一种能双向连接磁性纳米粒的构建方法与应用

文档序号:27432114发布日期:2021-11-17 22:19阅读:339来源:国知局
一种能双向连接磁性纳米粒的构建方法与应用

1.本发明属于医药领域,涉及一种能双向连接磁性纳米粒的构建方法和应用,是通过获得磁化细胞来定向运输细胞并连接其他细胞,并在制备抗肿瘤、抗菌、抗炎等药物中的应用。


背景技术:

2.一些疾病或者治疗的要求,需要细胞在某个部位富集,以提高治疗的效果。但是,由于各种原因,细胞在体内随血液循环,并不能随人们意愿所期望的往特定部位移动,或者对于原本有一些趋向性的细胞,为了达到更好的效果,需要提高趋向性的强度或富集的能力,这就需要用外部的手段来进行调控。
3.磁靶向是一种非侵入性、无创的靶向手段,并且磁靶向中最重要的磁性纳米粒已经被 fda批准用于缺铁性贫血治疗。用磁靶向的方式来将目标细胞聚集在特定部位是一种很有临床应用前景的手段,并且可以针对特定的细胞,特定的疾病开发对应的纳米粒,是一个具有较高应用前景的平台。然而,目前用于获得磁化细胞的纳米粒多是通过被细胞吞噬的方式来获得磁性,例如巨噬细胞,dc细胞。但是,这样的方式有明显的局限性,针对巨噬细胞这一类吞噬能力较强的细胞来说比较容易实现,但是对于红细胞等吞噬性较弱的细胞来说实现的可能性较差,另外对于淋巴细胞等敏感性较强的细胞,吞噬纳米粒后会严重影响细胞的功能,因此也不适合通过内吞的方法来获得磁化的细胞。
4.目前,尽管已有像上文提到的用磁靶向来控制细胞在体内的运动的案例,但是细胞到达目的地后撤去磁场,部分细胞便又会被血流冲走,影响靶向效果。另外,让患者长时间静止停留在强磁环境中来保证靶向性,使患者的顺应性较差,另外也无法确证患者在强磁环境中的安全性。因此,迫切需要一种受磁靶向后的细胞在体内能够锚定在目标部位,那么即使撤去磁场也可以保证靶向的效果以及治疗的效果。


技术实现要素:

5.本发明的第一个目的是提供一种能双向连接磁性纳米粒的构建方法,本发明利用活性基团,受体配体修饰在磁性纳米粒表面,首先连接一种细胞,获得磁化的细胞。该磁化后的细胞可以在磁场的作用下运动到目标部位,并在该部位连接其他细胞,从而将细胞锚定在靶部位。通过以下方案可实现:将表面氨基修饰的氧化铁磁性纳米粒与过量透明质酸反应,得到hmn,然后hmn再与mal

peg

nh2反应得到能双向连接的磁性纳米粒(dbmn)。
6.本发明的一种能双向连接磁性纳米粒构建方法,具体通过以下步骤实现:(1)过量透明质酸(ha,分子量为1000

200000)先与1

(3

二甲氨基丙基)
‑3‑
乙基碳二亚胺(edc)和n

羟基琥珀酰亚胺(nhs)活化1

2小时,之后与修饰氨基基团的氧化铁磁性纳米粒(表面活性基团含量20nmol/mg

5umol/mg)反应过夜形成酰胺键;(2)用磁铁吸附的方法收集修饰透明质酸的磁性纳米粒(hmn),并加入edc和nhs再次活化1

2小时,最后加入与ha摩尔量相当的nh2

peg1000

mal(一端修饰马来酰亚胺基团
另一端修饰氨基的聚乙二醇(peg)),其中peg的分子量根据实验所需分子量在500

20000之间),继续反应过夜,并用磁铁吸附收集产物dbmn,dbmn表面既修饰了透明质酸基团又修饰了马来酰亚胺基团,可以实现双向连接。
7.磁性纳米粒的修饰可以通过以下化学和/或物理方法实现,其具体实施为在磁性纳米粒表面修饰两种可用于细胞连接的活性基团来实现,包括但不限于:(1)利用细胞表面的巯基和马来酰亚胺基团修饰的磁性纳米粒发生迈克尔加成反应;(2)或利用细胞表面的氨基与sulfo

