一种CSF-1R激酶抑制剂的用途

文档序号:26484231发布日期:2021-08-31 17:40阅读:427来源:国知局
一种CSF-1R激酶抑制剂的用途

本申请要求2020年02月28日向中国国家知识产权局提交的申请号为202010128115.4,发明名称为“一种csf-1r激酶抑制剂的用途”的在先发明专利申请的优先权。该在先申请的全文通过引用的方式纳入本申请中。

本发明属于医药领域,具体涉及一种csf-1r激酶抑制剂在制备治疗csf-1r激酶信号转导通路相关疾病或者改善肿瘤免疫抑制状态的药物中的应用。



背景技术:

作为功能整体、不可分割的肿瘤微环境在肿瘤进程中发挥着重要作用。微环境中众多基质细胞,如肿瘤相关巨噬细胞、树突状细胞(dc)、调节性t细胞(treg)、成纤维细胞、杀伤性t细胞等,通过与肿瘤细胞互动促进肿瘤进程。

其中,肿瘤相关巨噬细胞(tumor-associatedmacrophages,tams)是重要的微环境基质细胞,在某些肿瘤组织中巨噬细胞的比重可高达50%,通常tams在肿瘤中大量浸润被认为是肿瘤患者预后不良的重要标志。tams不但直接抑制效应t细胞发挥杀伤作用,协同促进肿瘤免疫抑制性微环境,还通过促进肿瘤内血管形成,多环节促进肿瘤细胞生长和转移。一般认为,tams中具有抑制肿瘤作用的为偏m1型巨噬细胞,而偏m2型巨噬细胞具有促瘤作用。集落刺激因子1受体(csf-1r)表达于巨噬细胞,对肿瘤相关巨噬细胞(tams)趋向m2极化表型分化、维持、存活、增殖至关重要。因此,靶向csf-1r轴线,抑制tam偏m2促瘤表型、重塑机体免疫抑制性微环境,有效激活杀伤性t细胞,已成为重要的抗肿瘤靶向策略,在多种难治或高发肿瘤类型中如胰腺癌、肺癌、结肠癌、乳腺癌等,具有重要的应用潜质。

由日本制药企业第一三共株式会社研发的首个靶向csf-1r药物pexidartinib(plx3397,商品名:turalio)于2019年8月3日在美国上市,被批准用于罕见病腱鞘巨细胞瘤(tgct)成人患者的治疗。然而该药物毒副作用较大,药物标签中附有黑框警告,提示该药物具有严重和潜在致命肝损伤风险。可见,安全有效的靶向csf-1r、用于高发性实体瘤的药物研发尚未取得成功。因此,有必要进一步研究以满足临床需求。

wo2017140269a1公开了通式(a)的化合物,特别是具有式(i)所示结构的化合物,

这些化合物具有优异活性的fgfr抑制剂,能够直接抑制肿瘤细胞增殖。本申请发明人在研发过程中意外地发现,化合物ⅰ同时还是csf-1r激酶的强效抑制剂,能够抑制肿瘤相关巨噬细胞偏m2促瘤表型,激活cd8+t细胞,拮抗肿瘤免疫抑制性微环境,增强免疫检查点药物抗肿瘤药效,在多个鼠源细胞皮下移植瘤模型和转基因模型中体现了显著的药效。

以ctla-4抗体、抗pd-1/抗pd-l1抗体为代表的免疫检查点药物是过去十年癌症治疗中最重要的进展,这类免疫疗法能够修复抗肿瘤免疫力,从而逆转免疫逃逸,促进肿瘤细胞死亡,其适应症不断扩大,重塑了很多之前的标准治疗方法。但不可忽视的是,免疫系统可能被过度激活,而引起的免疫相关的不良事件也不断增加。据报道,高达60%接受抗ctla-4抗体yervoy治疗的患者会发生免疫相关的不良事件,其中,10-30%属于严重(3-4级)免疫相关的不良事件,并且具有剂量依赖性;约10%接受抗pd-1抗体治疗的患者会发生≥3级的免疫相关的不良事件,包括疲劳、头痛、关节痛、皮疹、瘙痒、肺炎、腹泻和/或结肠炎、肝炎和内分泌疾病等;抗ctla-4抗体与抗pd-1抗体的联合用药增加免疫相关的不良事件的发生率和严重程度;部分接受抗pd-l1抗体bavencio治疗的患者出现了输液相关反应,严重程度主要为1-3级。通常这些不良反应与剂量是相关的,降低剂量可以降低或减轻不良反应,但同时也往往造成抗肿瘤效果的降低。如何增强免疫检查点药物的抗肿瘤效果或者使其在低剂量条件下发挥抗肿瘤作用是亟待解决的技术问题。



技术实现要素:

本发明提供了通式(a)的化合物或其药学上可接受的盐在制备csf-1r抑制剂药物中的用途,

其中,x选自下组:ch或n;

环a可选自取代或未取代的6-10元芳基、取代或未取代的5-12元杂芳基,其中,所述的取代指基团上的一个或多个氢原子被选自下组的取代基取代:c1-c8烷基、c1-c8烷氧基、c1-c8烷氨基、卤素、卤代c1-c8烷基;

r1选自-conhr3、-coor3;

r2选自下组:取代或未取代的c1-c8烷基、取代或未取代的c1-c8烷氧基、取代或未取代的4-10元杂环基,取代或未取代的氨基,取代或未取代的c1-c8烷氨基,-nhcor3;其中,所述的取代指基团进一步被一个或多个选自下组的取代基取代:c1-c8烷基,羟基,羟基c1-c8烷基,-coor3,氨基取代的c3-c10环烷基,未取代或被一个或多个卤素原子、羟基或c1-c8烷基取代的4-10元杂环烷基;

r3选自氢、c1-c8烷基,c2-c10烯基。

在一个实施方案中,在所述的通式(a)化合物中,环a选自取代或未取代的6-10元芳基、取代或未取代的5-10元杂芳基。

在一个实施方案中,在所述的通式(a)化合物中,环a选自取代或未取代的6-10元芳基、取代或未取代的5-6元杂芳基。

在一个实施方案中,在所述的通式(a)化合物中,环a选自取代或未取代的以下基团:苯环、萘环、吡啶环、吡嗪环、噻吩环、呋喃环、咪唑环、吡咯环、噁唑环、噻唑环、吡唑环、吲哚环、嘧啶环、苯并呋喃环、苯并噻唑环、苯并咪唑环、喹啉环、异喹啉环。

