心率检测模组及电子设备的制作方法

文档序号:31935148发布日期:2022-10-26 01:34阅读:42来源:国知局
心率检测模组及电子设备的制作方法

1.本技术涉及电子设备技术领域,尤其涉及到一种心率检测模组及电子设备。


背景技术:

2.随着人们对自身健康关注的提升,各种简单便捷的电子设备技术应运而生。
3.目前,对心率进行检测的电子设备(例如穿戴设备、小型心率测量仪等)主要采用光体积变化描记图(photoplethysmograph,ppg)技术。图1为ppg技术应用于检测心率的原理图。在心脏跳动时,人体内的血管会随之收缩和扩张,从而产生血液体积变化(如图1中所示的搏动血液01),而这一变化会对光造成不同程度的吸收影响。因此,ppg技术根据这一现象利用特定的光束照射皮肤并分析反射回来的光,从而得到人体的心率值。
4.不同于医学上的专业检测,上述电子设备的检测结果通常被用户作为参考,用于日常生活中对心脏的健康管理。然而,随着这类电子设备的普及和人们对心率检测要求越来越高,如何提高这类电子设备的心率检测精确度成为亟待解决的问题。


技术实现要素:

5.本技术提供了一种心率检测模组及电子设备,以过滤心率检测过程中产生的干扰光,进而提高心率检测的精确度。
6.第一方面,本技术提供了一种心率检测模组。该心率检测模组包括基板,基板上设置有:光源,该光源发射用于心率检测的光束;与光源间隔设置的光接收器,该光接收器用于接收光信号;位于光源和光接收器之间的挡光部,该挡光部可以在光学上隔绝光源和光接收器,以使从光源射出的光束无法直接照射到光接收器;以及覆盖上述光源、光接收器和挡光部的光学膜,该光学膜靠近基板的一侧具有滤光部,滤光部在心率检测过程中可以过滤射向光接收器的干扰光,从而提高心率检测模组的信噪比,以实现较高的心率检测精确度。
7.上述滤光部可以包括第一导光部,第一导光部靠近光源设置,并且用于引导从光源射出的干扰光偏离光接收器,以减少光接收器接收到的干扰光,从而提高光接收器接收到的光信号的信噪比。
8.在具体的技术方案中,上述第一导光部可以设置成其沿垂直于光学膜方向的剖面为三角形,并且满足x1》y1,其中,x1为该三角形剖面靠近光源的侧边在光学膜表面的投影长度,y1为该三角形剖面远离光源的侧边在光学膜表面的投影长度。相对于平坦的光学膜表面,该第一导光部改变了来自光源的干扰光的光学路径,使其偏离光接收器,以减少射向光接收器的干扰光。
9.为了更有效地过滤来自光源的干扰光,上述第一导光部可以满足:60%≤x1/(x1+y1)≤85%。
10.为了在保持第一导光部的良好滤光效果的同时,又使其便于制造和加工,该第一导光部的剖面的高度h1可以满足:20μm≤h1≤40μm,并且20μm≤x1+y1≤50μm。
11.上述滤光部可以包括第二导光部,该第二导光部靠近光接收器设置,并且用于引导从光学膜射出的干扰光偏离光接收器,以减少光接收器接收到的干扰光,从而提高光接收器接收到的光信号的信噪比。
12.在具体的技术方案中,上述第二导光部沿垂直于光学膜方向的剖面为三角形,并且满足:x2《y2,其中,x2为该三角形剖面远离光接收器的侧边在光学膜表面的投影长度,y2为该三角形剖面靠近光接收器的侧边在光学膜表面的投影长度。相对于平坦的光学膜表面,该第二导光部改变了从光学膜射出的干扰光的光学路径,使其偏离光接收器,以减少射向光接收器的干扰光。
13.为了更有效地过滤从光学膜射出的干扰光,上述第二导光部可以满足:15%≤x2/(x2+y2)≤40%。
14.为了在保持第二导光部的良好滤光效果的同时,又使其便于制造和加工,该第二导光部的剖面的高度h1可以满足:20μm≤h2≤40μm,并且20μm≤x2+y2≤50μm。
15.上述滤光部可以包括第三导光部,该第三导光部靠近光接收器设置,并且该第三导光部沿垂直于光学膜方向的剖面为直角三角形,该直角三角形剖面远离光接收器的内角θ满足:5
°
≤θ≤30
°
。相对于平坦的光学膜表面,该第三导光部改变了经过光学膜射向光接收器的干扰光的光学路径,使其偏离光接收器,以减少射向光接收器的干扰光。
16.为了在保持第三导光部的良好滤光效果的同时,又使其便于制造和加工,该第三导光部的剖面与光学膜接触面的边的长度d3满足:20μm≤d3≤50μm。
17.为了进一步过滤干扰光,上述光学膜的表面可以设置遮光层,该遮光层与挡光部相对应,以避免影响用于心率检测的光束。
18.上述光学膜可以为一整张光学膜,以简化心率检测模组的结构以及组装流程。
19.在具体的技术方案中,可以一体化封装上述光源、挡光部和光接收器,以实现较薄的心率检测模组。
20.第二方面,本技术提供了一种电子设备,该电子设备包括电子设备本体和上述任一技术方案中的心率检测模组,该心率检测模组用于获取用户的心率信号。在获取光信号的过程中,滤光部可以过滤射向光接收器的干扰光,以提高获取到的心率信号的信噪比,从而实现较高精确度的心率检测。
