一种应用于微创手术的蛇形手术机器人的制作方法

文档序号:21585530发布日期:2020-07-24 16:28阅读:172来源:国知局
一种应用于微创手术的蛇形手术机器人的制作方法

本发明属于外科手术机器人技术领域,更具体地说,是涉及一种应用于微创手术的蛇形手术机器人。



背景技术:

微创手术是指利用腹腔镜、胸腔镜、喉镜等现代医疗器械及相关设备在人体腔体内施行手术的一种手术方式,相比传统手术具有创伤小、疼痛少、痊愈快等优势。为了满足手术所要求的灵活性,同时使末端执行器械小型化,机器人一般采用绳驱动形式,将体积庞大的驱动部分置于体外,通过绳驱动体内的末端结构。在进行单孔微创手术及自然腔道手术时,多个手术器械需要从单一入口进入体腔,医生双手操作器械对同一目标点进行协同工作,因此手术器械需要在体腔内侧向展开呈三角形态。现有的蛇形手术机器人中,机械臂包括两段连续体,其定位结构为多段连续体,因而存在着进行手术操作时刚度不足的问题,这无疑会降低机械臂的运动控制精度;此外,在相邻两段连续体之间,其中一段连续体的运动会对另一段连续体的驱动产生耦合作用,这也会降低机械臂的运动控制精度。



技术实现要素:

本发明实施例的目的在于提供一种应用于微创手术的蛇形手术机器人,以解决现有的手术机器人中的机械臂存在刚度不足和运动控制精度低的技术问题。

为实现上述目的,本发明采用的技术方案是:提供一种应用于微创手术的蛇形手术机器人,包括滑台模组、滑动连接于所述滑台模组上的滑轮模组、设于所述滑轮模组上的驱动模组以及与所述滑轮模组连接的机械臂,所述驱动模组通过所述滑轮模组为所述机械臂提供动力;

所述机械臂包括手术执行器、与所述手术执行器连接且能弯曲运动的第一关节以及与所述第一关节连接且能摇摆运动的第二关节,其中,所述第一关节为可连续变形的连续体结构,所述第二关节为齿轮啮合结构。

可选地,所述第一关节包括依次转动连接的远端椎骨、至少一个间隔椎骨以及近端椎骨,所述远端椎骨与所述手术执行器连接,所述近端椎骨与所述第二关节连接;

所述第一关节还包括用于为所述第一关节的弯曲运动提供牵引力的第一驱动线,所述第一驱动线的一端与所述远端椎骨固定连接,所述第一驱动线的远离所述远端椎骨的一端依次穿过所述间隔椎骨和所述近端椎骨后与所述滑轮模组固定连接。

可选地,所述第一关节上设有用于保持所述第一关节的形状的弹性支撑件,所述弹性支撑件依次固定连接于所述远端椎骨、所述间隔椎骨及所述近端椎骨上。

可选地,所述第二关节包括远端杆件、近端杆件、第一齿轮副、第二齿轮副,其中,所述远端杆件和所述近端杆件转动连接,所述第一齿轮副固定于所述远端杆件上,所述第二齿轮副固定于所述近端杆件上,所述第一齿轮副和所述第二齿轮副啮合连接;

所述第二关节还包括用于为所述第二关节的摇摆运动提供牵引力的第二驱动线,所述第二驱动线的一端与所述远端杆件固定连接,所述第二驱动线的远离所述远端杆件的一端穿过所述近端杆件后与所述滑轮模组固定连接。

可选地,所述机械臂还包括与所述第二关节连接且能摇摆运动的第三关节以及与所述第三关节连接且能沿自身轴向转动的躯干,所述躯干与所述滑轮模组连接。

可选地,所述第二关节的结构与所述第三关节的结构相同。

可选地,所述机械臂上设有用于为所述机械臂的运动提供牵引力的驱动线,所述滑轮模组包括下基板、多个驱动轴、多个分线轴和多个滑轮轴,多个驱动轴、多个分线轴和多个滑轮轴分别设于所述下基板上,所述驱动线分别经过对应的所述分线轴和所述滑轮轴后固定连接于对应的所述驱动轴,所述驱动模组用于驱动多个所述驱动轴转动。