在一个实施方案中,在所述的通式(a)化合物中,环a选自下组:取代或未取代的苯环、取代或未取代噻唑环、取代或未取代的噁唑环、取代或未取代的嘧啶环。

在一个实施方案中,所述的通式(a)化合物中,r2选自下组:取代或未取代的c1-c4烷基、取代或未取代的c1-c4烷氧基、取代或未取代的5-6元杂环基,取代或未取代的氨基,取代或未取代的c1-c4烷氨基,-nhcor3;其中,所述的取代指基团进一步被一个或多个选自下组的取代基取代:c1-c8烷基,羟基,羟基c1-c8烷基,-coor3,氨基取代的c3-c10环烷基,未取代或被一个或多个卤素原子、羟基或c1-c8烷基取代的4-10元杂环烷基。

在一个实施方案中,在所述的通式(a)化合物中,r3选自氢、c1-c6烷基,c2-c6烯基。

在一个实施方案中,在所述的通式(a)化合物中,r3选自氢、c1-c4烷基,c2-c4烯基。

在一个实施方案中,在所述的通式(a)化合物中,r3选自氢、甲基、乙烯基。

在一个实施方案中,在所述的通式(a)化合物优选为如下式(i)所示的化合物(本发明上下文中也称为化合物i):

本发明提供了所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐在制备治疗csf-1r激酶信号转导通路相关疾病的药物中的用途。

本发明所述的csf-1r激酶信号转导通路相关疾病,包括癌症或肿瘤、超常增生、免疫病症、炎症等,优选癌症或肿瘤。本发明所述的癌症或肿瘤优选csf-1/csf-1r依赖性癌症或肿瘤、tams富集性肿瘤。优选地,所述csf-1/csf-1r依赖性癌症或肿瘤包括csf-1/csf-1r依赖性白血病、腱鞘巨细胞瘤等。优选地,tams富集性肿瘤包括但不仅限于结肠癌或结直肠癌。

另一方面,本发明提供上述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐在制备调节免疫的药物中的用途,所述调节免疫优选为增强免疫。所述增强免疫可以为例如改善肿瘤免疫抑制状态。所述改善肿瘤免疫抑制状态优选为抑制偏m2型巨噬细胞的存活,逆转巨噬细胞偏m2型极化表型以及巨噬细胞偏m2型极化表型对cd8+t细胞的抑制作用,重塑机体免疫抑制性微环境。

另一方面,本发明提供上述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐在制备抑制偏m2型极化表型的巨噬细胞增殖的药物中的用途。

另一方面,本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐在制备治疗或抑制肿瘤的药物中的用途,优选所述肿瘤对免疫检查点药物不敏感。所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体等,所述肿瘤包括但不限于结肠癌、结直肠癌。

另一方面,本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐在制备增强免疫检查点药物的抗肿瘤药效的药物中的用途,其中,所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体。

另一方面,本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐和免疫检查点药物联合在制备抗肿瘤药物中的用途,其中,所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体。

另一方面,本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐在制备和免疫检查点药物联合抗肿瘤的药物中的用途,其中,所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体。

进一步地,在上述用途中,所述药物含有治疗有效量的通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐,以及任选的,药学上可接受的赋形剂或载体。

本发明药物的施用方式没有特别限制,代表性的施用方式包括但并不限于:口服、瘤内、直肠、肠胃外(静脉内、肌肉内或皮下)和局部给药。相应地,本发明药物可制成临床上可接受的各种剂型,包括口服剂型、注射剂型、局部给药剂型或外用剂型等。

优选地,本发明的通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐在临床上可以单独使用,也可以与其他治疗组分联合使用。所述其他治疗组分选自抗肿瘤药物或免疫调节剂,例如,可以与免疫检查点药物联合使用,所述免疫检查点药包括抗pd-1抗体、抗pd-l1抗体等。为方便临床使用,本发明的化合物i或其药学上可接受的盐可以与其它治疗组分联合制备复方药物。所述的其它治疗组分优选抗肿瘤药物或免疫调节剂,例如免疫检查点药物,所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体等。

本发明还提供一种药物组合物,其包含所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐和免疫检查点药物。所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体等。

本发明还提供所述药物的使用方法,其包括以下步骤:将治疗有效量的本发明化合物ⅰ或其药学上可接受的盐施用于需要治疗的哺乳动物(如人)。

本发明提供了一种治疗csf-1r激酶信号转导通路相关疾病的方法,其包括以下步骤:将治疗有效量的本发明通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐施用于需要治疗所述疾病的哺乳动物(如人)。本发明所述的csf-1r激酶信号转导通路相关疾病,包括癌症或肿瘤、超常增生、免疫病症、炎症等,优选癌症或肿瘤。上述癌症或肿瘤优选csf-1/csf-1r依赖性癌症或肿瘤、tams富集性肿瘤。所述csf-1/csf-1r依赖性癌症或肿瘤包括csf-1/csf-1r依赖性白血病、腱鞘巨细胞瘤等;tams富集性肿瘤包括但不仅限于结肠癌或结直肠癌。

本发明还提供了一种调节免疫的方法,其包括以下步骤:将治疗有效量的本发明的通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐施用于需要调节免疫的哺乳动物(如人)。所述调节免疫优选为增强免疫,所述增强免疫可以为例如改善肿瘤免疫抑制状态。所述改善肿瘤免疫抑制状态优选为抑制偏m2型巨噬细胞的存活,逆转巨噬细胞偏m2型极化表型以及巨噬细胞偏m2型极化表型对cd8+t细胞的抑制作用,重塑机体免疫抑制性微环境。

本发明还提供一种治疗或抑制肿瘤的方法,优选所述肿瘤对免疫检查点药物不敏感,其包括以下步骤:将治疗有效量的本发明的通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐施用于需要治疗或抑制肿瘤的哺乳动物(如人)。所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体等,所述肿瘤包括但不限于结肠癌、结直肠癌。

本发明还提供了一种增强免疫检查点药物的抗肿瘤药效的方法,其包括以下步骤:将本发明的通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐与免疫检查点药物联合施用于需要治疗或抑制肿瘤的哺乳动物(如人)。所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体等。

本发明还提供一种治疗或抑制肿瘤的方法,其包括以下步骤:将治疗有效量的本发明的通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐以及免疫检查点药物联合施用于需要治疗或抑制肿瘤的哺乳动物(如人)。所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体等,所述肿瘤包括但不限于结肠癌、结直肠癌。