21.在具体的技术方案中,上述心率检测模组可拆卸地连接至电子设备本体,以便于电子设备的维修以及心率检测模组的更换。
附图说明
22.图1为ppg技术应用于检测心率的原理示意图;
23.图2为本技术实施例中心率检测模组的一种结构示意图;
24.图3为图2中心率检测模组沿a-a方向的截面示意图;
25.图4为本技术实施例中心率检测模组的一种局部放大示意图;
26.图5为本技术实施例中第一导光部的一种剖面示意图;
27.图6为本技术实施例中心率检测模组的另一种局部放大示意图;
28.图7为本技术实施例中心率检测模组用于心率检测的示意图;
29.图8为本技术实施例中第二导光部的一种剖面示意图;
30.图9为本技术实施例中心率检测模组的另一种截面结构示意图;
31.图10为本技术实施例中光学膜的一种结构示意图;
32.图11为本技术实施例中心率检测模组的另一种局部放大示意图;
33.图12为本技术实施例中第三导光部的一种剖面示意图;
34.图13为本技术实施例中光学膜的一种透过率示意图;
35.图14为本技术实施例中心率检测模组的另一种截面结构示意图;
36.图15为本技术实施例中光学膜的另一种结构示意图;
37.图16为本技术实施例中心率检测模组的另一种结构示意图;
38.图17为本技术实施例中心率检测模组的另一种结构示意图;
39.图18为本技术实施例中心率检测模组的另一种结构示意图;
40.图19为本技术实施例中心率检测模组的另一种截面结构示意图;
41.图20为本技术实施例中心率检测模组的另一种截面结构示意图;
42.图21为本技术实施例中心率检测模组的一种封装流程示意图;
43.图22为本技术实施例中电子设备的一种结构示意图。
44.附图标记:
45.背景技术部分:
46.01-搏动血液;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
02-动脉非搏动血液;
47.03-静脉血液;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
04-皮肤表层;
48.本技术实施例部分:
49.10-心率检测模组;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
20-电子设备;
50.30-检测部位;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
11-基板;
51.12-光源;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
13-光接收器;
52.14-挡光部;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
15-光学膜;
53.150-滤光部;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
151-第一导光部;
54.152-第二导光部;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
153-第三导光部;
55.16-遮光层;
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
17-盖板;
56.18-封装层。
具体实施方式
57.为了使本技术的目的、技术方案和优点更加清楚,下面将结合附图对本技术作进一步地详细描述。
58.随着电子设备技术的发展,电子设备增加了越来越多的功能来满足用户的不同需求,例如近年来受到消费者青睐的智能手表,不仅具有展示时间和日期等传统手表的功能,还可以监测用户的步行、游泳、跑步、骑行等活动信息,为用户的日常健康管理提供了方便。特别地,为了便于用户监测自身在日常生活中或运动时的心率状态,越来越多的电子设备具有用于检测用户心率的心率检测模组,心率检测模组采用ppg技术来获取用户的心率数据,该心率数据可以用于监测用户的日常心率状态、预警异常心率(例如心跳不规则、过快或过慢)等。
59.然而,目前当用户使用电子设备进行心率检测时,心率检测模组获取到的心率信
号的精确度不高,也就是说该数据反映的心率与真实的心率之间存在一定的误差,这是由于在心率检测模组接收来自搏动血液01反射的光(在本技术中称为“有效光”)时,心率检测模组还会同时接收到从其他组织(例如,图1中所示的动脉非搏动血液02、静脉血液03和皮肤表层04)反射的光、以及从电子设备的器件反射的光等,这些光束(在本技术中可以称为干扰光)在一定程度上会干扰电子设备对有效光的分析,使得电子设备获得的心率数据可靠性不佳,导致最终得到的心率检测结果的精确度不高。
60.为此,本技术提供了一种心率检测模组及电子设备,以过滤心率检测过程中产生的干扰光,进而提高心率检测的精确度。
