超声系统及其发射方法和控制方法与流程

文档序号:21465758发布日期:2020-07-14 16:50阅读:310来源:国知局
超声系统及其发射方法和控制方法与流程

本发明涉及超声混合发射器。具体地,本发明涉及在超声系统的工作中具有改善的带宽、改善的脉冲整形能力和改善的效率的超声混合发射器。



背景技术:

超声系统具有对用于激励换能器的发射信号进行脉冲整形的能力。该发射脉冲整形通常通过线性发射器来完成。虽然线性发射器通常具有良好的脉冲整形能力,但与更常规的开关发射器相比,它具有较低的带宽和较低的效率。另一方面,与线性发射器相比,开关发射器由于它们的有限数量的可实现电平而具有较差的脉冲整形能力。因此,存在对超声系统和方法的需求,该超声系统和方法既包括由线性发射器提供的脉冲整形的优点,同时也包括由开关发射器提供的改进的带宽和更高的效率的优点。

此外,当以不同的工作模式工作时,超声系统具有不同的要求。具体地,超声系统可以被配置成在b模式下最佳运行,同时牺牲cd模式下的运行性能。因此,存在对根据超声系统的特定工作模式来优化超声系统的性能的超声系统和方法的需求。



技术实现要素:

在各种实施例中,一种超声系统包括混合发射器,该混合发射器被配置成向对象区域发射超声波。该混合发射器可以包括被配置成产生线性发射器输出的线性发射器。该混合发射器还可包括被配置成产生开关发射器输出的开关发射器。此外,该混合发射器可以包括求和器,该求和器被配置成将线性发射器输出和开关发射器输出相加,以产生混合发射器输出,该混合发射器输出用于驱动换能器负载以产生朝着对象区域发射的超声波。该超声系统还可以包括接收器,该接收器被配置成响应于被朝着对象区域发射的超声波从对象区域接收一个或多个超声波,以生成对象区域的一个或多个超声图像。

在一些实施例中,一种方法包括控制混合发射器的线性发射器以生成线性发射器输出。该方法还可以包括控制混合发射器的开关发射器以生成开关发射器输出。此外,该方法可以包括将线性发射器输出和开关发射器输出相加以产生混合发射器输出,该混合发射器输出用于驱动换能器负载以产生朝着对象区域发射的超声波。

在各种实施例中,一种方法包括识别用于超声系统的混合发射器的混合发射器工作模式。该混合发射器可以包括被配置成产生线性发射器输出的线性发射器。该混合发射器还可包括配置成产生开关发射器输出的开关发射器。此外,该混合发射器可以包括求和器,该求和器被配置成将线性发射器输出和开关发射器输出相加,以产生用于驱动换能器负载以产生超声波的混合发射器输出。该方法还可以包括根据混合发射器工作模式来控制线性发射器和开关发射器的工作,以生成期望的用于驱动换能器负载的混合发射器输出。

在一些实施例中,一种方法包括识别包括混合发射器的超声系统的超声成像模式。该混合发射器可以包括被配置成产生线性发射器输出的线性发射器。该混合发射器还可包括被配置成产生开关发射器输出的开关发射器。此外,混合发射器可以包括求和器,该求和器被配置成将线性发射器输出和开关发射器输出相加,以产生用于驱动换能器负载以产生超声波的混合发射器输出。该方法还可包括根据超声系统的超声成像模式来控制线性发射器和开关发射器的工作。