可选地,所述驱动轴包括与所述驱动模组连接的驱动主轴、转动套设于所述驱动主轴外的绕线轮以及用于限制所述绕线轮相对所述驱动主轴转动的紧固件,所述驱动线分别经过对应的所述分线轴和所述滑轮轴后固定连接于对应的所述绕线轮上。

可选地,所述驱动模组包括多个电机,每一所述电机的输出端通过联轴器与对应的所述驱动轴固定连接。

可选地,所述滑台模组与所述滑轮模组可拆卸连接;和/或,

所述驱动模组与所述滑轮模组可拆卸连接;和/或,

所述滑轮模组与所述机械臂可拆卸连接。

本发明提供的蛇形手术机器人的有益效果在于:连续体结构具有结构紧凑和易于实现类圆弧变形运动的优点,齿轮啮合结构具有较佳的抵抗变形的能力和可靠的稳定性,本发明通过连续体结构和齿轮啮合结构配合组成机械臂,可以在保证机械臂的末端的灵活运动及变形能力的前提下,有效提高机械臂的刚度,并且还能解决或改善现有手术机器人的机械臂的耦合作用,提高机械臂的运动控制精度,相比于现有的手术机器人,本发明的蛇形手术机器人的可操作性强,有利于医生进行微操处理。

附图说明

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例提供的蛇形手术机器人的结构示意图;

图2为本发明实施例提供的机械臂的结构示意图;

图3为本发明实施例提供的第一关节的结构示意图;

图4为本发明实施例提供的第二关节的结构示意图;

图5为本发明实施例提供的滑轮模组的结构示意图;

图6为本发明实施例提供的滑轮模组的结构布线示意图;

图7为本发明实施例提供的第二关节驱动轴的结构示意图;

图8为本发明实施例提供的滑轮模组与驱动模组的组装结构示意图。

其中,图中各附图标记:

100-机械臂;110-手术执行器;120-第一关节;121-远端椎骨;122-间隔椎骨;123-近端椎骨;124-弹性支撑件;130-第二关节;131-远端杆件;132-近端杆件;133-第一齿轮副;134-第二齿轮副;135-固定盘;140-第三关节;150-躯干;160-驱动线;161-第一驱动线;162-第二驱动线;163-第三驱动线;164-第四驱动线;165-旋转驱动线;200-滑轮模组;210-上基板;220-驱动轴;2201-驱动主轴;2202-绕线轮;2203-紧固件;221-第一驱动轴;222-第二驱动轴;223-第三驱动轴;224-第四驱动轴;225-旋转驱动轴;230-分线轴;231-第一分线轴;232-第二分线轴;233-第三分线轴;240-滑轮轴;241-第一滑轮轴;242-第二滑轮轴;243-第三滑轮轴;250-下基板;300-驱动模组;310-电机板;320-电机;330-联轴器;400-滑台模组。

具体实施方式

为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。

需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

请参阅图1与图2,本发明实施例提供一种应用于微创手术的蛇形手术机器人,包括滑台模组400、滑动连接于滑台模组400上的滑轮模组200、设于滑轮模组200上的驱动模组300以及与滑轮模组200连接的机械臂100,驱动模组300通过滑轮模组200为机械臂100提供动力,机械臂100用于执行夹持、切割、缝合等手术操作;

机械臂100包括手术执行器110、一端与手术执行器110连接且能弯曲运动的第一关节120以及与第一关节120的远离手术执行器110的一端连接且能摇摆运动的第二关节130,其中,第一关节120为可连续变形的连续体结构,第二关节130为齿轮啮合结构。

本发明实施例的蛇形手术机器人工作时,滑台模组400于滑台模组400上滑动并带动机械臂100一同运动,使机械臂100伸入自然腔道或人工腔道,在机械臂100进入腔道的过程,驱动模组300通过滑轮模组200驱动第一关节120和第二关节130变形以适应腔道的形状,到达病灶部位后,驱动模组300通过滑轮模组200驱动手术执行器110进行手术操作,相比于传统的手术方式,具有创伤小、疼痛少、痊愈快等优势。