61.图2为本技术实施例中心率检测模组10的一种结构示意图,图3为图2所示的中心率检测模组10沿a-a方向的截面示意图。本技术提供的心率检测模组10包括基板11以及设置于基板11的一个或多个光源12、一个或多个光接收器13、一个或多个挡光部14、以及光学膜15。如图2和图3所示,在本实施例中,心率检测模组10包括一个光源12、八个光接收器13和一个挡光部14。具体而言,光源12与每个光接收器13间隔设置;挡光部14设置在光源12和每个光接收器13之间,用于在光学上隔离光源12和每个光接收器13,从而使光源12发射的光束无法直接照射到每个光接收器13,也就是说,从光源12射出的光束只有经过心率检测模组10的其他透光器件(例如光学膜15)折射和/或反射后才能到达每个光接收器13;光学膜15覆盖上述光源12、光接收器13和挡光部14(如图2所示),也就是说,光源12、光接收器13和挡光部14位于基板11和光学膜15之间(如图3所示)。光学膜15在朝向基板11的一侧设置有滤光部150(图3中用虚线表示),滤光部150可以过滤射向每个光接收器13的干扰光。需要说明的是,图3中的滤光部150仅是示意图,并不用于限定滤光部150的数量、结构和与其他部件之间的位置;本技术中描述的“过滤干扰光”可以是指吸收干扰光,也可以是指经反射和/或折射干扰光,使全部或部分的干扰光不能到达光接收器13。
62.在应用时,将心率检测模组10靠近用户的检测部位30,此时,光学膜15远离基板11的一侧靠近检测部位30。需要说明的是,本技术中描述的“检测部位”是指能够检测到心率信号的身体部位,可以是靠近心脏的部位,例如胸部;也可以是远离心脏的部位,例如颈部、手腕、指尖、足部等。当进行心率检测时,光源12发射用于心率检测的光束,该光束穿过光学膜15后在检测部位30形成反射,反射的光束再次穿过光学膜15到达每个光接收器13(如图3的实线箭头所示),而在该过程中产生的干扰光则被滤光部150过滤(如图3的虚线箭头所示);通过电子设备对各个光接收器13所接收的光信号进行分析,可以获得用户的心率数据,本技术实施例在过滤干扰光后使得一个或多个光接收器13接收到的有效光比例提高,心率检测模组10可以获得较高的信噪比,从而可以较好地提高心率检测的精确度。
63.下面将详细地描述上述光学膜15的结构。图4为本技术实施例中心率检测模组10的一种局部放大示意图。如图4所示,以心率检测模组10包括一个光源12、一个光接收器13和一个挡光部14为例。在该实施例中,光学膜15设置有一个滤光部150。滤光部150包括一个第一导光部151,第一导光部151靠近光源12,也就是说第一导光部151位于挡光部14朝向光源12的一侧,第一导光部151用于将来自光源12的干扰光向偏离光接收器13的方向进行引导。具体而言,如图4所示,以虚线箭头示出了现有技术中光束穿过光学膜15的一种路径示意图,从光源12射出的一些光束在光学膜15朝向基板11的表面处发生折射,折射后的一部分光在光学膜15内发生全反射,全反射之后的光线射出光学膜15后将会到达光接收器13。
换句话说,这部分光是从光源12射出后射入光学膜15,然后在光学膜15内经过全反射后射向光接收器13,从而形成干扰光;在现有技术中,这类干扰光将导致光接收器13所接收到的光信号中有效光的比例降低。图4中以实线箭头所示的光束(虚线箭头所示光束的右侧)是前述现有技术中的光束(即虚线箭头所示的光束)在本实施例中的路径示意图,显然,相对于现有技术,在本实施例的第一导光部151的作用下,该光束的折射路径将发生改变,使其不能在光学膜15内发生全反射,而是从光学膜15远离基板11的一侧表面射出,从而实现将该光束偏离光接收器13,以减少对光接收器13的干扰。
64.请继续参考图4,从光源12射出的光束中,仅入射角度较大的光束在射入光学膜15后可能发生全反射,并最终从光学膜15朝向基板11的表面折射后射向光接收器13。因此,如图4所示,在本技术的一些具体实施例中,第一导光部151沿垂直于光学膜15方向的剖面(如图4所示,第一导光部151的剖面所在的平面垂直于光学膜15)可以设置成三角形。
65.图5为本技术实施例中第一导光部151的一种剖面示意图。需要说明的是,本技术实施例中,为了方便描述将引入方位名词上、下、左、右、顶、底等,这些方位词仅仅用于更简洁的描述和帮助阅读者定位所描述的对象在图中的位置,而不是对所指对象的位置和方向进行具体限定。
66.在如图5所示的剖面中,三角形的顶角α1(远离光学膜15的角)向下,与顶角α1相对的边称为底边,虚线左侧的侧边靠近光源12(或者说远离相邻的光接收器13)且其投影于底边的长度为x1,虚线右侧的侧边远离光源12(或者说靠近相邻的光接收器13)且其投影于底边的长度为y1。在该方案中,第一导光部151可以满足:x1》y1,也就是说,左侧底角α2的角度小于右侧底角α3的角度,这样可以使从光源12射出后以较大入射角度射入光学膜15的干扰光全部或部分地偏离各个光接收器13,从光学膜15远离基板11的一侧表面射出,从而减少射向各个光接收器13的干扰光,较好提高心率检测模组10的信噪比。需要说明的是,本技术中“较大入射角度”是指在发生反射、折射的界面处,干扰光的入射角度比有效光的入射角度更大。