附图说明

图1示出了一种超声系统的示例。

图2显示了示例混合发射器超声系统。

图3显示了混合发射器的示例混合发射器结构,其用于根据经验创建用于混合发射器的混合发射器工作模式。

图4a显示了用于产生线性发射器工作模式的线性发射器的线性发射器输出的表示。

图4b显示了用于生成开关发射器工作模式的开关发射器的开关发射器输出的表示。

图5a显示了用于混合发射器的线性和开关发射器以产生30mhz、2周期高斯脉冲的最优16个采样输入。

图5b显示了对于图5a中所示的最优16个采样输入混合发射器的线性发射器和开关发射器的输出。

图5c显示了与混合发射器的期望输出相比,响应于16个采样输入的混合发射器的最终混合发射器输出。

图6a显示了用于混合发射器的线性发射器和开关发射器的最优24个采样输入。

图6b显示了对于图6a中所示的最优24个采样输入混合发射器的线性发射器和开关发射器的输出。

图6c显示了与混合发射器的期望输出相比,响应于24个采样输入的混合发射器的最终混合发射器输出。

图7a和7b显示了在时域和频域中混合发射器相对于线性发射器的10db幅度益处的比较。

图8显示了混合发射器的示例拓扑。

图9a显示了具有变压器的混合发射器,该变压器作为求和器以产生单端混合发射器输出。

图9b显示了具有变压器的混合发射器,该变压器作为求和器以产生差分混合发射器输出。

图10显示了具有开关的混合发射器。

图11是控制超声系统的混合发射器向对象区域发射超声波的示例方法的流程图。

图12是使用发射器工作模式控制超声系统的混合发射器朝着对象区域发射超声波的示例方法的流程图。

图13是基于超声系统的超声成像模式来控制超声系统的混合发射器向对象区域发射超声的示例方法的流程图。

具体实施方式

本发明涉及本领域对改进超声发射器的需求。具体地,本发明涉及用于超声发射器的系统、方法和计算机可读介质,其既包括由线性发射器提供的脉冲整形的优点,同时也包括由开关发射器提供的改进的带宽和更高的效率的优点。

超声机器具有对用于激励换能器的发射信号进行脉冲整形的能力。该发射脉冲整形通常通过线性发射器来完成。尽管线性发射器通常具有良好的脉冲整形能力,但与更常规的开关发射器相比,它们具有较低的带宽和较低的效率。另一方面,开关发射器由于它们具有有限数量的可实现电平,因此具有更高的带宽和效率。但是,与线性发射器相比,这种开关发射器具有较粗糙的脉冲整形能力。

本发明描述了包括线性发射器和开关发射器的混合组合的超声系统和用于操作该超声系统的方法。继而,与仅基于线性发射器或开关发射器的设计相比,这允许超声系统利用具有更大的带宽、更高的脉冲整形能力和更高效率的发射器。

此外,当以不同的工作模式工作时,超声系统具有不同的要求。具体地,超声系统可以被配置成在b模式下最佳运行,同时牺牲cd模式下的工作性能。关于本文所描述的超声系统,混合发射器的另一个好处是当使用多个超声模式(可能同时使用)时,它可以提供模式切换敏捷性。

本发明描述了一种混合发射器,其结合脉冲设计技术来利用混合发射器的增强的脉冲整形能力,以补偿在线性发射器和开关发射器的模拟部分中的缺陷,以及补偿换能器响应。具体地,超声系统可以被配置成使用一个或多个混合发射器在不同的工作模式下宫锁,同时实现包括线性发射器和开关发射器的混合发射器的益处。

在各种实施例中,一种超声系统包括混合发射器,该混合发射器被配置成向对象区域发射超声波。该混合发射器可以包括被配置成产生线性发射器输出的线性发射器。该混合发射器还可以包括配置成产生开关发射器输出的开关发射器。此外,该混合发射器可以包括求和器,该求和器被配置成将线性发射器输出和开关发射器输出相加,以产生混合发射器输出,该混合发射器输出用于驱动换能器负载以产生朝着对象区域发射的超声波。该超声系统还可以包括接收器,该接收器被配置成响应于被朝着对象区域发射的超声波而从对象区域接收一个或多个超声波,以生成对象区域的一个或多个超声图像。

在一些实施例中,一种方法包括控制混合发射器的线性发射器以生成线性发射器输出。该方法还可以包括控制混合发射器的开关发射器以生成开关发射器输出。此外,该方法可以包括将线性发射器输出和开关发射器输出相加以产生混合发射器输出,该混合发射器输出用于驱动换能器负载以产生朝着对象区域发射的超声波。

在各种实施例中,一种方法包括识别用于超声系统的混合发射器的混合发射器工作模式。该混合发射器可以包括被配置成产生线性发射器输出的线性发射器。该混合发射器还可以包括被配置成产生开关发射器输出的开关发射器。此外,该混合发射器可以包括求和器,该求和器被配置成将线性发射器输出和开关发射器输出相加,以产生用于驱动换能器负载以产生超声波的混合发射器输出。该方法还可以包括根据该混合发射器工作模式来控制线性发射器和开关发射器的工作,以生成期望的用于驱动换能器负载的混合发射器输出。