nhs或普通nhs

酯化合物修饰的磁性纳米粒形成稳定的酰胺键;(3)或利用叠氮(n3)修饰的细胞与dbco及其类似物修饰的磁性纳米粒发生点击反应;(4)或利用生物素修饰的细胞与链霉亲和素或生物素修饰的磁性纳米粒发生构象结合;(5)或利用修饰透明质酸的纳米粒与cd44结合;(6)或利用纳米粒表面修饰的rgd三肽与细胞表面αvβ3等黏连分子结合;(7)或利用修饰抗体的磁性纳米粒与细胞表面抗原结合。
8.两种修饰分子可以按照以下顺序进行修饰:(1)两种修饰分子同时修饰,(2)或两种修饰分子依次修饰。
9.本发明连接细胞为连接在细胞表面,根据表面活性分子或者受体的量决定纳米粒最大的嫁接程度,并且可以根据共孵育的浓度,调节细胞表面连接磁性纳米粒的量。
10.可获得的磁化的细胞包括但不限于淋巴细胞、巨噬细胞、nk细胞、抗原呈递细胞、红细胞、血小板、粒细胞、肿瘤细胞。
11.本发明的第二个目的是提供所述能双向连接磁性纳米粒在制备药物中的应用。
12.所述药物应用是在制备抗肿瘤、抗菌、抗炎等药物中的应用。本发明利用能双向连接磁性纳米粒作为载体,通过磁化特定细胞后,在磁场下靶向富集到肿瘤部位、细菌或炎症部位,在肿瘤部位双向连接的纳米粒再与肿瘤细胞连接,或在细菌或感染部位再与细菌连接,从而增强抗肿瘤、抗菌消炎作用。所述特定细胞包括但不限于淋巴细胞(t细胞和b细胞),单核细胞,巨噬细胞、粒细胞、抗原呈递细胞(apc细胞、dc细胞)、红细胞等。
13.本发明能双向连接磁性纳米粒先连接一类细胞后,可使细胞在体内外响应磁场,并按照磁场方法定向移动。到达目标部位后,能够与目标细胞连接,形成细胞

纳米粒

细胞的桥连,从而提高治疗效果或特定治疗目的。
14.本发明所构建的能双向连接的磁性纳米粒通过磁化不同细胞,并应用在药物递送、抗炎、抗感染等其他应用上,包括但不限于:(1)磁化的t细胞靶向肿瘤部位,并锚定在肿瘤部位,实现增强的杀肿瘤效果;(2)磁化的粒细胞靶向和滞留在细菌或炎症部位,实现增强的抗菌作用;(3)磁化的巨噬细胞靶向肿瘤或炎症,并锚定在肿瘤和炎症部位,实现增强的抗肿瘤和消炎效果;(4)磁化的细胞包载药物用于药物的递送,并连接在目标组织细胞上,增强药物疗
效,降低副作用;(5)磁化的红细胞用于药物递送或伤口感染。
15.具体的与细胞的双向连接方法可参考如下,将cd8+ t细胞离心后用无血清培养液或者 pbs重悬(100万细胞每毫升),加入dbmn纳米粒至浓度达到0.1

10mg/ml,在二氧化碳恒温培养中中孵育至少30分钟,每隔十分钟吹打一次,可获得比较好的连接效果。收集连接了磁性纳米粒的t细胞(dbmn

t),加入4t1肿瘤细胞(或其他高表达cd44的肿瘤细胞)以10 万每毫升的浓度与dbmn

t在培养箱中继续孵育4小时。此时,可在显微镜下看到纳米粒连接了t细胞和肿瘤细胞。其可设计作为抗肿瘤的应用具体实施方案可参考如下,将高表达cd44 的4t1或者e.g7肿瘤细胞皮下接种在6