67.上述第一导光部151的宽度在光学膜15上的投影长度为如图5所示的底边的长度d1,其中d1=x1+y1且可以满足20μm≤d1≤50μm,第一导光部151的高度h1为如图5所示的顶角α1到底边的垂直距离h1,h1可以满足20μm≤h1≤40μm,这样可以使第一导光部151既具有较强的过滤干扰光的功能,即过效果较好,又便于制造和加工。当然,前述的宽度和高度也可以在前述范围外,但可能会导致制造及加工难度增加,或者使过滤干扰光的效果欠佳;例如,第一导光部151的宽度太大或高度太小可能使第一导光部151比较平坦,使以较大入射角度射入光学膜15的一部分光仍然有可能在光学膜15内发生全反射后射向各个光接收器13,导致第一导光部151的过滤功能下降;又例如,第一导光部151的宽度太小可能会导致对第一导光部151的制造精度要求较高,会增加制作难度和成本。
68.在另外一些实施例中,第一导光部151还可以满足60%≤x1/(x1+y1)≤85%,x1占总宽度d1的比例在60%至85%的范围内(包括端值),例如,可以取值60%、63.33%、66.67%、70%、73.33%、77%、80%、84%、85%等等,满足该范围的第一导光部151可以对干扰光的过滤效果更佳。
69.图6为本技术实施例中心率检测模组10的另一种局部放大示意图。如图6所示,以心率检测模组10包括一个光源12、一个光接收器13和一个挡光部14为例。在该实施例中,光
学膜15设置有一个滤光部150。滤光部150包括一个第二导光部152,第二导光部152靠近光接收器13,也就是说位于挡光部14靠近光接收器13的一侧,第二导光部152用于将经过光学膜15的干扰光向偏离光接收器13的方向进行引导。具体而言,如图6所示,以虚线箭头示出了现有技术中光束在光学膜15的另一种路径示意图,从光源12射出的一些光束在光学膜15朝向基板11的表面处发生折射,折射后的一部分光在光学膜15内发生全反射,全反射之后的光线射出光学膜15后将会到达光接收器13,形成干扰光;折射后的另一部分光穿过光学膜15后射向检测部位30,在检测部位30的其他组织反射的光穿过光学膜15后射向光接收器13,也可能形成干扰光。换句话说,光接收器13接收到的光除了有效光以外,还包含从其他组织反射的光、以及从光源12射入光学膜15并在光学膜15内反射后射向光接收器13的光,这些干扰光都会影响光接收器13所接收到的光信号中有效光的比例。图6中实线箭头所示的光束(虚线箭头所示光束的左侧)是前述现有技术中的光束(即虚线箭头所示的光束)在本实施例中的路径示意图,显然,相对于现有技术,在本实施例的第二导光部152的作用下,该光束的路径将发生改变,使其从光学膜15远离基板11的一侧表面射出,或者从光学膜15靠近基板11的一侧表面射出并且偏离光接收器13,从而不被光接收器13接收到,即不能到达光接收器13,可以减少对光接收器13的干扰。
70.如图7所示,由于检测部位30的其他组织比搏动血液01更靠近心率检测模组10,因此,相比从搏动血液01反射的有效光,从其他组织反射的干扰光会以更大的入射角度射入光学膜15;另外,在光学膜15内经过反射后射向每个光接收器13的干扰光也会以较大的入射角度射向光学膜15朝向基板11的一侧表面。因此,如图6所示,在本技术的一些具体实施例中,第二导光部152沿垂直于光学膜15方向的剖面可以设置成三角形。
71.图8为本技术实施例中第二导光部152的一种剖面示意图。在图8所示的剖面中,三角形的顶角β1朝下,与顶角β1相对的边称为底边,虚线左侧的侧边远离相邻的光接收器13(或者说靠近光源12)其投影于底边的长度为x2,虚线右侧的侧边靠近相邻的光接收器13(或者说远离光源12)其投影于底边的长度为y2。在本技术实施例中,第二导光部152可以满足:x2《y2,也就是说,左侧底角β2的角度大于右侧底角β3的角度,这样从检测部位30以较大入射角射入光学膜15的干扰光、以及在光学膜15内经过全反射后射向各个光接收器13的干扰光全部或部分地偏离光接收器13,从而减少射向各个光接收器13的干扰光,可以较好地提高心率检测模组10的信噪比。
72.上述第二导光部152的宽度在光学膜15上的投影长度为如图8所示的底边的长度d2,其中d2=x2+y2且可以满足20μm≤d2≤50μm,第二导光部152的高度h2为如图8所示的顶角β1到底边的垂直距离h2,h2可以满足20μm≤h2≤40μm。这样可以使第二导光部152既具有较强的过滤干扰光的功能,即过效果较好,又便于制造和加工。当然,前述的宽度和高度也可以在前述范围外,但可能导致制造及加工难度增加,或者使过滤干扰光的效果欠佳;例如,第二导光部152的宽度太大或高度太小可能导致第二导光部152比较平坦,使以较大入射角度从光学膜15朝向基板11的一侧表面射出一部分光仍然有可能射向各个光接收器13,导致第二导光部152的过滤功能下降;又例如,第二导光部152的宽度太小可能导致对第二导光部152的制造精度要求较高,会增加制作难度和成本。