在一些实施例中,一种方法包括识别包括混合发射器的超声系统的超声成像模式。该混合发射器可以包括被配置成产生线性发射器输出的线性发射器。该混合发射器还可以包括被配置成产生开关发射器输出的开关发射器。此外,该混合发射器可以包括求和器,该求和器被配置成将线性发射器输出和开关发射器输出相加,以产生用于驱动换能器负载以产生超声波的混合发射器输出。该方法还可以包括根据超声系统的超声成像模式来控制线性发射器和开关发射器的工作。

可以与本发明公开的实施例一起使用的一些基础设施已经是可用的,例如通用计算机、计算机编程工具和技术、数字存储介质和通信网络。计算设备可以包括比如微处理器的处理器、微控制器、逻辑电路等等。处理器可以包括专用处理装置,例如asic、pal、pla、pld、fpga或其他定制或可编程装置。计算设备还可以包括计算机可读存储设备,比如非易失性存储器、静态ram、动态ram、rom、cd-rom、磁盘、磁带、磁、光、闪存或其他计算机可读存储介质。

一些实施例的各个方面可以使用硬件、软件、固件或其组合来实现。如本文所使用的,软件模块或组件可以包括位于计算机可读存储介质之内或之上的任何类型的计算机指令或计算机可执行代码。软件模块例如可以包括一个或多个计算机指令的物理或逻辑块,其可以被组织为执行一个或多个任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。

在一些实施例中,特定软件模块可以包括存储在计算机可读存储介质的不同位置中的不同指令,它们一起实现所描述的模块功能。实际上,模块可以包括单个指令或许多指令,并且可以分布在多个不同的代码段、不同的程序之间以及跨多个计算机可读存储介质。一些实施例可以在分布式计算环境中实践,其中任务由通过通信网络链接的远程处理设备执行。

通过参考附图将最好地理解本发明公开的实施例。如本发明的附图中所一般地描述和示出的,所公开的实施例的组件可以以多种不同的配置来设置和设计。此外,与一个实施例相关联的特征、结构和操作可以适用于另一实施例所描述的特征、结构或操作或与之组合。在其他情况下,未详细示出或描述公知的结构、材料或操作,以避免使本发明公开的各方面不清楚。

因此,本发明的系统和方法的实施例的以下详细描述并非旨在限制本发明所要求保护的范围,而仅表示可能的实施例。另外,方法的步骤不必一定以任何特定顺序执行,甚至不必顺序地执行,步骤也不必仅执行一次。

图1示出了超声系统100的示例。图1所示的超声系统100仅仅是示例的系统,并且在不同的实施例中,超声系统100可以具有更少的组件或额外的组件。超声系统100可以是其中接收阵列聚焦单元被称为波束合成器102并且可以在逐条扫描线的基础上执行图像形成的超声系统。系统控制可以集中在主控制器104中,该主控制器通过操作者界面接受操作者的输入,进而控制各个子系统。对于每条扫描线,发射器106产生射频(rf)激励电压脉冲波形,并以适当的时序将其施加在发射孔径(由激活阵元的子阵列定义)上,以产生沿扫描方向的聚焦声束。由换能器110的接收孔径108接收的rf回波被接收器108放大和滤波,然后被馈送到波束合成器102,该波束合成器102的功能是执行动态接收聚焦,即,重新对准沿各个扫描线来自相同位置的rf信号。

图像处理器112可以执行特定于活动成像模式的处理,包括将图像数据从声线网格转换为x-y像素图像以进行显示的2d扫描变换。对于频谱多普勒模式,图像处理器112可以执行壁滤波,随后通常使用滑动fft窗对多普勒频移的信号样本进行频谱分析。图像处理器112还可以生成与正向和反向血流信号相对应的立体声音频信号输出。与主控制器104配合,图像处理器112还可以格式化来自两个或更多个活动成像模式的图像,包括显示注释、图形叠加以及电影文件和所记录的时间轴数据的回放。

电影缓冲器114提供用于单个图像或多个图像循环查看的常驻数字图像存储,并且用作用于将图像传送到数字档案设备的缓冲器。在大多数系统上,可以将数据处理路径末端的视频图像存储到电影存储器中。在最新技术的系统中,还可以将幅度检测后的波束合成后的数据存储在电影存储器114中。对于频谱多普勒,可以将用户选择的采样门处的壁滤波后的基带多普勒i/q数据存储在电影存储器114中。随后,显示器116可以显示由图像处理器112创建的超声图像和/或使用电影存储器114中存储的数据创建的图像。