8周小鼠背部。一周后肿瘤长到200mm3大小,每只回输500万连接了磁性纳米粒的cd8+ t细胞。回输细胞后,将小鼠置于磁场下48小时。磁化的细胞毒性cd8+ t细胞在磁场作用下富集到肿瘤部位,实现较好的抗肿瘤作用。并且,由于双向连接的纳米粒上的ha与肿瘤表面高表达的cd44结合,形成了t细胞

双向连接纳米粒
‑ꢀ
肿瘤细胞的桥连,防止肿瘤环境中的t细胞被血流冲走,进一步提高了治疗效果。
16.本发明的第三个目的是提供所述能双向连接磁性纳米粒在生物研究中的应用。
17.所述生物研究应用是通过能双向连接磁性纳米粒作为载体,先磁化肿瘤细胞,然后锚定在特定脏器建型,用于在特定脏器的造模,进行生物研究。
18.能双向连接磁性纳米粒的核是由具有磁性的三氧化二铁纳米粒、四氧化三铁纳米粒,及其他具有磁性的单一或掺杂铁钴镍等元素的粒径为5nm

1um纳米粒构成,并在此基础上修饰各类基团和配体实现双向连接。
19.目前使细胞获得磁性的方法多为让细胞吞噬磁性纳米粒的方式。但是,这样的方法存在较大的局限性,巨噬细胞、中性粒细胞等具有吞噬倾向的细胞可以在孵育纳米粒后获得磁性,而不具有吞噬功能的细胞比如t细胞,红细胞等却不能用该方法来获得磁化的细胞。另一方面,细胞在吞噬纳米粒后还会影响细胞原有的功能。因此,通过吞噬的方式使细胞获得磁性具有局限性。另外,目前磁化的细胞随磁场运动来发挥治疗效果的研究中效果较差。本发明提供的能双向连接磁性纳米粒,通过双连接的纳米粒,一方面连接目标细胞,使其获得磁性,在外磁场的作用下靶向至目标部位,另一方面在细胞到达靶部位后,纳米粒的另一端与“本地”细胞(靶部位细胞)连接,形成细胞

纳米粒

细胞的桥连,防止其被血流带走,使靶向效果更加优异,从而提高了靶向性和治疗效果。
附图说明
20.图1是mn,hmn和dbmn的电位图。
21.图2是mn,hmn和dbmn的热失重曲线。
22.图3是各纳米粒的紫外可见光分光光谱图。
23.图4是磁化t细胞透射电镜(tem)图像。
24.图5是磁化细胞表面连接磁纳米粒(fitc标记)的荧光图像。
25.图6是磁化细胞体外磁响应性验证荧光图像。
26.图7是磁化细胞体内磁响应性验证荧光图像。
27.图8是细胞

纳米粒

细胞形成桥连荧光图像。
28.图9是体内磁响应性以及粘附性验证。
29.图10是小鼠肿瘤生长曲线。
30.图11是主要炎性因子的elisa检测。
具体实施方式
31.本发明结合附图和实施例作进一步的说明。
32.实施例1能双向连接磁性纳米粒(dbmn)的合成精密称取透明质酸(ha)加入edc和nhs活化ha上的羧基,edc:ha摩尔比为10:1,nhs: nhs摩尔比为1.2:1,常温下活化反应2小时。活化结束后,加入氨基修饰的磁性纳米粒,机械搅拌下反应24小时,ha:纳米粒表面的氨基摩尔比为1:1。反应结束后,用磁铁吸附的方式收集纳米粒(hmn)。接着,再加入edc和nhs溶液在常温下活化2小时,edc:nhs摩尔比为1.2:1。活化结束后,加入mal

peg

nh2继续反应24小时,hmn:mal

peg

nh2摩尔比为1:10。反应结束后,用磁铁吸附的方式收集纳米粒,用超纯水清洗3

5次,即可得到dbmn,结构式如下:
[0033][0034]
dbmn的结构确证:采用表面电位测定的方法对材料表面游离氨基和羧基所产生电位的变化来对结构变化的确证(图1)。表面修饰氨基的磁性纳米粒(mn)由于游离氨基的存在,表现出较强的正电荷。当过量的ha修饰在表面后,由于丰富的羧基,纳米粒的电荷从正电荷逆转为负电荷。接着,再用mal