本发明所述的治疗有效量是指药学上认为的有效给药剂量,即活性化合物(即通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐)的量足以明显改善病情,而不至于产生严重的副作用。对于60kg体重的人而言,通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐日给药剂量通常为0.01~2000mg,优选0.5-500mg或者1~500mg,或者0.5-250mg,或者0.5-200mg,或者0.5-150mg,或者0.5-100mg,或者0.5-50mg,或者0.5-40mg,或者0.5-30mg,最优选0.5-25mg。示例性的有效给药剂量例如0.5mg、0.75mg、0.87mg、1mg、1.25mg、1.5mg、1.75mg、2mg、2.5mg、2.75mg、3mg、3.25mg、3.5mg、3.75mg、4mg、4.25mg、4.5mg、4.75mg、5mg、5.25mg、5.5mg、5.75mg、6mg、6.25mg、6.5mg、6.75mg、7mg、7.25mg、7.5mg、7.75mg、7.87mg、8mg、8.25mg、8.5mg、8.75mg、9mg、9.25mg、9.5mg、9.75mg、10mg、10.5mg、11mg、12mg、13mg、14mg、15mg、16mg、17mg、18mg、19mg、20mg、22mg、25mg。优选地,上述日给药剂量以通式(a)化合物,特别是化合物i计。可以每日一次单剂量施用,可以每天分多次施用,也可以间隔使用。抗pd-1抗体、抗pd-l1抗体的给药剂量根据具体的抗体种类以及癌症类型和发展阶段等情况而定,每次给药剂量可以是0.5mg/kg-30mg/kg,优选1-20mg/kg;例如,对于60kg体重的人而言,每次给药剂量通常可以为1mg-1800mg,例如50mg-1200mg,或者100mg-900mg,150mg-600mg或200mg-500mg;示例性的每次给药剂量例如60mg、100mg、120mg、150mg、180mg、210mg、240mg、270mg、300mg、330mg、360mg、400mg、500mg、600mg、900mg、1200mg等;间隔给药,给药频率例如每3-7天给药1次或者每1-6周给药1次,例如每3天给药1次,每5天给药1次,每1周给药1次,每10天给药1次,每2周给药1次,每3周给药1次,每4周给药1次;每6周给药1次等。具体剂量和给药频率应考虑给药途径、病人健康状况等因素,这些都是熟练医师根据常规技能可以确定的。所述施用方式没有特别限制,代表性的施用方式包括但并不限于:口服、瘤内、直肠、肠胃外(静脉内、肌肉内或皮下)和局部给药。

本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐,其用作csf-1r抑制剂。

本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐,其用于治疗csf-1r激酶信号转导通路相关疾病,包括癌症或肿瘤、超常增生、免疫病症、炎症等,优选癌症或肿瘤。本发明所述的癌症或肿瘤优选csf-1/csf-1r依赖性癌症或肿瘤、tams富集性肿瘤。优选地,所述csf-1/csf-1r依赖性癌症或肿瘤包括csf-1/csf-1r依赖性白血病、腱鞘巨细胞瘤等。优选地,tams富集性肿瘤包括但不仅限于结肠癌或结直肠癌。

本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐,其用于调节机体的免疫,所述调节机体的免疫优选增强免疫。所述增强免疫可以为例如改善肿瘤免疫抑制状态。所述改善肿瘤免疫抑制状态优选抑制偏m2型巨噬细胞的存活,逆转巨噬细胞偏m2型极化表型以及巨噬细胞偏m2型极化表型对cd8+t细胞的抑制作用,重塑机体免疫抑制性微环境。

本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐,其用于抑制偏m2型极化表型的巨噬细胞增殖。

本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐,其用于治疗或抑制肿瘤,优选所述肿瘤对免疫检查点药物不敏感。所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体等,所述肿瘤包括但不限于结肠癌、结直肠癌。

本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐,其用于增强免疫检查点药物的抗肿瘤药效,其中所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体。

本发明还提供所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐,其与免疫检查点药物联合使用,用于在哺乳动物(如人)中治疗或抑制肿瘤。所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体等。

另一方面,本发明还提供一种药物组合物,所述组合物包含所述通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐和免疫检查点药物,其用于在哺乳动物(如人)中治疗或抑制肿瘤,所述免疫检查点药物优选抗pd-1抗体、抗pd-l1抗体。

在本发明的上下文中,所述的csf-1/csf-1r依赖性癌症或肿瘤是指csf-1/csf-1r高表达或高度活化的癌症或肿瘤。所述csf-1/csf-1r高表达或高度活化,是指本领域技术人员使用本领域的常规检测方法(包括但不限于酶联免疫、免疫组化、流式细胞术、westernblotting、组织芯片、基因检测等方法)检测癌症或肿瘤的组织和/或细胞中csf-1/csf-1r的表达水平或活化水平,其表达水平或活化水平为正常水平的130%以上,优选150%以上,优选175%以上,优选200%以上,优选250%以上,或优选300%以上。所述正常水平,可以是普通人群相应的组织和/或细胞中csf-1/csf-1r的表达水平或活化水平,也可以是同一患者的癌周组织和/或细胞中csf-1/csf-1r的表达水平或活化水平。