波束合成器102、主控制器104、图像处理器、电影存储器114和显示器可以被包括为超声系统100的主处理控制台118的一部分。在各种实施例中,主处理控制台118可以包括更多或更少的组件或子系统。超声换能器110可以被结合在与主处理控制台118分离的设备中,例如,在被有线地或无线地连接到主处理控制台118上的单独设备中。这允许在对患者执行特定超声过程时更容易操纵超声换能器110。此外,换能器110可以是包括用于发射和接收超声波的发射和接收阵元的阵列换能器。

图2显示了示例性混合发射器超声系统200。图2中所示的混合发射器超声系统200可以被配置成执行可应用的超声系统的功能,比如图1所示的超声系统100。具体地,混合发射器超声系统200可以为产生对象区域的超声图像的目的而向对象区域发送超声波和从对象区域接收超声波。此外,该混合发射器超声系统200可以对接收到的超声波执行超声处理/超声图像处理,以便生成对象区域的超声图像。例如,混合发射器超声系统200可以对从对象区域接收的超声波进行波束合成,以最终产生对象区域的超声图像。

混合发射器超声系统200包括混合发射器202和接收器204。虽然在示例性混合发射器超声系统200中仅示出了单个混合发射器202和接收器204,但是在各个实施例中,混合发射器超声系统200可以包括一个以上混合发射器202和/或一个以上接收器204。此外,混合发射器202和接收器204可以被集成为适用的超声换能器的一部分,或与之集成到一起,比如图1所示的示例超声系统100中的换能器110。

混合发射器202用于产生混合发射器输出,该混合发射器输出用于驱动换能器负载以产生被朝着对象区域发射的超声波。接收器204用于响应于被混合发射器202向对象区域发射的超声波而从该对象区域接收超声波。随后,可以至少部分地使用由接收器204从对象区域接收的超声波来生成该对象区域的超声图像。

如下文中将更详细地讨论的,混合发射器可以包括线性发射器、开关发射器和求和器。线性发射器被配置成产生用于最终产生超声波以朝着对象区域发射的线性发射器输出。开关发射器被配置成产生用于最终产生超声波以朝着对象区域发射的开关发射器输出。求和器被配置成将线性发射器的线性发射器输出与开关发射器的开关发射器输出相加,以生成混合发射器输出。由求和器最终产生的混合发射器输出随后可以被用来驱动换能器负载以产生超声波,以朝着对象区域发射。

混合发射器控制模块206被配置成控制混合发射器202以产生混合发射器输出以驱动换能器负载以产生超声波。具体地,混合发射器控制模块206可以控制混合发射器202的线性发射器和开关发射器中的任一个或两者,以控制混合发射器输出的产生。更具体地,混合发射器控制模块206可以关闭线性发射器和开关发射器中的任一个或两者,以产生混合发射器输出。在关闭混合发射器202的线性发射器和开关发射器中的一个时,线性发射器或开关发射器的输出为空。混合发射器202的求和器仍可以将线性发射器或开关发射器的空输出与产生具有实际值的输出的发射器的输出求和,以便产生混合发射器输出。例如,如果混合发射器控制模块206关闭线性发射器,则混合发射器202的求和器可以将空线性发射器输出与开关发射器的开关发射器输出相加,以产生混合发射器202的混合发射器输出。

此外,混合发射器控制模块206可以基于混合发射器超声系统200的超声成像模式来控制混合发射器202。混合发射器超声系统200的超声成像模式可以包括在其中超声系统可以生成超声图像可应用成像模式。例如,混合发射器超声系统200的超声成像模式可以包括b模式、cd模式、ceus和pw模式。