73.在其他一些实施例中,第二导光部152还可以满足15%≤x2/(x2+y2)≤40%,x2占总宽度d2的比例在15%至40%的范围内(包括端值),例如,可以取值15%、16%、20%、
23%、26.67%、30%、33.33%、36.67、40%等等,满足该范围的第二导光部152可以对干扰光的过滤效果更佳。
74.下面以本技术的一个实施例进行说明。图9示出了本技术实施例中心率检测模组10的另一种截面结构示意图,如图9所示,光学膜15的滤光部150包括多个第一导光部151和多个第二导光部152。具体而言,第一导光部151和第二导光部152的沿垂直于光学膜15方向的剖面均设置成三角形(参考图5、图8所示的剖面示意图),第一导光部151满足x1》y1并且第二导光部152满足x2《y2,因此,如图9所示,第一导光部151和第二导光部152的顶角均朝向挡光部14。
75.请参照图10,图10为本技术实施例中光学膜15的一种结构示意图,中间的实线部分为多个第一导光部151的顶角,实线部分外周的虚线部分为多个第二导光部152的顶角。在本实施例中,心率检测模组10包括一个光源12、多个光接收器13和一个挡光部14。在应用时,在光源12的一侧,第一导光部151过滤从光源12以较大入射角射入光学膜15的干扰光;在光接收器13的一侧,第二导光部152过滤在光学膜15内经反射后以较大角度射向各个光接收器13的干扰光、以及从检测部位30的其他组织反射并以较大角度射入光学膜15的干扰光等。需要说明的是,前述“光源12的一侧”是指以挡光部14为界限,挡光部14的靠近光源12的一侧;前述“光接收器13的一侧”是指以挡光部14为界限,挡光部14的靠近光接收器13的一侧。因此,在上述实施例的心率检测模组10中,不仅可实现降低经过光学膜15从光源12传到各个光接收器13的串光现象,还可以过滤从检测部位30反射的干扰光,从而可以较好地降低干扰光对每个光接收器13接收有效光的影响,提高心率检测模组10用于检测心率的精确度。
76.在一个具体的实施例中,每个第一导光部151还可以满足60%≤x1/(x1+y1)≤85%,每个第一导光部151的宽度d1(即d1=x1+y1)可以满足20μm≤d1≤50μm,每个第一导光部151的高度h1可以满足20μm≤h1≤40μm;每个第二导光部152还可以满足15%≤x2/(x2+y2)≤40%,每个第二导光部152的宽度d2(即d2=x2+y2)可以满足20μm≤d2≤50μm,每个第二导光部152的高度h2可以满足20μm≤h2≤40μm。下面的表1以具有宽度为30μm(即,d1=d2=30μm)的多个第一导光部151和多个第二导光部152的光学膜15为例,对光学膜15进行仿真。从表1中可以看到,在相同的宽度情况下,随着y1和x2逐渐减小,换句话说随着第一导光部151的顶角和第二导光部152的顶角越来越靠近挡光部14,透过光和透过率的值逐渐增大,也就是说光学膜15在具有过滤干扰光的功能情况下,也能保持较佳的透光性能。
77.表1
78.x1(μm)/y1(μm)x2(μm)/y2(μm)透过光漏光透过率25/55/259.82e-043.75e-0567.13%24/66/249.55e-042.34e-0566.18%23/77/239.65e-043.77e-0565.92%22/88/229.50e-043.15e-0565.26%21/99/218.67e-041.97e-0560.20%20/1010/208.32e-041.72e-0557.93%19/1111/198.30e-048.00e-0553.29%
79.图11为本技术实施例中心率检测模组10的再一种结构示意图。如图11所示,以心
率检测模组10包括一个光源12、一个光接收器13和一个挡光部14为例。在该实施例中,滤光部150包括多个第三导光部153。具体而言,第三导光部153靠近光接收器13设置,也就是说位于挡光部14靠近光接收器13的一侧,该第三导光部153用于将经过光学膜15的干扰光朝向偏离光接收器13的方向引导,从而减少对光接收器13接收有效光的干扰,其中,该干扰光可以包括从检测部位30的其他组织反射的光、以及从光源12射入光学膜15并在光学膜15内全反射后射向光接收器13的光。
80.请继续参照图11所示,在一个具体的实施例中,每个第三导光部153沿垂直于光学膜15方向的剖面为直角三角形。图12为本技术实施例中第三导光部153的一种剖面示意图。如图12所示,三角形的直角朝下,直角相对的边为底边,角θ为第三导光部153靠近光源12的内角(如图12中左侧的内角所示)。
81.下面将详细描述该实施例。参考图11所示,以光学膜15的折射率为1.5为例,预期过滤从检测部位30反射、并以入射角i≥50
°