在本发明的上下文中,所述的tams富集性肿瘤是指肿瘤组织中tams浸润丰富的肿瘤,本领域技术人员使用本领域的常规检测方法(包括但不限于酶联免疫、免疫组化、流式细胞术、westernblotting、组织芯片、基因检测等方法)检测tams的表面标记物或进行tams计数,肿瘤组织中tams的表面标记物表达水平与癌周组织中相应表面标记物表达水平有差异,或者tams计数为癌周组织的130%以上,优选150%以上,优选175%以上,优选200%以上,优选250%以上,或优选300%以上,可以认定为tams浸润丰富,所述肿瘤可以被认定为tams富集性肿瘤。所述的tams的表面标记物包括但不仅限于一般性tams表面标记物、促瘤巨噬细胞的表面标记物、抑瘤巨噬细胞的表面标记物。所述一般性tams表面标记物包括但不仅限于cd14、cd11c、cd68和/或cd11b等,优选cd68和/或cd11b。所述促瘤巨噬细胞的表面标记物包括但不仅限于csf1r、csf1、cd115、cd206、pparg、arg1、cd163、cd301、dectin-1、pdl2、fizz1、cd204、pd-l1、arginase-i、ym1、mgl2、osteopontin、mmps或ccr2等,优选cd206。所述抑瘤巨噬细胞的表面标记物包括但不仅限于il1a、il1b、il6、nos2、tlr2、tlr4、cd80、cd86、mhc-ii、cd38、cd40、cd64、hla-dr(cd74)或cd169等,优选cd86和/或mhc-ii。所述表面标记物表达水平有差异是指,当所述表面标记物是一般性tams的表面标记物时,肿瘤组织中所述的表面标记物表达水平为癌周组织中相应表面标记物表达水平的130%以上,优选150%以上,优选200%以上;当所述表面标记物是促瘤巨噬细胞的表面标记物(例如cd206等)时,肿瘤组织中所述的表面标记物表达水平为癌周组织中相应表面标记物表达水平的130%以上,优选150%以上,优选200%以上;优选,当所述表面标记物还包括抑瘤巨噬细胞的表面标记物(例如cd86和/或mhc-ii等)时,肿瘤组织中所述的抑瘤巨噬细胞的表面标记物表达水平为癌周组织中相应表面标记物表达水平的80%以下,优选50%以下。

在本发明的上下文中,所述的肿瘤对免疫检查点药物不敏感,是指所述肿瘤在使用常规剂量的免疫检查点药物治疗时,肿瘤抑制率低于50%;优选在使用常规用量范围下限剂量的免疫检查点药物治疗时,肿瘤抑制率低于30%,优选低于20%,更优选低于10%。在本发明的一种实施方式中,所述肿瘤抑制率以肿瘤体积抑制率tgi(%)表示,计算公式为:tgi(%)=100×{1-[(vtreatedfinalday-vtreatedday0)/(vcontrolfinalday-vcontrolday0)],其中v为肿瘤体积,计算公式为:v=1/2×a×b2,其中a、b分别为肿瘤的长度与宽度。

在本发明的上下文中,所述抗pd-1抗体例如cd279、纳武利尤单抗(nivolumab)、帕博利珠单抗(pembrolizumab)、特瑞普利单抗、信迪利单抗、卡瑞利珠单抗、替雷利珠单抗等。所述抗pd-l1抗体例如cd274、度伐利尤单抗(durvalumab)、阿替利珠单抗(atezolizumab)等。

本发明所述的数值或数值范围,可以在本领域可接受的范围内上下浮动,例如在所述数值或数值范围的基础上±10%,或者±9%,或者±8%,或者±7%,或者±6%,或者±5%,或者±4%,或者±3%,或者±2%,或者±1%。

在本发明的上下文中,所述的通式(a)化合物或其药学上可接受的盐,特别是化合物i或其药学上可接受的盐没有特别的限制,优选包括:无机酸盐、有机酸盐、烷基磺酸盐和芳基磺酸盐;所述无机酸盐包括盐酸盐、氢溴酸盐、硝酸盐、硫酸盐、磷酸盐等;所述有机酸盐包括甲酸盐、乙酸盐、丙酸盐、苯甲酸盐、马来酸盐、富马酸盐、琥珀酸盐、酒石酸盐、柠檬酸盐等;所述烷基磺酸盐包括甲基磺酸盐、乙基磺酸盐等;所述芳基磺酸盐包括苯磺酸盐、对甲苯磺酸盐等。

在本发明的上下文中,术语“杂环基”是具有1、2、3、4或5个选自下组的杂原子的环状基团:o、n或s。

在本文中,所述的烷基优选为脂肪族烷基,可以是直链烷基、支链烷基、螺环烷基、桥环烷基、烯烷基、炔烷基、环烷基、环烯基、环炔基、烷氧烷基、烷氧酰基烷基、环烷基烷基,非限制性地包括:甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、环丙烷基、环丁烷基、环戊烷基、环己烷基、烯丙基、炔丙基、环丁烯基、环己烯基;形如“c1-c8”的表述意在包括具有1个、2个、3个、4个、5个、6个、7个或8个碳原子的相应基团,例如,“c1-c8烷基”指具有1个、2个、3个、4个、5个、6个、7个或8个碳原子的烷基,“c2-c10烯基”指具有2个、3个、4个、5个、6个、7个、8个、9个或10个碳原子的烯基。

在本文中,所述烯基优选为乙烯基、丙烯基、丁烯基、苯乙烯基、苯丙烯基,或类似基团。

在本文中,所述环烷基可以为饱和或者部分不饱和单环或多环环状烃取代基,其中包括3至20个碳原子,优选包括3至12个碳原子,更优选环烷基包含3至10个碳原子。单环环烷基非限制实施例包含环丙基、环丁基、环戊烯基、环己基、环辛基等;多环环烷基包括螺环、稠环和桥环的环烷基。

所述杂环基指饱和或部分饱和单环或者多环的环状取代基,其中包括4至10元杂环基,且所述的杂环基为其中含有一个或多个杂原子(氮、氧、硫)的饱和或者非饱和的单环、并环、螺环、稠环、桥环等。本文中所述的杂环基包括,但不局限于选自下组的基团:吗啉环,哌啶环,哌嗪环,n-烷基或酰基取代的哌嗪环,高哌嗪环,n-烷基或酰基取代的高哌嗪环,吡咯,四氢吡咯,7h-嘌呤等。

所述芳基指6至10元全碳单环或稠合多环(也就是共享毗邻碳原子对的环)基团,且所述的基团具有共轭的π电子体系,例如苯基和萘基。所述芳基环可以与杂环基、杂芳基或环烷基环稠合,非限制性实施例含苯并咪唑、苯并噻唑、苯并恶唑、苯并异恶唑、苯并吡唑、喹啉、苯并吲哚、苯并二氢呋喃。

所述杂芳基指包含1至4个杂原子,5至14个环原子的杂芳族体系,其中杂原子包括氧、硫和氮。杂芳基优选为是5元或6元,例如呋喃基、噻吩基、吡啶基、吡咯基、n-烷基吡咯基、嘧啶基、吡嗪基、咪唑基、四唑基等。所述的杂芳基可以稠合于芳基、杂环基或者环烷基环上,其中与母体结构连接在一起的环为杂芳基环。