本发明实施例的蛇形手术机器人的有益效果在于:连续体结构具有结构紧凑和易于实现类圆弧变形运动的优点,齿轮啮合结构具有较佳的抵抗变形的能力和可靠的稳定性,本发明通过连续体结构和齿轮啮合结构配合组成机械臂100,可以在保证机械臂100的末端的灵活运动及变形能力的前提下,有效提高机械臂100的刚度,并且还能解决或改善现有手术机器人的机械臂100的耦合作用,提高机械臂100的运动控制精度,相比于现有的手术机器人,本发明实施例的蛇形手术机器人的可操作性强,可以满足单孔微创手术或者自然腔道手术的要求,有利于医生进行微操处理。

具体地,在本发明的一个实施例中,如图2所示,本发明实施例的蛇形手术机器人中,机械臂100采用绳驱动的方式与滑轮模组200连接,具体来说,机械臂100上设有多个用于为机械臂100的变形运动提供牵引力的驱动线160,每一个驱动线160的一端与机械臂100上对应的关节固定连接,另一端固定连接于滑轮模组200,驱动模组300通过滑轮模组200收放驱动线160来调整机械臂100的姿态。本发明实施例的机械臂100的结构紧凑,实现了机械臂100的小型化,使得机械臂100符合微创手术的使用需求。

可选地,驱动线160可以为镍钛合金丝或钢丝,当然根据实际情况的选择,驱动线160也选用其它材料,只要保证驱动线160能够用于提供牵引力即可,本发明在此不做特别限制。

具体地,在本发明的一个实施例中,如图3所示,第一关节120包括依次转动连接的远端椎骨121、至少一个间隔椎骨122以及近端椎骨123,即远端椎骨121和近端椎骨123之间设有至少一个间隔椎骨122,远端椎骨121、间隔椎骨122和近端椎骨123之间可以进行相对摆动,远端椎骨121的一端与手术执行器110的一端连接,远端椎骨121的远离手术执行器110的一端转动连接于间隔椎骨122,近端椎骨123的一端转动连接于间隔椎骨122,近端椎骨123的远离间隔椎骨122的一端与第二关节130连接;第一关节120还包括用于为第一关节120的弯曲运动提供牵引力的第一驱动线161,第一驱动线161即为对应机械臂100的第一关节120的驱动线160,第一驱动线161的一端与远端椎骨121固定连接,第一驱动线161的远离远端椎骨121的一端依次穿过间隔椎骨122和近端椎骨123后与滑轮模组200固定连接。通过上述设置,使得驱动模组300可以通过滑轮模组200来收放第一驱动线161,以便于调整第一关节120的弯曲姿态。

具体地,在本发明的一个实施例中,如图3所示,第一关节120上设有用于保持第一关节120的形状的弹性支撑件124,弹性支撑件124依次固定连接于远端椎骨121、至少一个间隔椎骨122及近端椎骨123上,通过在第一关节120上设置具有弹性支撑件124,可以增强第一关节120的刚度,使得机械臂100可以在手术时拥有足够的刚度,便于医生进行操控。

具体地,本发明实施例的蛇形手术机器人中,由于机械臂100采用绳驱动的方式与滑轮模组200连接,即机械臂100呈内中空设置,以便于将驱动线160设置在机械臂100内部,在该实施例中,弹性支撑件124可以设置在第一关节120内部,即弹性支撑件124依次穿过远端椎骨121、至少一个间隔椎骨122及近端椎骨123,弹性支撑件124且固定连接于远端椎骨121、间隔椎骨122及近端椎骨123上。当然,根据实际情况的选择,弹性支撑件124也可以设置在第一关节120外,本发明在此不做限制。

具体地,本发明实施例的蛇形手术机器人中,弹性支撑件124为弹性支撑丝,在该实施例中,第一关节120上设有多个弹性支撑丝,多个弹性支撑丝沿周向均匀设置于第一关节120内,也即多个弹性支撑丝沿周向均匀设置于远端椎骨121、至少一个间隔椎骨122及近端椎骨123内,通过多个弹性支撑丝配合可以使得第一关节120的各个部件始终保持接触,第一关节120处的刚度分布均匀。可以理解的是,根据实际情况的选择,弹性支撑件124的形状也可以做适当调整,例如,弹性支撑件124也可以设置为管状结构,此结构下,弹性支撑件124可以套接于第一关节120内部或者套设于第一关节120外侧。