射入光学膜15的光束,其中,入射角i是指光从光学膜15远离基板11的一侧表面射入光学膜15时的入射角。当入射角i为50
°
时,根据折射定律sini/sinγ=1.5,其中,γ为光从光学膜15远离基板11的一侧表面射入光学膜15时的折射角,可以计算出光在光学膜15内的折射角γ为30.71
°
;由于第三导光部153为直角三角形,因此,该光束在第三导光部153的直角边界面处的入射角分别为(30.71
°
+θ)和(59.29
°‑
θ)。例如,当角θ被设计为14.29
°
时,该光线在直角边界面处的入射角均为45
°
,且大于该光学膜15与空气的全反射角42
°
,因此干扰光可以被反射出光学膜15而偏离光接收器13。
82.请参考图13,该图示出了上述结构的光学膜15的透过率示意图。需要说明的是,负号
“‑”
是指光射向界面时入射角位于法线(如图11中的点划线所示)更靠近光源12的一侧(如图11中入射角i所示)。在图13中,从负的角度变化至正的角度是指入射角从法线的左侧变化至法线的右侧。需要注意的是,本技术实施例中的“入射角”包括光从光源12射向光学膜15时、从检测部位30反射至光学膜15时、在光学膜15内全反射时、以及在光学膜15内向光接收器13射出时的入射角,因此,本技术实施例的入射角的角度可以理解为负。从图13中可以看出,随着入射角度的范围从-85
°
到-45
°
变化,透过率逐渐增大后缓慢下降;随着入射角度的范围从-45
°
到85
°
变化,透过率又逐渐增大后缓慢下降。参考图7可知,检测部位30的其他组织(例如皮肤表层04)距离心率检测模组10更近,其他组织反射的光射入光学膜15的入射角度更大,而搏动血液01距离心率检测模组10更远,搏动血液01反射的光射入光学膜15的入射角度更小,因此,可以考虑将经检测部位30反射并以入射角为30
°
~60
°
射入光学膜15的光束作为干扰光过滤,此时角θ满足5
°
≤θ≤30
°

83.在本技术的一些实施例中,第三导光部153的宽度是指第三导光部153在光学膜15上的投影长度,如图12所示的底边的长度d3。类似上述第一导光部151和第二导光部152,为了使第三导光部153既能够具有较好的过滤干扰光的效果,又便于制造和加工,d3可以满足:20μm≤d3≤50μm。
84.在本技术的实施例中,滤光部150可以是一个或多个第一导光部151、一个或多个第二导光部152、以及一个或多个第三导光部153中的任意组合,例如:滤光部150仅包括一个或多个第一导光部151,或者仅包括一个或多个第二导光部152,或者仅包括一个或多个第三导光部153,或者滤光部150可以包括一个或多个第一导光部151、以及一个或多个第三导光部153,或者滤光部150可以包括一个或多个第一导光部151、以及一个或多个第二导光
部152,或者滤光部150可以包括一个或多个第二导光部152、以及一个或多个第三导光部153,或者滤光部150可以包括一个或多个第一导光部151、一个或多个第二导光部152、以及一个或多个第三导光部153等等。
85.此外,滤光部150可以根据各个光接收器13的位置进行设置。例如,以滤光部150包括多个第一导光部151和多个第二导光部152作为示意进行说明,在一个具体的实施例中,心率检测模组10包括八个呈环形分布的光接收器13,滤光部150包括八个第一导光部151和八个第二导光部152,该八个第一导光部151和八个第二导光部152沿挡光部14分别设置为与每个光接收器13一一对应。另外,多个第一导光部151和多个第二导光部152也可以根据挡光部14的具体形状设置,例如,在另一个具体的实施例中,心率检测模组10包括呈环形状结构的一个挡光部14,滤光部150包括分别呈环形状排列的六个第一导光部151和六个第二导光部152,参考图9和图10所示,该六个第一导光部151设置在光源12的一侧,该六个第二导光部152设置在光接收器13的一侧。在又一个具体的实施例中,多个第一导光部151和多个第二导光部152还可以呈螺纹状排列。
86.在本技术实施例中,滤光部150可以是光学膜15的一部分,也可以是通过胶粘等方式固定于光学膜15表面的独立部件。在其他的实施例中,上述滤光部150还可以为其他结构。例如,在一些实施例中,滤光部150可以为设置在光学膜15表面的吸光涂层(例如油墨涂层等等),该涂层的厚度、角度、形状以及类型等均不限,本技术不做一一列举。
87.上述光学膜15可以为棱镜、透镜或散射膜等任何透光膜层,光学膜15的具体层结构在本技术实施例中不做限制,可以为一层结构的光学膜,或者也可以是多层结构的光学膜;相比较而言,采用一层结构的光学膜可以减少对光学膜15进行切割和贴合的制造流程,降低心率检测模组10的组装难度。