除非特别说明,本发明所描述的结构式意在包括所有的互变异构、光学异构和立体异构形式(如对映异构体、非对映异构体,几何异构体或构象异构体):例如含有不对称中心的r、s构型,双键的(z)、(e)异构体和(z)、(e)的构象异构体。因此本发明的化合物的单个立体化学异构体、互变异构体或其对映异构体、非对映异构体或几何异构体或构象异构体或互变异构体的混合物都属于本发明的范围。

术语“互变异构体”表示具有不同能量的结构同分异构体可以超过低能垒,从而互相转化。比如,质子互变异构体(即质子移变)包括通过质子迁移进行互变,如1h-吲唑与2h-吲唑、1h-苯并[d]咪唑与3h-苯并[d]咪唑,化合价互变异构体包括通过一些成键电子重组而进行互变。

体内、体外研究显示,(1)本发明化合物i在体外能显著抑制csf-1r激酶活性。(2)本发明所述化合物i能够显著抑制csf-1/csf-1r驱动的小鼠骨髓性白血病细胞株增殖,效果优于上市药物pexidartinib,提示化合物i或其药学上可接受的盐可用于治疗csf-1/csf-1r依赖性疾病,例如csf-1/csf-1r依赖性白血病、腱鞘巨噬细胞瘤等。(3)本发明化合物i能够在体外抑制csf-1诱导的巨噬细胞的存活、逆转巨噬细胞偏m2极化表型,效果优于上市药物pexidartinib。在tams富集性肿瘤模型(mc38模型)中,化合物i显著减少了偏m2型tams浸润,逆转偏m2型巨噬细胞对cd8+t细胞的抑制作用,拮抗肿瘤免疫抑制性微环境,体现了显著抗肿瘤的药效。(4)针对ct-26移植瘤模型,单用anti-pd-1抗体(10mg/kg,每隔三天口服给药一次)时,肿瘤抑制率仅6.7%;单用化合物i5mg/kg(每天口服给药一次)的肿瘤抑制率45.8%,在使用anti-pd-1抗体(10mg/kg,每隔三天口服给药一次)的基础上联合化合物i以每天一次5mg/kg的剂量给药,抑瘤率可达80.8%。提示化合物i不仅对于免疫检查点药物不敏感的肿瘤有抑制作用,并且与免疫检查点药物联用能体现出显著的协同功效。

研究结果表明,本发明所述的化合物i或其药学上可接受的盐可以通过重塑肿瘤微环境,改善肿瘤免疫抑制状态,发挥抗肿瘤治疗作用,并能增强免疫检查点药物的抗肿瘤功效,具有很好的临床应用前景。

附图说明

图1:化合物i逆转鼠源bmdm偏m2极化表型。其中a:化合物i下调m2型巨噬细胞的表面标记cd206的表达,抑制偏m2型巨噬细胞极化表型;b:化合物i增强m1型巨噬细胞的表面标记cd86的表达;c:化合物i增强m1型巨噬细胞的表面标记mhc-ii的表达,促进偏m1型巨噬细胞极化表型。

图2:化合物i逆转csf-1诱导的bmdm对cd8+t细胞的增殖抑制作用,逆转csf-1诱导的bmdm对cd8+t细胞活化的抑制作用。其中a:化合物i解除csf-1诱导的bmdm对cd8+t细胞的增殖抑制作用;b:代表性流式结果示意图;c:化合物i解除csf-1诱导的bmdm对cd8+t细胞granzymeb表达的抑制作用;d:化合物i解除csf-1诱导的bmdm对cd8+t细胞ifnγ表达的抑制作用。

图3:化合物i重塑结肠癌mc38小鼠移植瘤模型中免疫细胞浸润。其中:a:化合物i显著抑制tam的浸润;b:化合物i下调tam中cd206+的巨噬细胞的比例;c:化合物i抑制treg细胞的浸润;d:化合物i对cd8+t细胞浸润的影响;e:化合物i增强了cd8+t中granzymeb+t细胞的浸润;f:化合物i对ifnγ+cd8+t细胞浸润的影响。

图4:化合物i对小鼠皮下移植瘤mc38的生长抑制作用。

图5:化合物i增强anti-pd-1抗体抑制ct-26小鼠皮下移植瘤生长的作用。

具体实施方式

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。

实施例1:化合物i对csf-1r激酶活性的影响

1.试验方法z′-lytetmkinaseassay

参照z′-lytetmkinaseassaykit(pv3190,thermofisher)说明书进行检测,具体步骤如下:z′-lytetmtyrosine1peptidesubstrate,phospho-peptide,5xkinasebuffer,atp,developmentreagentb,developmentbuffer,stopreagent所有试剂平衡至室温后依次加样。检测不同浓度化合物对csf-1r激酶(pr4598a,thermofisher)活性的影响,每个浓度取复孔,使用4%的dmso作为共溶剂。反应完成后,向所有反应孔中加入5μl经developmentbuffer稀释(1:256)的developmentreagentb,室温反应1h后,向所有反应孔中加入5μlstopreagent终止反应,用synergy2microplatereader检测荧光信号(激发光波长为400nm,发射光波长为445nm、520nm)。

通过全活性孔和对照信号孔计算出每个孔的抑制率,数据分析方法如下:

荧光强度比=“供体”荧光分子香豆素荧光强度(445nm)和“受体”荧光分子荧光素荧光强度(520nm)的比率(s445/s520)

c100%=100%磷酸化对照孔“供体”荧光分子香豆素平均荧光强度

c0%=0%磷酸化对照孔“供体”荧光分子香豆素平均荧光强度

f100%=100%磷酸化对照孔“受体”荧光分子荧光素平均荧光强度

f0%=0%磷酸化对照孔“受体”荧光分子荧光素平均荧光强度

2.实验结果

化合物i抑制csf-1r激酶的ic50为15.0±3.2nm,与上市药物pexidartinib(plx3397)相当。说明化合物i可以抑制csf-1r激酶的活性,因此,可用作csf-1r激酶抑制剂,提示其可能对csf-1/csf-1r依赖性癌症或肿瘤具有抑制作用。

csf-1r激酶抑制剂pexidartinib(plx3397,商品名:turalio)于2019年8月3日在美国上市,被批准用于罕见病腱鞘巨细胞瘤(tgct)成人患者的治疗。化合物i抑制csf-1r的活性与pexidartinib相当,提示化合物i可能具有治疗腱鞘巨细胞瘤(tgct)的作用。