可选地,弹性支撑丝可以为镍钛合金丝或钢丝,当然根据实际情况的选择,弹性支撑丝也选用其它材料,只要保证弹性支撑丝能够提高第一关节120的刚度即可,本发明在此不做特别限制。

具体地,在本发明的一个实施例中,如图4所示,第二关节130包括远端杆件131、近端杆件132、第一齿轮副133、第二齿轮副134,其中,远端杆件131的一端与近端椎骨123的远离间隔椎骨122的一端固定连接,远端杆件131的远离近端椎骨123的一端和近端杆件132的一端转动连接,第一齿轮副133固定于远端杆件131上,第二齿轮副134固定于近端杆件132上,第一齿轮副133和第二齿轮副134啮合连接;第二关节130还包括用于为第二关节130的摇摆运动提供牵引力的第二驱动线162,第二驱动线162即为对应机械臂100的第二关节130的驱动线160,第二驱动线162的一端与远端杆件131固定连接,第二驱动线162的远离远端杆件131的一端穿过近端杆件132后与滑轮模组200固定连接。通过上述设置,使得驱动模组300可以通过滑轮模组200来收放第二驱动线162,以便于调整第二关节130的摇摆姿态。

具体地,在拉动第二驱动线162时,远端杆件131与近端杆件132之间相对摆动,此时,远端杆件131上的第一齿轮副133与近端杆件132上的第二齿轮副134啮合转动,可以精准地调整第二关节130的摇摆姿态。

具体地,如图4所示,第二关节130还包括设于远端杆件131和近端杆件132之间的固定盘135,远端杆件131的远离近端椎骨123的一端转动连接于固定盘135,近端杆件132的一端转动连接于固定盘135,从而实现远端杆件131和近端杆件132之间的转动连接。在该实施例下,第二驱动线162的一端与远端杆件131固定连接,第二驱动线162的远离远端杆件131的一端依次穿过固定盘135和近端杆件132后与滑轮模组200固定连接。

具体地,在本发明的一个实施例中,如图1与图2所示,机械臂100还包括一端与近端杆件132的远离远端杆件131的一端连接且能摇摆运动的第三关节140,以及一端与第三关节140的远离近端杆件132的一端连接且能沿自身轴向转动的躯干150,躯干150的远离第三关节140的一端与滑轮模组200连接,从而提高机械臂100的自由度,以便于机械臂100伸入腔道进行手术操作。

可选地,结合图4与图6,本发明实施例的机械臂100中,第二关节130的结构与第三关节140的结构相同,第三关节140也包括对应的远端杆件131、固定盘135、近端杆件132、第一齿轮副133、第二齿轮副134以及用于为第二关节130的摇摆运动提供牵引力的驱动线160(第三驱动线163),在此不再对第三关节140的具体结构进行赘述。在该实施例中,第三关节140的远端杆件131的远离第三关节140的固定盘135的一端固定连接于第二关节130的近端杆件132的远离第二关节130的固定盘135的一端,第三关节140的近端杆件132的远离第三关节140的固定盘135的一端固定连接于躯干150的远离滑轮模组200的一端固定连接。通过上述设置,使得驱动模组300可以通过滑轮模组200来收放第三驱动线163,以便于调整第三关节140的摇摆姿态。

可以理解的是,第三关节140和躯干150之间还可以增设更多能够摇摆运动或者弯曲运动的关节,且所增设的关节可以采用如第一关节120或者第二关节130的结构来实现关节的摇摆运动或者弯曲运动,本发明在此不做限制。

具体地,在本发明的一个实施例中,如图5和图8所示,滑轮模组200包括相对设置的上基板210和下基板250,下基板250滑动连接于滑台模组400,滑轮模组200还包括两端分别设于上基板210和下基板250上的多个驱动轴220、多个分线轴230和多个滑轮轴240,其中,分线轴230和滑轮轴240上分别转动套设有滑轮,驱动线160分别经过对应的分线轴230的滑轮和滑轮轴240的滑轮后固定连接于对应的驱动轴220,驱动模组300用于驱动多个驱动轴220转动。在该实施例中,对应不同驱动线160的滑轮在平行于分线轴230(或滑轮轴240)的方向上错落布置,各驱动线160之间不会产生碰撞与摩擦,使得驱动线160可以顺滑的传递牵引力,有效提高机械臂100的运动控制精度。