88.图14为本技术实施例中心率检测模组10的又一种截面结构示意图。如图14所示,以心率检测模组10包括一个光源12、多个光接收器13(图14中仅示意性地示出两个光接收器13)和两个挡光部14为例。在该实施例中,光学膜15的表面设置有与挡光部14位置相对应的遮光层16(也可参考图2),换句话说,遮光层16不会影响从光源12射向检测部位30的光束、以及从检测部位30反射后射向各个光接收器13的光束的传播。遮光层16可以减少干扰光,例如以较大入射角度射向光学膜15的部分光被遮光层16遮挡,从而不会射向各个光接收器13。该遮光层16可以是涂覆在光学膜15表面的吸光涂层,例如图15所示的遮光层16为油墨涂层;当然也可以是用于粘接光学膜15的深色胶。遮光层16可以设置在光学膜15的一侧表面,也可以设置在光学膜15的两侧表面,本技术实施例不做进步地描述。
89.在本实施例中,多个光接收器13围绕在光源12周围,两个挡光部14呈环形状,其中一个环形状挡光部设置在光源12和各个光接收器13之间,另一个环形状挡光部设置在这些光接收器13的外围,使光源12和这些光接收器13分别被挡光部14隔离在各自的空间内,使光源12射出的光或者外界的光无法直接照射到各个光接收器13,也就是说,每个光接收器13只能接收到经过光学膜15的光束,这样可以更加有效地减少其它干扰光对接收器15接收有效光的影响,进一步提高本技术实例中心率检测模组10的检测精确度。
90.图16至图18为本技术实施例中心率检测模组10的不同结构示意图,示出了一个或多个光源12、多个光接收器13和一个或多个挡光部14在基板11上的不同布局。如图16所示,八个光接收器13以环形的形状等距地围绕在为呈矩形排列的四个光源12外围,一个挡光部
14以环形的形状设置在光源12和这些光接收器13之间,使得光源12发射的光只能经过光学膜15射出。如图17所示,光源12可以为一个圆形的led器件,八个光接收器13可以为以矩形状围绕该led器件等距设置,一个挡光部14以矩形状设置在光源12和这些光接收器13之间。在本技术的一些其他实施例中,多个光源12也可以设置在一个或多个光接收器13周围,例如在一个具体的实施例中,八个光源12呈环形围绕一个光接收器13。或者在另一个具体的实施例中,如图18所示,在矩形状的结构中,两个光接收器13以对角方式设置,两个光源12设置在该两个光接收器13两侧,以形成对角。可以理解的是,在本技术各个实施例中,光源12、光接收器13和挡光部14的数量以及排列形式,如呈环形、多边形、或对角线设置等不做限制,具体地可以根据电子设备的尺寸、形状或者用户的具体喜好、需求进行设置。
91.图19为本技术实施例中心率检测模组10的另一种截面结构示意图。如图19所示,心率检测模组10还可以包括盖板17,该盖板17可以对心率检测模组10的其他器件起到保护作用,避免这些器件在运输过程中由于碰撞而被损坏。盖板17可以采用玻璃、聚碳酸酯(polycarbonate,pc)或聚甲基丙烯酸甲酯(polymethyl methacrylate,pvc)等透明材料,本技术不做一一列举。盖板17与光学膜15可以通过粘接的方式组装在一起,例如在一个具体的实施例中,盖板17与光学膜15可通过深色粘胶粘接,该深色粘胶与一个或多个挡光部14的位置相对应,这样不会影响有效光在心率检测模组10中的传播路径,还可以保护光学膜15的表面结构。此外,光学膜15与挡光部14也可以通过粘接的方式组装在一起,这种组装方式便于制造。
92.图20为本技术实施例中心率检测模组10的另一种截面结构示意图。如图20所示,在本技术的实施例中,心率检测模组10还可以包括位于基板11和光学膜15之间的封装层18。在该实施例中,以心率检测模组10包括一个光源12、多个光接收器13(图14中仅示意性地示出两个光接收器14)和两个挡光部14为例。在本技术的一些实施例中,封装层18可以封装光源12和这些光接收器13,如图21中(a)至(d)所示:首先在pcb基板11上设置光源12和各个光接收器13,其中,可以通过键合线的方式将光源12和每个光接收器13的电极电连接至基板11,如图21中(a)所示;然后,通过焊接、粘接等方式将挡光部14设置于基板11,形成围绕光源12的内圈挡光部和围绕这些光接收器13的外圈挡光部,如图21中(b)所示;之后,采用注胶成型工艺将封装材料填充(例如可以采用滴胶的方式)至挡光部14与基板11形成的空间内并固化填充后的封装材料形成封装层18,使得光源12和每个光接收器13以及键合线等器件被封装,如图21中(c)所示;最后,利用激光切割将封装形成的整体器件切割成预期尺寸,如图21中(d)所示。采用这种一体化封装工艺,光源12和每个光接收器13可以采用裸片形式的芯片,这样可以充分利用心率检测模组10的设计空间,以减小整个心率检测模组10的厚度;封装层18还可以保护芯片和电路,以减少在运输途中发生碰撞时受到的损坏,也可以避免灰尘等颗粒进入心率检测模组10,进一步提高心率检测模组10执行心率检测的可靠性;另外,由于光源12和每个光接收器13被封装,在后续的制造工艺中可以降低对加工环境的清洁度要求,以降低制造成本。