同时,csf-1r激酶也是肿瘤相关巨噬细胞的重要靶标。化合物i对于csf-1r激酶活性具有明显的抑制作用,提示其还具有重塑肿瘤微环境、拮抗肿瘤的潜质。

表1化合物i对csf-1r激酶活性的作用

注:a化合物iic50值独立重复三次,bplx3397ic50值独立重复两次,以平均值±sd表示。

实施例2:化合物i对csf-1r介导的细胞增殖和原代巨噬细胞存活的影响

1.试验方法

1.1对csf-1r高度活化的小鼠骨髓性白血病细胞m-nfs-60增殖的影响

处于对数生长期的csf-1r高度活化的小鼠骨髓性白血病细胞株m-nfs-60细胞按合适密度接种至96孔培养板中(m-nfs-60细胞的培养基中含62ng/ml人重组巨噬细胞集落刺激因子(m-csf)),每孔90μl,培养过夜后,加入不同浓度的化合物作用72小时,并设定溶剂对照组(阴性对照)。待化合物作用细胞72小时后,每孔加入10μlcck-8试剂,置于37℃培养箱中放置2-4小时后,用全波长式微孔板酶标仪读数,测定波长为450nm。

1.2对csf-1诱导的鼠源巨噬细胞存活的影响

将balb/c小鼠(雌性,6周龄,健康)处死,从其股骨和胫骨取其骨髓细胞,裂红处理后按合适密度接种至96孔培养板中,每孔90μl,每孔按100ng/ml加入csf-1因子诱导巨噬细胞(bonemarrow-derivedmacrophages,bmdm),同时加入不同浓度的化合物作用7天,并设定溶剂对照组(阴性对照)。待化合物作用细胞7天后,每孔加入10μlcck-8试剂,置于37℃培养箱中放置2-4小时后,用全波长式微孔板酶标仪读数,测定波长为450nm。

1.3对csf-1诱导的人源巨噬细胞存活的影响

将冻存的人源外周血(来自健康人的外周血)单个核细胞(peripheralbloodmononuclearcell,pbmc)从液氮中取出复苏,复苏后用runningbuffer按每毫升5000万细胞重悬,按终浓度100μg/ml加入dna酶i,室温15分钟。300g离心5min后,倒掉上清,再次用runningbuffer按每毫升5000万细胞重悬后,过70μm的滤网滤至流式管中,使用stemcell公司的cd14+单核细胞负选磁珠分选试剂盒分选,按其说明书具体实验步骤如下:

将细胞按每毫升5000万重悬细胞后,每ml样品加入50μl的cocktail,室温孵育5min,将磁珠涡旋30sec,加入样品中,再次孵育5min,将样品体积补足至2.5ml,置于磁力架上(stemcell,#18000),放置2.5min,将上清倒入离心管中,使用300g,5min离心,用1640培养液重悬细胞至合适体积,根据实验不同需求在细胞悬液中加入100ng/ml的csf-1因子,按一定密度种于96孔板中,每孔加入90μl,待细胞状态稳定后,加入不同浓度的化合物作用7天,同时设置空白溶剂对照组。待作用完后,按每孔10μlcck-8试剂加入96孔板中,置于37℃培养箱中放置2-4小时后,用可调波长式微孔板酶标仪读数,选用450nm为测定波长。

2.实验结果

化合物i剂量依赖性的抑制了csf-1介导的m-nfs-60的细胞增殖,其增殖抑制的ic50为1.2±0.5nm。

化合物i剂量依赖性的抑制了由csf-1诱导的巨噬细胞的存活,其鼠源巨噬细胞存活抑制的ic50为10.2±0.8nm,其人源巨噬细胞存活抑制的ic50为30.5±5.1nm。

值得注意的是,虽然本发明化合物i对csf-1r激酶活性的抑制作用与上市药物pexidartinib(plx3397)相当,但在细胞试验中,化合物i对csf-1r高度活化的白血病细胞m-nfs-60以及csf-1诱导的巨噬细胞存活都表现出更有效抑制作用,ic50仅为plx3397的约1/5-1/50,大大超出了本领域技术人员的预期。提示,化合物i有更好的细胞活性,用于临床可能将取得比pexidartinib(plx3397)更优的疗效。

表2化合物i抑制各细胞株细胞增殖和存活的ic50

注:化合物i和plx3397分别作用于m-nfs-60细胞3天,对细胞增殖抑制的ic50独立重复三次,以平均值±sd表示。化合物i和plx3397分别作用于bmdm和pbmc细胞7天,对细胞存活抑制的ic50独立重复两次,以平均值±sd表示。

实施例3:化合物i逆转巨噬细胞偏m2型极化表型

1.试验方法

将balb/c小鼠(雌性,6周龄,健康)处死,从其股骨和胫骨取其骨髓细胞,裂红处理后按合适密度接种至6孔培养板中,每孔2ml,每孔按100ng/ml加入csf-1因子诱导巨噬细胞(bonemarrow-derivedmacrophages,bmdm)。诱导7天后,更换细胞培养液,加入同上浓度的csf-1因子,并同时用10ng/ml的il4以及10ng/ml的il13诱导巨噬细胞m2型极化。在诱导极化的同时,加入适合浓度化合物及阴性对照孔,48h后,收取细胞进行流式分析。

将状态良好细胞收集起来,首先用pbs洗两遍,洗完后,每个样品使用100μl的pbs重悬并加入0.5μl已按说明书配置好的区分死活细胞的荧光抗体,在4℃下避光染30分钟。30分钟后,用1mlrunningbuffer洗两遍,4℃300g离心5min。使用runningbuffer按每100μl加入2μl的封闭抗体trustainfcxtm(anti-mousecd16/32)配置封闭抗体稀释液,按每个样品100μl的体系加入,封闭10分后,按抗体说明书将表面蛋白对应的荧光抗体加入样品中,在4℃放置30分钟,此步设置单染管及fmo管,之后同样用1ml的runningbuffer洗涤两次,每次4℃300g离心5min。

如果只考察表面蛋白,在离心后用300μl的pbs重悬,立即进行上机操作或用4%多聚甲醛重悬固定15分钟后,500g离心7min,弃去上清,用pbs重悬,待上机。

如果同时需要考察胞内因子,在离心后弃去上清时剩余100μl重悬样品,再使用intracellularfixation&permeabilizationbufferset中的icfixationsolution按100μl加入每个样品,置于4℃固定30分钟,结束后,500g离心7min,用三蒸水将10×的permeabilizationbuffer配置成1×的破膜液,离心后,按每个样品2ml1×的破膜液加入重悬样品,并于500g离心7min,重复两遍,用1×的破膜液按抗体说明书推荐配置胞内所染荧光抗体,按每孔100μl的体系重悬细胞,置于4℃,染色30分钟,此步设置单染管及fmo管,之后于500g离心7min,并用2ml的1×的破膜液洗两次,最后用300μl的pbs重悬,待上机。

