带动致动部4311a向上位移拉开与第二氧化层432a之间的距离,此时,第二氧化层432a的振动腔室4321a的容积将提升,让振动腔室4321a内形成负压,用于将第一氧化层42a的汇流腔室422a内的气体通过穿孔4331a吸入其中。请继续参阅图9b,当致动部4311a受到压电组件44a的牵引向上位移时,硅材层433a的振动部4332a会因共振原理的影响向上位移,当振动部4332a向上位移时,会压缩振动腔室4321a的空间并且推动振动腔室4321a内的气体往硅芯片层431a的流体通道4314a移动,让气体能够通过流体通道4314a向上排出,在振动部4332a向上位移来压缩振动腔室4321a的同时,汇流腔室422a的容积因振动部4332a位移而提升,其内部形成负压,将吸取微机电泵4a外的气体由流入孔411a进入其中。最后如图9c所示,压电组件44a带动硅芯片层431a的致动部4311a向下位移时,将振动腔室4321a的气体往流体通道4314a推动,并将气体排出,而硅材层433a的振动部4332a亦受致动部4311a的带动向下位移,同步压缩汇流腔室422a的气体通过穿孔4331a向振动腔室4321a移动,后续再将压电组件44a带动致动部4311a向上位移时,其振动腔室4321a的容积会大幅提升,进而有较高的汲取力将气体吸入振动腔室4321a,再重复以上的动作,以至于通过压电组件44a持续带动致动部4311a上下位移且来连动振动部4332a上下位移,通过改变微机电泵4a的内部压力,使其不断地汲取及排出气体,借此以完成微机电泵4a的动作。

请参阅图14a所示,微型泵4开始作动,气体由微型泵4的进气孔411开始进入,并将气体持续导送至集气腔室12a,请参阅图14b,气体持续输送到集气腔室12a后,气体便由第一通孔11b进入第一凹置腔11a,再通过第二通孔11f进入第二凹置腔11e,而进入第一凹置腔11a与第二凹置腔11e的气体会将阀门片2向上推动,并使其向顶盖3靠近,此时,阀门片2将顶抵于排气腔室32a的第二凸出结构32b,且同时封闭排气孔32,同时阀门片2脱离第一凹置腔11a的第一凸出结构11c,将第二凹置腔11e、第一凹置腔11a的气体得以通过阀孔21进入进气腔室31a,而气体进入进气腔室31a后,导入进气通道31,最后汇聚至气囊10(如图5所示)内。于本实施例中,气体进入进气通道31后,先通过共用通道36,再进入位于连接端36a的气囊10,开始对气囊10充气使其膨胀,使气囊10能够紧贴于测量者,再通过压力传感器6检测气囊10的压力变化,进行血压测量的动作。

如图15所示,血压测量完毕后,微型泵4停止运作,故气囊10内的气压高于进气腔室31a的气压,气体开始自气囊10通过进气通道31导送至进气腔室31a,气体输送至进气腔室31a的同时,推动阀门片2向下移动,并使阀孔21被第一凸出结构11c封闭,气体将通过连通通道34,由进气腔室31a向排气腔室32a流动,此外,气体将阀门片2向下推动时,阀门片2脱离第二凸出结构32b,并被推移靠近掉入第二凹置腔11e内,将排气腔室32a与排气孔32连通,气体进入排气腔室32a后,得以由排气孔32排出,释放气囊10内的气体,俾完成该气囊10的快速泄压作业。

请参阅图16,图16是本案血压量测模块的另一实施方式,本实施方式与前一实施方式大部分元件皆相同,因此不再赘述,差异在于顶盖3,本实施方式的顶盖3未设有共用通道36;接着请参阅图18,未设有共用通道36的情况下,本实施例的气囊10具有一气囊导管10a,气囊导管10a与气囊10相连通,并且在连接至顶盖3的进气通道31并且罩盖压力传感器6,微型泵4开始作动,气体并开始进入进气通道31(如图19所示),气体通过进气通道31后,经由气囊导管10a进入气囊10,使气囊10开始充气、膨胀,压迫使用者的皮肤,并通过压力传感器6由气囊导管10a确认气囊10内的气压变化,来检测使用者的血压,检测结束后,微型泵4停止运作,气体便会由气囊导管10a导回至进气通道31,最后由排气孔32排出(如图20所示),达到快速泄气、泄压的功效。

最后请再参阅图1,本案的血压量测模块较佳的长度介于4mm至27mm之间,较佳的宽度介于2mm至16mm之间,较佳的高度介于1mm至8mm之间,使血压量测模块得以与可携式电子装置结合。此外,血压量测模块为了与智慧型手表结合,其较佳的长度可介于24mm至27mm之间、较佳的宽度可介于14mm至16mm之间,较佳的厚度可介于6mm至8mm之间。

如图21所示,血压量测模块可更包含一微处理器7及一通讯器8,设置于该驱动电路板5上,该微处理器7用以接收该压力传感器6所量测信号予以运算转换成一信息数据,并将该信息数据经过该通讯器通讯传输至一外部装置9予以储存处理应用,其中该通讯传输为一有线传输及一无线传输的至少其中之一,外部装置为一云端系统、一可携式装置、一电脑系统等至少其中之一。

综上所述,本案所提供的血压量测模块座经由基座、阀门片及顶盖的设置,能够达到对气囊快速排气与快速进气的效果,并且通过微型泵大幅缩小泵的体积,使血压量测模块能够设置于智慧型手表等穿戴式装置上,极具产业利用性及进步性。

【符号说明】

1:基座

11:阀门承载区

11a:第一凹置腔

11b:第一通孔

11c:第一凸出结构

11d:凸柱

11e:第二凹置腔

11f:第二通孔

12:容置槽区

12a:集气腔室

13:进气孔

14:穿置孔

15:第一表面

16:第二表面

2:阀门片

21:阀孔

22:定位孔

3:顶盖

31:进气通道

31a:进气腔室

32:排气孔

32a:排气腔室

32b:第二凸出结构

33:组配表面

34:连通通道

35:定位孔

36:共用通道

36a:连接端

4:微型泵

41:进气板

411:进气孔

412:汇流排槽

413:汇流腔室

42:共振片

421:中空孔

422:可动部

423:固定部

43:压电致动器

431:悬浮板

432:外框

433:支架

434:压电元件

435:空隙

436:凸部

44:第一绝缘片

45:导电片

46:第二绝缘片

47:腔室空间

4a:微机电泵

41a:第一基板

411a:流入孔

412a:第一表面

413a:第二表面

42a:第一氧化层

421a:汇流通道

422a:汇流腔室

43a:第二基板

431a:硅芯片层

4311a:致动部

4312a:外周部

4313a:连接部

4314a:流体通道

432a:第二氧化层

4321a:振动腔室

433a:硅材层

4331a:穿孔

4332a:振动部

4333a:固定部

4334a:第三表面

4335a:第四表面

44a:压电组件

441a:下电极层

442a:压电层

443a:绝缘层

444a:上电极层

5:驱动电路板

6:压力传感器

7:微处理器

8:通讯器

9:外部装置

10:气囊

10a:气囊导管

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1