具体地,如图5和图6所示,定义躯干150的轴向为第一方向,多个滑轮轴240分为两组相对设置的滑轮轴240,每一组滑轮轴240包括于第一方向上依次排列的两个第一滑轮轴241、第二滑轮轴242和第三滑轮轴243;驱动轴220包括于第一方向上依次排列且设于两组滑轮轴240之间的两个第一驱动轴221、第二驱动轴222和第三驱动轴223;多个分线轴230设于第三滑轮轴243的远离第二滑轮轴242的一侧,分线轴230具体包括分别对应两组滑轮轴240的两个第一分线轴231和两个第二分线轴232,每一个第一驱动线161依次经过对应的第一分线轴231和第一滑轮轴241后固定在第一驱动轴221上,每一个第二驱动线162依次经过对应的第二分线轴232和第二滑轮轴242后固定在第二驱动轴222上,每一个第三驱动线163依次经过对应的第二分线轴232和第三滑轮轴243后固定在第三驱动轴223上,驱动模组300通过驱动对应的驱动轴220转动以实现收放驱动线160,从而调整机械臂100对应的部位变形。通过上述设置,各驱动线160之间不会产生碰撞与摩擦,使得驱动线160可以顺滑的传递牵引力,有效提高机械臂100的运动控制精度。

可选地,第一关节120上设有四根第一驱动线161,即第一关节120上设有两对第一驱动线161;每一对第一驱动线161中,两个第一驱动线161的远离远端椎骨121的一端分别经对应的第一分线轴231和第一滑轮轴241后固定连接于同一个第一驱动轴221上,即每一对第一驱动线161中的两个第一驱动线161以拮抗方式布置到滑轮模组200上,每一对第一驱动线161中的两个第一驱动线161彼此不会有碰撞与摩擦,两对第一驱动线161分别用于控制第一关节120在不同方向上的弯曲运动,使得本发明实施例的第一关节120具有两个自由度。通过上述设置,两根第一驱动线161通由一个第一驱动轴221来控制收放,可以减少滑轮、分线轴230和驱动轴220的数量,使得滑轮模组200和驱动模组300小型化,并且还能精简控制算法,有效提高运动控制精度。可以理解的是,根据实际情况的选择,为了调整第一关节120的自由度,第一关节120上的第一驱动线161的数量可以作适当调整,本发明在此不做限制。

可选地,第二关节130上设有两根第二驱动线162,即第二关节130上设有一对第二驱动线162,第二关节130的两根第二驱动线162的远离远端杆件131的一端分别经对应的第二分线轴232和第二滑轮轴242后固定连接于同一个第二驱动轴222上,第二关节130的两根第二驱动线162以拮抗方式布置到滑轮模组200上,两根第二驱动线162彼此不会有碰撞与摩擦,两根第二驱动线162用于控制第二关节130在同一方向上的摇摆运动,使得本发明实施例的第二关节130具有一个自由度。通过上述设置,两根第二驱动线162由一个第二驱动轴222来控制收放,可以减少滑轮、分线轴230和驱动轴220的数量,使得滑轮模组200和驱动模组300小型化,并且还能精简控制算法,有效提高运动控制精度。可以理解的是,根据实际情况的选择,为了调整第二关节130的自由度,第二关节130上的第二驱动线162的数量可以作适当调整,本发明在此不做限制。

可选地,第三关节140上设有两根第三驱动线163,即第三关节140上设有一对第三驱动线163,第三关节140的两根第三驱动线163的远离远端杆件131的一端分别经对应的第二分线轴232和第三滑轮轴243后固定连接于同一个第三驱动轴223上,第三关节140的两根第三驱动线163以拮抗方式布置到滑轮模组200上,两根第三驱动线163彼此不会有碰撞与摩擦,两根第三驱动线163用于控制第三关节140在同一方向上的摇摆运动,使得本发明实施例的第三关节140具有一个自由度。通过上述设置,两根第三驱动线163由一个第三驱动轴223来控制收放,可以减少滑轮、分线轴230和驱动轴220的数量,使得滑轮模组200和驱动模组300小型化,并且还能精简控制算法,有效提高运动控制精度。可以理解的是,根据实际情况的选择,为了调整第三关节140的自由度,第三关节140上的第三驱动线163的数量可以作适当调整,本发明在此不做限制。