2.实验结果

实验结果显示,在小鼠来源的bmdm实验体系中,化合物i在剂量25nm、50nm、100nm均能够显著抑制m2型巨噬细胞的表面标记cd206分子的表达水平(图1a),与此同时,化合物i能够明显增强m1型巨噬细胞的表面标记cd86和mhc-ii分子的表达(图1b、1c),提示化合物i能够逆转由il4、il13诱导的偏m2型巨噬细胞的分化,下调偏m2型巨噬细胞比例,上调偏m1型巨噬细胞的浸润。

实施例4:化合物i逆转巨噬细胞对cd8+t细胞抑制作用

1.试验方法

从balb/c小鼠(雌性,6周龄,健康)中分离出完整的脾,将脾在runningbuffer中磨碎后,300g,5min离心,然后将细胞放入红细胞裂解液中裂红。得到脾细胞后用pbs洗两遍,每次300g,5min离心,然后将细胞重悬至2000万/ml,加入终浓度为5mm的cfse,染色15分钟后,加入9倍体积的pbs,在400g的速度下离心5min,再用10ml正常培养液洗一次,在最终得到的脾细胞中加入αcd3/αcd28及il-2刺激,留取不加因子的细胞做为阴性对照,留取加因子的细胞做为阳性对照,其他细胞与用化合物及溶剂对照预处理过的csf-1诱导的bmdm(10万/孔)进行共培养,将预处理的bmdm与全脾细胞按1:30比例共培养,加入αcd3/αcd28/il2激活t细胞,共培养72h。72h后,按1:500的比例加入ebiosciencetmcellstimulationcocktail(plusproteintransportinhibitors)(500x),作用4h后,收集脾细胞并通过流式细胞术分析cd8+t细胞亚群的增殖和活化cd8+t细胞(ifnγ+cd8+t、granzymeb+cd8+t)的比例。

2.实验结果

结果显示,加入αcd3/αcd28/il2能够激活cd8+t细胞的增殖,加入csf-1诱导的bmdm后,这种增殖作用受到显著抑制。csf-1诱导的bmdm与化合物i预孵育后,能够解除上述增殖抑制作用(图2a、2b),与溶剂对照组相比,cd8+t增殖明显上升。

活化的cd8+t细胞高表达ifnγ和颗粒酶素b(granzymeb)。ifnγ+cd8+t和granzymeb+cd8+t细胞的比例检测结果显示,相较于溶剂对照组,化合物i预处理的bmdm与cd8+t细胞共培养体系中,颗粒酶素b和ifnγ阳性的cd8+t比例明显升高(图2c、2d),表明化合物i解除csf-1诱导的bmdm对活化的cd8+t细胞的抑制作用。

实施例5:化合物i对结直肠癌mc38移植瘤模型中免疫微环境的影响

1.试验方法

将状态良好的mc38细胞重悬至每毫升2500万个细胞,按每只小鼠200μl细胞悬液接种于小鼠右侧腋窝皮下,肿瘤细胞在小鼠体内形成皮下移植瘤并长至平均约100mm3左右时,将小鼠随机分配至给药组及对照组。待测化合物按所需浓度配置,并用相应等量溶剂做为溶剂对照,经口服给药,每天给药一次,连续给药24天。

(1)肿瘤组织免疫细胞亚群扫描实验:

给药期间,每2-4天测量一次小鼠移植瘤体积,并对小鼠体重进行称量。当mc38皮下移植瘤的溶剂对照组生长至700-800mm3时,停止实验,将取下的新鲜的瘤子用剪刀剪碎至不大于2mm3,按说明书配置tumordissociationkit中的消化酶,用2.5ml配置好的酶溶液重悬肿瘤组织团块,并放入gentlemacstmdissociator仪器中选用相应的程序进行瘤子的解离,待结束后,将悬液用70μm滤网过滤,获得细胞悬液,使用裂红液进行裂红10分钟,300g离心5min,用pbs重悬,计数后,取出所需细胞数,首先用pbs洗两遍,洗完后,每个样品使用100μl的pbs重悬并加入0.5μl已按按说明书配置好的区分死活细胞的荧光抗体,在4℃下避光染30分钟。30分钟后,用1mlrunningbuffer洗两遍,4℃300g离心5min。使用runningbuffer按每100μl加入2μl的封闭抗体trustainfcxtm(anti-mousecd16/32)配置封闭抗体稀释液,按每个样品100μl的体系加入,封闭10分钟后,按抗体说明书将表面蛋白对应的荧光抗体加入样品中,在4℃放置30分钟,此步设置单染管及fmo管,之后同样用1ml的runningbuffer洗涤两次,每次4℃300g离心5min。

如果只考察表面蛋白,在离心后用300μl的pbs重悬,立即进行上机操作或用4%多聚甲醛重悬固定15分钟后,500g离心7min,弃去上清,用pbs重悬,待上机。

如果同时需要考察胞内因子,在离心后弃去上清时剩余100μl重悬样品,再使用intracellularfixation&permeabilizationbufferset中的icfixationsolution按100μl加入每个样品,置于4℃固定30分钟,结束后,500g离心7min,用三蒸水将10×的permeabilizationbuffer配置成1×的破膜液,离心后,按每个样品2ml1×的破膜液加入重悬样品,并于500g离心7min,重复两遍,用1×的破膜液按抗体说明书推荐配置胞内所染荧光抗体,按每孔100μl的体系重悬细胞,置于4℃,染色30分钟,此步设置单染管及fmo管,之后于500g离心7min,并用2ml的1×的破膜液洗两次,最后用300μl的pbs重悬,待上机。

如果同时需要染核内蛋白,则在离心后,用foxp3/transcriptionfactorstainingbufferset中的固定液固定,按200μl加入每个样品,置于4℃固定30分钟,结束后,500g离心7min,用三蒸水将10×的permeabilizationbuffer配置成1×的破膜液,离心后,按每个样品2ml1×的破膜液加入重悬样品,并于500g离心7min,重复两遍,用1×的破膜液按抗体说明书推荐配置胞内所染荧光抗体,按每孔100μl的体系重悬细胞,置于4℃,染色30分钟,此步设置单染管及fmo管,之后于500g离心7min,并用2ml的1×的破膜液洗两次,最后用300μl的pbs重悬,待上机。