93.在一个具体的实施例中,当采用一整张光学膜时,对挡光部14与封装层18两者的高度可以不做要求,因此图21中(c)所示的切割步骤可以省略,以降低心率检测模组10的制造工艺难度。
94.此外,在本技术的其他一些实施例中,也可以先将一个或多个光源12、一个或多个
挡光部14和一个或多个光接收器13等器件封装成独立器件,然后将该独立器件安装于基板11并与基板11电连接。
95.如图22所示,本技术还提供了一种电子设备20,该电子设备20包括电子设备本体和上述任一实施例的心率检测模组10。图22是示出了电子设备20的框图,在该电子设备20上可以实现用于检测心率的心率检测模组10的各方面。电子设备20可以是以多个设备的形式或者以单个设备的形式提供给用户,例如智能手机、穿戴设备、心率测量仪等,其中穿戴设备可以为智能手表、智能手环、头盔、智能服装或其它配饰,本技术不做一一阐述。在心率检测模组10获取光信号的过程中,心率检测模组10的滤光部150可以过滤射向各个光接收器13的干扰光,从而提供获取到的心率信号的信噪比,以实现较高精确的心率检测。
96.请参考图22,在本技术的一些实施例中,电子设备20还可以包括处理器、以及分别与处理器电连接的存储器、传感器、通信模块和显示屏等模块,其中,心率检测模组10与处理器电连接。在该实施例中,心率检测模组10用于获取人体的动态心率、血氧饱和度等生理参数,并将这些参数传输给处理器;存储器用于保存程序指令和执行程序期间的数据;传感器可以为加速度、陀螺仪、环境光等类型,用于感知电子设备20所在的环境以及自身的运动状态;通信模块具有wifi、蓝牙、nfc(near field communication,近场通信)等通信功能,用于向处理器传递数据或接受来自处理器的命令;显示屏可以提供人机交互界面,向用户呈现各种信息,另外该显示屏也可以是触摸屏,用于实现触摸输入;处理器用于执行程序指令,对电子设备20的整个系统进行控制、管理和信号处理,处理心率检测模组10获取的信号并生成用户的生理参数。
97.在本技术的实施例中,心率检测模组10可拆卸地安装在电子设备本体内,例如可以通过螺纹联接、卡接等不同的方式,本技术不做限制,这样设计可以便于电子设备20的维修以及心率检测模组10的更换。例如,在心率检测模组10采用一体化封装的一个或多个光源12、一个或多个光接收器13和一个或多个挡光部14后,遮光层16和盖板17依次粘接于封装层18,最终组装成心率检测模组10,该心率检测模组10可以作为独立的一体式器件安装至电子设备本体内,以便于后期直接从电子设备本体内拆卸心率检测模组10后对其进行维修或更换。另外,心率检测模组10的基板11可以设置有接口,该接口可以与电子设备20联接。
98.下面以电子设备20包括智能手表以及与该智能手表电连接的智能手机为一个具体实施例,针对该电子设备20应用于心率检测的过程进行描述。
99.在该实施例中,智能手表的内部设置有本技术实施例的心率检测模组10,其位于智能手表的表盘底部,具体而言,当用户将智能手表佩戴在手腕时,心率检测模组10的光学膜15一侧靠近用户手腕,此时检测部位30为用户手腕与智能手表的表盘底部接触的部位。在启用智能手表的心率检测功能后,心率检测模组10的一个或多个光源12发射光束,一部分光束穿过光学膜15后到达检测部位30,由检测部位30的搏动血液01反射的光再次穿过光学膜15射向一个或多个光接收器13,每个光接收器13接收到光信号后,通过通信模块将该光信号的数据传输给智能手表的处理器,处理器通过对数据的处理和分析,最终获得用户的心率状态,并通过显示屏将其展示给用户。在获取光信号的过程中,射向各个光接收器13的干扰光可以被滤光部150过滤,从而可有效提高有效光在光信号中的比例,提高心率检测模组10的信噪比和电子设备20的检测精确度。
100.以上实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本技术的限制。如在本技术的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
101.在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本技术的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在另一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
102.以上,仅为本技术的具体实施方式,但本技术的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本技术揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本技术的保护范围之内。因此,本技术的保护范围应以权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1