混合发射器控制模块206可以基于混合发射器超声系统200的超声成像模式来独立控制混合发射器202的线性发射器和开关发射器的操作。这很重要,因为不同的超声成像模式可以利用不同的发射器高压。具体地,每种超声成像模式可以使用在不同的输出电平下的不同发射脉冲。当仅使用单一类型的发射器时,这需要不断调整发射器高压。继而,这可能会对采集帧率产生不利影响,因为该高电压必须在扫描之前稳定到新电压。为了克服这个问题,混合发射控制模块206可以为不同的发射器(例如,混合发射器202的线性发射器和开关发射器)在混合发射器超声系统200的特定超声成像模式下工作。特别地,这可以避免对重调混合发射器202的高压电源的需要。例如,b模式可以被分配为既使用线性发射器也使用开关发射器,pw模式可以被分配为仅使用开关发射器,ceus可以被分配为仅使用线性发射器,cd模式可以被分配为仅使用线性发射器。如下文所述,与混合发射器控制模块206需要在模式之间重调发射器高压电源的情况相反,可以实现更高的帧率。在各种实施例中,混合发射器控制模块可以以交错方式(例如,同时呈现给用户)控制混合发射器202的开关发射器和线性发射器。

此外,混合发射器控制模块206可以基于与混合发射器202相关联的混合发射器工作模式来控制混合发射器202。与混合发射器202相关联的混合发射器工作模式可以对混合发射器202响应于对该混合发射器202的特定输入的输出进行建模或以其他方式进行预测。更具体地,混合发射器工作模式可以预测工作在特定超声成像模式下的混合发射器202响应于对该混合发射器202的给定输入的输出。类似地,与混合发射器202相关联的混合发射器工作模式可以预测将使混合发射器202产生期望的输出的对该混合发射器202的特定输入。更具体地,混合发射器工作模式可以预测当混合发射器202工作在特定超声成像模式下时将使混合发射器202产生期望的输出的对该混合发射器202的特定输入。

与混合发射器202相关联的混合发射器工作模式可以通过模拟一个或多个混合发射器(可能包括该混合发射器202)的操作来产生。具体地,可以通过例如使用spice模拟或换能器模型模拟混合发射器202的操作来产生混合发射器工作模式。此外,可以通过模拟不同于混合发射器202的混合发射器的操作来产生混合发射器工作模式。在模拟一个或多个混合发射器的操作时,可以针对该一个或多个混合发射器中的每个线性发射器和开关发射器来模拟发射器工作模式。具体地,可以针对混合发射器的线性发射器模拟线性发射器工作模式,以及可以针对混合发射器的开关发射器模拟开关发射器工作模式。随后,模拟的线性发射器工作模式和模拟的开关发射器工作模式可以被组合以形成用于混合发射器的模拟的混合发射器工作模式。

此外,混合发射器控制模块206可以通过实际控制混合发射器202确定混合发射器工作模式来凭经验确定混合发射器工作模式。具体地,混合发射器控制模块206可以控制混合发射器202的线性发射器以凭经验识别用于线性发射器的线性发射器工作模式。另外,混合发射器控制模块206可以控制混合发射器202的开关发射器以凭经验识别用于开关发射器的开关发射器工作模式。随后,混合发射器控制模块206可以通过组合根据经验确定的线性发射器工作模式和根据经验确定的开关发射器工作模式来根据经验确定混合发射器工作模式。

在根据经验确定用于混合发射器202的线性发射器的线性发射器工作模式时,混合发射器控制模块206可以关闭混合发射器202的开关发射器。随后,混合发射器控制模块206可以将单脉冲样本输入线性发射器。混合发射器控制模块206然后可以测量响应于被输入进线性发射器的该单脉冲样本而产生的用于驱动换能器负载的混合发射器输出。因此,混合发射器控制模块206可以基于被输入到线性发射器中的脉冲样本和响应于该脉冲样本而产生的结果发射器输出而经验地产生用于线性发射器的线性发射器工作模式。

在根据经验确定混合发射器202的开关发射器的开关发射器工作模式时,混合发射器控制模块206可以关闭混合发射器202的线性发射器。随后,混合发射器控制模块206可以将单脉冲样本输入开关发射器。混合发射器控制模块206然后可以测量响应于被输入进开关发射器的该单脉冲样本而产生的用于驱动换能器负载的混合发射器输出。因此,混合发射器控制模块206可以基于被输入到开关发射器中的脉冲样本和响应于该脉冲样本而产生的发射器输出而经验地生成用于开关发射器的开关发射器工作模式。

图3显示了用于根据经验产生用于混合发射器202的混合发射器工作模式的混合发射器202的示例混合发射器结构300。具体地,该混合发射器结构300可以由混合发射器控制模块206控制以产生用于混合发射器202的混合发射器工作模式。