peg

nh2和游离的羧基反应,因此表面负电荷被中和接近于中性,说明dbmn按照预定的路线一步一步合成了。有机质在嫁接在磁性纳米粒上后,也可以体现在热失重曲线(图2)上。随着ha和mal

peg

nh2的嫁接,经过1000℃加热后,剩余的残留物质的百分比逐级降低。紫外可见光分光光谱也显示了dbmn曲线特点包括了ha和mal

peg 的曲线特点(图3)。以上证据表明,已经成功合成了dbmn。
[0035]
实施例2生物素化能双向连接磁性纳米粒(bhmn)的合成精密称取ha,溶解在3ml

10ml超纯水中,加入edc和nhs,常温下活化2小时。加入 sulfo

nhs

lc

biotin和氨基修饰磁性纳米粒,继续反应24小时,ha:sulfo

nhs

lc

biotin 摩尔比为1:2,sulfo

nhs

lc

biotin:mn表面的氨基摩尔比为1:2。反应结束后,用磁铁吸附的方式收集纳米粒,用超纯水清洗3

5次,即可得到bhmn。
[0036]
实施例3rgd靶头修饰能双向连接磁性纳米粒(mrmn)的合成精密称取rgd三肽,溶解在3ml

10ml超纯水中,加入edc和nhs,常温下活化2小时, edc:nhs摩尔比为1.2:1。加入氨基修饰的磁性纳米粒,继续反应24小时。反应结束后,用磁铁吸附收集修饰了rgd的磁性纳米粒(rmn)。接着,精密称取马来酰亚胺基丁酸(mba),加入edc和nhs,常温下活化2小时,接着加入上一步合成的rmn,继续反应24小时。反应结束后,用磁铁吸附的方式收集纳米粒,用超纯水清洗3

5次,即可得到mrmn。
[0037]
实施例4ot

i cd8
+ t细胞磁化的构建取6

8周ot1小鼠外周血或脾脏细胞悬液,用cd8阴性分选试剂盒分选出cd8阳性t细胞,按照1x106个/ml的密度在体外用t细胞培养液培养。构建磁化t细胞时,将t细胞离心
转入无血清培养液中,加入1mg/ml的dbmn,孵育30分钟,每隔10分钟振荡一次。在显微镜下可以观测到细胞在磁场下定向移动,证明ot

i cd8
+ t磁化细胞构建成功,纳米粒连接在细胞表面的真实状态可从透射电镜图像(图4)中看到。另外,用fitc标记纳米粒后,细胞表面出现绿色的纳米粒的荧光(图5)。
[0038]
ot

i cd8 t细胞可以特异性识别表达ova的肿瘤细胞,我们以此细胞为例,研究了能双向连接纳米粒起到的作用。
[0039]
1.磁化t细胞的体内外磁性验证体外磁响应性验证:将t细胞离心,重悬后加入10ug/ml did溶液标记15分钟,使t细胞获得荧光。用蠕动泵将did标记的t细胞在导管中循环,在导管一侧放置磁场。15分钟后,磁化的t细胞被富集到导管靠近磁场一侧(小动物活体成像仪拍摄)。如图所示,而没有磁化的t细胞则没有任何富集效果(图6)。
[0040]
体内磁响应性验证:将5x105个e.g7

ova细胞分别接种于c57小鼠背部两侧。待肿瘤大小为500mm3左右,回输5x106did标记的磁化的t细胞,静置在磁场下48小时,结果显示,荧光在有磁场侧聚集,证明细胞在体内能够受磁场作用定向移动(图7)。
[0041]
2.能双向连接纳米粒的双向连接验证(构建细胞

纳米粒

细胞桥连)为了验证dbmn的能双向连接性,首先用马来酰亚胺基丁酸和氨基修饰的氧化铁纳米粒合成了只能单向连接的纳米粒sbmn。
[0042]
(1)体外验证将磁化后的t细胞与4t1肿瘤细胞孵育4小时,之后用pbs轻轻吹洗细胞,吸走悬浮的细胞。在荧光显微镜下可以看到细胞