具体地,在本发明的一个实施例中,如图5和图6所示,手术执行器110可以为具有开合功能的夹钳,夹钳包括一根用于为夹钳的开合运动提供牵引力的第四驱动线164,即夹钳具有一个自由度,分线轴230还包括第三分线轴233,驱动轴220还包括第四驱动轴224,第四驱动线164的一端固定连接于夹钳上,第四驱动线164的另一端经过对应的第三分线轴233后固定连接于第四驱动轴224上,驱动模组300通过驱动第四驱动轴224转动以实现收放第四驱动线164,从而使夹钳进行开合运动。

具体地,在本发明的一个实施例中,如图5和图6所示,驱动轴220还包括旋转驱动轴225,躯干150上设有两根旋转驱动线165,旋转驱动线165的一端固定连接于躯干150上,旋转驱动线165的另一端直接固定连接于旋转驱动轴225上,两根旋转驱动线165用于控制躯干150转动,使得躯干150具有一个自由度。可以理解的是,根据实际情况的选择,也可以采用如采用锥齿轮等其它等方式来驱动躯干150转动,本发明在此不做限制。

可选地,机械臂100上分别对应每根驱动线160设有引导通道,每一根驱动线160经对应的引导通道后固定连接于滑轮模组200上,多根驱动线160之间不会有碰撞与摩擦,使得驱动线160可以顺滑的传递牵引力,有效提高机械臂100的运动控制精度。

具体地,在本发明的一个实施例中,如图7所示,驱动轴220包括与驱动模组300连接的驱动主轴2201、转动套设于驱动主轴2201外的绕线轮2202以及用于限制绕线轮2202相对驱动主轴2201转动的紧固件2203,驱动线160分别经过对应的分线轴230和滑轮轴240后固定连接于对应的绕线轮2202上,驱动模组300与驱动主轴2201连接,使得驱动模组300能够驱使驱动主轴2201转动,同时带动对应的绕线轮2202转动,以对驱动线160进行收放。在将驱动线160固定在绕线轮2202后,可以使得绕线轮2202相对驱动主轴2201转动,直至驱动线160完全张紧后,采用紧固件2203限制绕线轮2202相对驱动主轴2201转动。在该实施例中,紧固件2203可以为紧定螺钉,当驱动线160完全张紧后,使紧定螺钉依次穿过绕线轮2202后插进驱动主轴2201,当然,根据实际情况选择,紧固件2203也可以为其它结构,本发明在此不做限制。

具体地,在本发明的一个实施例中,如图8所示,驱动模组300包括固定连接于上基板210上的电机板310以及固定连接于电机板310上的多个电机320,每一个电机320的输出端通过联轴器330与对应的驱动轴220(驱动主轴2201)固定连接,从而使得每个驱动轴220能够被单独驱动,即手术执行器110、第一关节120、第二关节130、第三关节140及躯干150能够分别被单独驱动。相比于现有的机械手臂的驱动机构,本发明实施例的滑轮、分线轴230和驱动轴220的数量较少,对应的电机320的数量也将少,从而使得驱动模组300小型化。

可选地,滑台模组400与滑轮模组200可拆卸连接;和/或,驱动模组300与滑轮模组200可拆卸连接;和/或,滑轮模组200与机械臂100可拆卸连接。通过上述设置,可以对本发明实施例的蛇形手术机器人进行拆卸,以便于进行维护或者清洗消毒。

本发明实施例的蛇形手术机器人中,机械臂100的手术执行器110能够开合运动,即手术执行器110具有一个自由度;第一关节120能在两个方向进行弯曲运动,即第一关节120具有两个自由度;第二关节130和第三关节140分别能进行摇摆运动,即第二关节130和第三关节140分别具有一个自由度;躯干150能在其轴向转动,即躯干150具有一个自由度;滑轮模组200滑动连接于滑台模组400,滑轮模组200相对于滑台模组400滑动时能带动整个机械臂100运动,即机械臂100还具有一个自由度,由此可见,本发明实施例的机械臂100具有七个自由度,以便于医生操作机械臂100进行夹持、切割、缝合等手术操作。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1