如图3中的混合发射器结构300所示,可以通过关闭开关发射器302来凭经验确定线性发射器模式。如图3所示,本文中所说的开关发射器可以由三电平发射器形成。在开关发射器302被关闭之后,混合发射器控制模块206可以输入单脉冲样本以驱动d/a。随后,混合发射器控制模块206可以测量换能器负载处的电输出或换能器的声输出。

同样地,可以通过关闭线性发射器304来凭经验确定开关发射器模式。在关闭线性发射器304之后,混合发射器控制模块206可以输入单脉冲样本来驱动开关发射器302。随后,混合发射器控制模块206可以测量换能器负载处的电输出或换能器的声输出。然后,混合发射器控制模块206可以将当线性发射器304关闭时开关发射器302的输出与当开关发射器302关闭时线性发射器304的输出求和,以产生用于混合发射器202的混合发射器工作模式306。

图4a显示了被用于产生线性发射器工作模式的线性发射器304的线性发射器输出的表示400。具体地,图4a显示了滤波之前和之后的线性发射器输出的表示400。图4a所示的线性发送输出可以最终被用来生成用于混合发射器202的混合发射器工作模式。

图4b显示了被用于生成开关发射器工作模式的开关发射器302的开关发射器输出的表示402。具体地,图4b显示了滤波之前和之后的开关发射器输出的表示402。图4b中所示的开关发射器输出最终可以被用来生成用于混合发射器202的混合发射器工作模式。

返回图2,在获得了用于混合发射器202的混合发射器工作模式之后,混合发射器控制模块206可以应用整数线性编程来控制混合发射器202的线性发射器和开关发射器的工作。具体地,混合发射器控制模块206可以应用整数线性编程来基于与混合发射器202相关联的混合发射器工作模式控制混合发射器202的工作。

在基于与混合发射器202相关联的控制模式应用整数线性编程来控制混合发射器202时,混合发射器控制模块206可以确定混合发射器202的期望输出。具体地,混合发射器控制模块206可以例如基于混合发射器202的超声成像模式确定与混合发射器202的期望输出相对应的发射超声波的期望特性。因此,混合发射器控制模块206可以使用该控制模式来识别线性发射器输入和开关发射器输入中的任一个或两者,以应用到混合发射器202中以生成期望的混合发射器输出。随后,混合发射器控制模块206可以实际上控制将线性发射器输入和开关发射器输入应用到混合发射器202以产生期望的混合发射器输出。

下文中的描述提供了关于混合发射器控制模块206如何可以使用混合整数线性编程来推导出用于线性发射器和开关发射器的最优的/期望的/特定的输入以产生换能器的期望的目标波形/混合发射器输出(电的和声的)的更多细节。线性发射器输入可以看作是介于-1和1之间的连续变量(高分辨率d/a)。此外,开关发射器输入是有限整数集;例如,三电平发射器将被限制到输入集{-1,0,1}。

混合发射器控制模块206可以被配置成针对求解下面的方程1、2和3,以推导出用于混合发射器202的最优输入,例如,线性发射器输入和开关发射器输入。具体地,混合发射器控制模块206可以针对求解方程1、2和3,以使误差最小,以得出混合发射器的最优输入:

方程1

方程2

方程4

其中

是线性发射器模型的单样本响应;

是开关发射器模型的单样本响应;

是混合发射器模型输出;

是所需的混合发射器输出;

是线性发射器输入;和

是开关发射器输入。

通过根据前述描述得出特定的混合发射器输入,混合发射器控制模块206可以补偿线性发射器、开关发射器和换能器的模拟响应,以将期望的混合发射器输出与基于该特定输入产生的实际输出进行匹配。

具体地,混合发射器控制模块206可以补偿这些模拟响应,以使期望的混合发射器输出与基于使用混合发射器工作模式识别的特定混合发射器输入而产生的实际输出相匹配。

图5a显示了用于混合发射器202的线性发射器和开关发射器以生成30mhz、2周期高斯脉冲的最优16个样本输入500。图5b显示了混合发射器202的线性发射器和开关发射器对图5a所示的最优16个样本输入500的输出502。图5c显示了与混合发射器202的期望输出相比,混合发射器202响应于16个样本输入500的最终混合发射器输出504。