(2)药效学实验:

给药期间,每2-4天测量一次小鼠移植瘤体积,并对小鼠体重进行称量,给药24天后结束实验。

肿瘤体积(tv)的计算公式如下:tv=1/2×a×b2,其中a、b分别为移植瘤长度与宽度。

抗肿瘤活性的评价指标为:肿瘤体积抑制率tgi(%),计算公式如下:tgi(%)=100×{1-[(vtreatedfinalday-vtreatedday0)/(vcontrolfinalday-vcontrolday0)]。统计学检验采用t检验处理,p≤0.05为显著差异。

2.实验结果

发明人选择结直肠癌模型中巨噬细胞浸润丰富的mc38小鼠皮下移植瘤模型考察了化合物i对肿瘤免疫微环境的影响。研究显示,杀伤性cd8+t细胞是免疫细胞中重要的执行相,杀伤t细胞在肿瘤中的浸润及杀伤能力,是抗肿瘤效应的关键因素,活化的t细胞可以通过分泌ifnγ、granzymeb等,发挥抗肿瘤功能。偏m2型tams会抑制杀伤性cd8+t细胞的增殖,导致肿瘤免疫抑制状态。在肿瘤生长中,调节性t细胞(regulatorytcells,treg)与多种免疫细胞相互作用,产生抑制性的细胞因子,促进免疫抑制的肿瘤微环境,促进肿瘤生长,阻碍肿瘤对治疗的应答。考虑到巨噬细胞在mc38小鼠移植瘤模型中的重要作用,发明人进行了巨噬细胞的浸润及偏m2型极化和淋巴细胞相中t细胞的浸润及活化的检测。

结果显示,与溶剂对照组相比,化合物i各剂量组肿瘤组织整体的tams的浸润明显下降,并且tams中cd206+偏m2型的巨噬细胞的浸润进一步下调(图3a、3b)。在化合物i的作用下,treg细胞的浸润明显减少(图3c)。发明人进一步分析了t细胞相中cd8+t细胞的浸润,发现与溶剂对照组相比,虽然化合物i组cd8+t细胞浸润以及ifnγ+的cd8+t细胞浸润程度没有明显变化,但是granzymeb+的cd8+t细胞浸润显著增加(10mg/kg组)(图3d、3e、3f)。

进一步体内抗肿瘤活性评价结果提示,化合物i通过靶向csf-1r,抑制体内巨噬细胞的浸润、尤其是m2型巨噬细胞的浸润,下调treg的浸润,增强活化cd8+t细胞(尤其是granzymeb+的cd8+t细胞)的浸润,重塑了整个肿瘤微环境,逆转肿瘤免疫抑制状态,发挥拮抗肿瘤的作用,显著抑制了小鼠结肠癌mc38细胞移植瘤生长(表3,图4)。

表3化合物i对小鼠结肠癌mc38移植瘤的肿瘤体积增长抑制率

实施例6:化合物i增敏免疫检查点药物的抗肿瘤药效

1.试验方法

将ct-26细胞以每只小鼠5×106的细胞数接种于balb/c小鼠右侧腋窝皮下,肿瘤细胞成功在小鼠体内形成皮下移植瘤并长至平均约100mm3左右时,将小鼠随机分配至给药组及对照组。单用anti-pd-1组:anti-pd-1(bioxcell公司,invivomabanti-mousepd-1(cd279)(catalog:be0273))10mg/kg,每隔三天口服给药一次,持续给药12天。对照组则给予等量anti-pd-1的同型对照hamsterig(ratlgg2a),给药途径、剂量与频次同anti-pd-1组。单用化合物i组(化合物i+ratlgg2a):化合物i5mg/kg,每天口服给药一次,连续给药12天,并同时给予ratlgg2a(给药方式同对照组)。并且设置anti-pd-1(10mg/kg,每隔三天口服给药一次)与化合物i(5mg/kg,每天口服给药一次)联合用药组别。整个实验过程中,每周2次测量移植瘤体积,同时称量小鼠体重。

肿瘤体积(tv)的计算公式如下:tv=1/2×a×b2,其中a、b分别为移植瘤长度与宽度。

根据测量的结果计算出相对肿瘤体积(relativetumorvolume,rtv),计算公式为:

rtv=vt/v0。其中v0为分笼给药时(即d0)测量所得肿瘤体积,vt为每一次测量时的肿瘤体积。

抗肿瘤活性的评价指标为:肿瘤体积抑制率tgi(%),计算公式如下:

tgi(%)=100×{1-[(vtreatedfinalday-vtreatedday0)/(vcontrolfinalday-vcontrolday0)]。

统计学检验采用t检验处理,p≤0.05为显著差异。

2.实验结果

本次实验结果显示,单用anti-pd-1抗体(10mg/kg,每隔三天口服给药一次),肿瘤抑制率仅为6.7%;单用化合物i5mg/kg的肿瘤抑制率为45.8%。在使用anti-pd-1抗体(即,每隔三天口服给药一次,每次给药剂量10mg/kg)的基础上联合化合物i以每天一次5mg/kg的剂量给药,抑瘤率可达80.8%(表4,图5)。表明,联用化合物i能够加强anti-pd-1抗体在ct-26模型中的抑瘤作用。

表4化合物i对小鼠结肠癌ct26移植瘤的肿瘤体积增长抑制率

本申请使用的英文缩略词的全称及中文名如下:

csf-1r:receptortyrosinekinasecolony-stimulatingfactor1receptor,巨噬细胞集落刺激因子受体

csf-1:receptortyrosinekinasecolony-stimulatingfactor1,巨噬细胞集落刺激因子。

tam:tumor-associatedmacrophages,肿瘤相关巨噬细胞。

treg:regulatorytcells,调节性t细胞。

dc:dendriticcells,树突状细胞。

pbmc:peripheralbloodmononuclearcell,外周血单个核细胞。

bmdm:bonemarrow-derivedmacrophages,骨髓来源巨噬细胞。

抗pd-1:programmedcelldeathprotein1,程序性死亡受体1。

fmo:fluorescenceminusone,荧光扣除对照。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1