纳米粒

细胞的结构(图8),左,4t1肿瘤细胞;中, dbmn纳米粒;右,t细胞。
[0043]
(2)体内验证将5x106did标记的普通t细胞,用sbmn磁化的t细胞sbmn

t,以及用dbmn磁化的dbmn

t。之后,经过48小时磁场作用,磁化后的细胞表现出明显的磁场响应性,能够使大量t细胞聚集在肿瘤部位。然后,移去磁场,24小时后再次检测荧光强度。结果显示sbmn

t组荧光强度快速下降,而dbmn

t组变化不大,说明sbmn

t来到肿瘤部位后,又重新被血液带走,而 dbmn

t来到肿瘤部位后,由于ha能与肿瘤表面过表达的cd44结合,因此能够锚定在肿瘤部位,从而提高了抗肿瘤的效果(图9)。
[0044]
3.dbmn纳米粒在抗肿瘤中的具体应用将c57小鼠背部皮下接种e.g7

ova肿瘤。设置saline组,nanoparticles+m纳米粒+ 磁场组,nor

t普通t细胞治疗组,dbmn

t+m双连接纳米粒磁化t细胞+磁场组。对于细胞和纳米粒,每周给药一次;给药后,对于+m组的小鼠放置在磁场下48小时,细胞或者磁化后的细胞每次回输500万。隔天记录小鼠肿瘤大小,结果如图10,应用双连接纳米粒显示出很好的治疗效果。
[0045]
实施例5til磁化细胞的构建取患者肿瘤样品部分,研磨成细胞悬液,用cd8阴性分选试剂盒分选出cd8阳性t细胞,按照1x106个/ml的密度在体外用t细胞培养液培养。构建磁化t细胞时,将t细胞离心转入无血清培养液中,加入1mg/ml的dbmn,孵育30分钟,每隔10分钟振荡一次。在显微镜下可以观测到细胞在磁场下定向移动,证明til磁化细胞构建成功。
[0046]
实施例6car

t磁化细胞的构建取患者外周血,用cd8阴性分选试剂盒分选出cd8阳性t细胞,体外按照car

t细胞构建方法,转染,筛选,扩增目标细胞。按照1x106个/ml的密度在体外用t细胞培养液培养。构建磁化t细胞时,将t细胞离心转入无血清培养液中,加入1mg/ml的mrmn,孵育30分钟,每隔10分钟振荡一次。在显微镜下可以观测到细胞在磁场下定向移动,证明car

t磁化细胞构建成功。
[0047]
实施例7磁化载药红细胞的构建收集红细胞,加入1mg/ml多柔比星(dox)孵育12小时,之后离心收集红细胞,加入 1mg/ml的mrmn,孵育30分钟,每隔10分钟振荡一次。在显微镜下可以观测到细胞在磁场下定向移动,证明磁化载药红细胞构建成功。
[0048]
实施例8磁化中性粒细胞的构建取小鼠骨髓,用pbs吹出骨髓内细胞,然后加入中性粒细胞分离液,2000r/min的速度离心25分钟。分离得到的中性粒细胞加入sulfo

nhs

lc

biotin,按照试剂盒操作使中性粒细胞表面带上生物素标记。接着,向细胞培养液中加入bhmn和链霉亲和素(streptavidin), cell:bhmn:streptavidin摩尔比为1:200:100,孵育半小时后离心,获得磁化的中性粒细胞。
[0049]
实施例9磁化中性粒细胞的用于增强的肺部抗炎作用按实施案例8中获取中性粒细胞,重悬在培养液中,加入地塞米松plga纳米粒共孵育1小时,之后离心,按照实施例8构建磁化的中性粒细胞。通过小鼠吸入lps的方式造肺炎模型,分别以尾静脉注射方式给以生理盐水,游离地塞米松,等量药物的普通中性粒细胞和等药物量的磁化中性粒细胞,并将小鼠置于磁场下48小时。结束后,处死小鼠,取血液用elisa试剂盒检测炎症因子的量,结果如图11,选用双连接纳米粒能够显著降低炎症。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1