图6a显示了用于混合发射器202的线性发射器和开关发射器的最优24个样本输入600。图6b显示了混合发射器202的线性发射器和开关发射器对图6a所示的最优24个样本输入600的输出602。图6c显示了与混合发射器202的期望输出相比,混合发射器202响应于24个样本输入600的最终混合发射器输出604。

图7a和7b显示了在时域700和频域702中混合发射器相对于线性发射器的10db幅度益处的比较。应当注意,混合发射器的输出可以匹配补偿线性发射器、开关发射器和换能器的模拟响应的期望的输入。

图8显示了混合发射器800的示例拓扑。混合发射器800可以是在超声系统中实现的用于将超声波发射到对象区域中的适用的混合发射器,比如混合发射器202。混合发射器800包括线性发射器802和开关发射器804。线性发射器802由n位d/a806驱动,该d/a806从波形ram(n位)808接收其输入。开关发射器使用来自波形ram808的m位来驱动。在各个实施例中,来自被用于驱动开关发射器804的波形ram808的m位小于用于驱动线性发射器802的波形ram808的n位。此外,波形ram808的n位可以包括波形ram808的所有位。混合发射器控制模块206可以控制波形ram808以输出任意输出序列(取决于ram808的最大长度),以用作线性发射器802和开关发射器804的输入。或者,混合发射器控制模块206可以在波形ram808的一部分上重复循环,以提供输入给线性发射器802和开关发射器804。该循环部分可以被附加一个唯一的初始波形序列,也可以被附加一个唯一的终止波形序列。

在驱动换能器负载之前,线性发射器802和开关发射器804的输出被通过求和器810求和。求和器810可以通过变压器来实现。在混合发射器的发射脉冲终止后,可以利用可选的变压器接地钳(或跨变压器短路)来最小化振铃。

图9a显示了具有变压器的混合发射器900,其中该变压器作为求和器以产生单端混合发射器输出。混合发射器900可以是在超声系统中实现的用于将超声波发射到对象区域中的适用的混合发射器,比如混合发射器202。混合发射器900包括被配置成生成单端线性发射器输出的单端线性发射器。混合发射器900还包括用作开关发射器的单端三电平发射器,其被配置成生成单端开关发射器输出。另外,混合发射器900包括用作求和器的变压器,以求和单端线性发射器输出和单端开关发射器输出以产生单端混合发射器输出。具体地,求和器可以生成单端混合发射器输出以驱动换能器负载产生超声波。

图9b显示了具有变压器的混合发射器902,其中该变压器作为求和器以产生差分混合发射器输出。混合发射器902可以是在超声系统中实现的用于将超声波发射到对象区域中的适用的混合发射器,比如混合发射器202。混合发射器902包括被配置成生成差分线性发射器输出的差分线性发射器。混合发射器902还包括用作开关发射器的差分三电平发射器,其被配置成生成差分开关发射器输出。另外,混合发射器902包括用作求和器的变压器,以求和差分线性发射器输出和差分开关发射器输出,以产生差分混合发射器输出。具体地,求和器可以生成差分混合发射器输出以驱动换能器负载生成超声波。

图10显示了具有开关的混合发射器1000。图10所示的混合发射器1000可以用来代替基于变压器的混合发射器,比如图9a和9b所示的混合发射器900和902。混合发射器1000包括开关发射器1002和线性发射器1004。此外,混合发射器1000包括被耦合到开关发射器1002和线性发射器1004的发射/接收开关1006。开关1006被耦合到振荡器1008(例如,晶体振荡器),该振荡器1008由开关1006使用以在开关发射器1002和线性发射器1004之间执行精确切换。在工作中,开关1006的功能是在开关发射器1002和线性发射器1004的输出之间切换,以驱动换能器负载1010。

图11是控制超声系统的混合发射器向对象区域发送超声波的示例方法的流程图1100。图11中所示的示例方法可以使用适用的超声系统和适用的混合发射器实现,比如本文所述的系统和发射器。

在步骤1102,控制超声系统的混合发射器的线性发射器以产生线性发射器输出。线性发射器可由适用的混合发射器控制模块控制,比如混合发射器控制模块206,以产生线性发射器输出。线性发射器可以被配置成生成单端输出,以及被控制以创建单端线性发射器输出。另外,线性发射器可以被配置成生成差分输出,以及被控制以创建差分线性发射器输出。

在步骤1104中,控制超声系统的混合发射器的开关发射器以产生开关发射器输出。开关发射器可以由适用的混合发射器控制模块控制,例如混合发射器控制模块206,以生成开关发射器输出。开关发射器可以被配置成生成单端输出,以及被控制以创建单端开关发射器输出。另外,开关发射器可以被配置成生成差分输出,以及被控制以创建差分开关发射器输出。

在步骤1106,控制加法器以将线性发射器输出和开关发射器输出相加,以产生混合发射器输出,以驱动换能器负载以产生朝着对象区域发射的超声波。可以控制求和器以创建单端混合发射器输出或差分混合发射器输出。求和器可以通过变压器实现。

图12是使用发射器工作模式控制超声系统的混合发射器以朝着对象区域发射超声波的示例方法的流程图1200。图12中所示的示例方法可以使用适用的超声系统和适用的混合发射器实现,比如本文所述的系统和发射器。

在步骤1202,识别用于超声系统的混合发射器的混合发射器工作模式。可以通过对混合发射器或者工作中的关联的混合发射器进行模拟来识别混合发射器工作模式。另外,可以通过实际操作混合发射器来凭经验识别混合发射器工作模式。

在步骤1204,使用用于混合发射器的工作模式来控制混合发射器的工作。具体地,可以根据工作模式来控制混合发射器的线性发射器和开关发射器中的任一个或两者。更具体地,可以使用工作模式来确定用于生成期望的混合发射器输出的输入。随后,可以将所识别的输入提供给混合发射器的线性发射器和/或开关发射器,以产生期望的混合发射器输出。

图13是基于超声系统的超声成像模式来控制超声系统的混合发射器向对象区域发射超声波的示例方法的流程图1300。图13中所示的示例方法可以使用适用的超声系统和适用的混合发射器实现,比如本文中所述的系统和发射器。

在步骤1302,识别包括混合发射器的超声系统的超声成像模式。例如,混合发射器控制模块206可以识别超声系统是工作在b模式、cd模式、ceus还是pw模式。混合发射器可以包括线性发射器和开关发射器。

在步骤1304,基于超声系统的超声成像模式来控制混合发射器的工作。具体地,可以基于超声成像模式来控制混合发射器的线性发射器和开关发射器中的任一个或两者的工作。例如,当超声系统在pw模式下工作时,可以控制混合发射器的开关发射器发射超声波以在pw模式下工作。

本发明已经参考包括最佳模式的各种示例性实施例做出说明。然而,本领域技术人员将认识到,可以在不脱离本发明的范围的情况下对示例性实施例进行改变和修改。例如,取决于特定应用或考虑与系统的操作相关联的任何数量的成本函数,可以以替代方式来实现各种操作步骤以及用于执行这些操作步骤的组件,例如,这些步骤中的一个或多个可以被删除、修改或与其他步骤组合。

尽管已经在各种实施例中示出了本发明的原理,但是可以使用特别适合于特定环境和操作要求的结构、布置、比例、元件、材料和组件的许多修改,而不会背离本发明的原理和范围。这些和其他改变或修改旨在被包括在本发明的范围内。

上文中已经参考各种实施例进行了说明。然而,本领域的普通技术人员将理解,在不脱离本发明的范围的情况下,可以进行各种修改和改变。因此,本文应被认为是说明性的而不是限制性的,并且所有这样的修改旨在被包括在其范围内。同样,上面已经参考各种实施例描述了益处、其他优点和问题的解决方案。但是,益处、优点、问题的解决方案以及可能导致任何益处、优点或解决方案出现或变得更加明显的任何要素都不应被解释为是关键的、必需的或必要的特征或要素。如本文中所使用的,术语“包括”、“包含”及其任何其他变体旨在覆盖非排他性包括,使得包括一系列元素的过程、方法、物品或设备不仅仅包括列出的那些元素,也可以包括未明确列出的或此类过程、方法、系统、物品或设备所固有的其他要素。而且,如本文所使用的,术语“耦合”、“耦接”及其任何其他变体旨在覆盖物理连接、电连接、磁连接、光学连接、通信连接、功能连接和/或任何其他连接。

本领域技术人员将理解,可以在不脱离本发明的基本原理的情况下对上述实施例的细节进行许多改变。因此,本发明的范围应由所附权利要求书确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1