用于眼科的光学成像装置及其成像系统的制作方法

文档序号:31964893发布日期:2022-10-29 00:10阅读:109来源:国知局
用于眼科的光学成像装置及其成像系统的制作方法

1.本技术涉及一种能够拍摄眼前和眼底并可视化的用于眼科的光学成像装置及其成像系统。


背景技术:

2.一般而言,眼底照相机在眼科中广泛用于通过拍摄眼底来诊断患者眼睛的状态。眼底照相机在拍摄检查对象的眼睛之前,需考虑受检眼位置而将眼底照相机设置于相对准确的位置,且对于非散瞳眼底照相机的拍摄,为了在不妨碍检查对象视野的同时防止瞳孔收缩,利用眼睛不可见的红外线,设置眼底照相机相对于检查对象眼球的工作距离。
3.初始眼底照相机相对于检查对象眼睛的光学对准从眼前观察开始,由此,眼底照相机以眼睛瞳孔为基准配置成中央并设置工作距离。此时,眼球的瞳孔轴需与照相机的轴居中对准,而且眼球要尽可能放松,就像看着位于无限远处的点光源一样。
4.根据现有专利1(us7320519),眼前部和眼底的拍摄过程是在观察通道 (光轴l3)使用眼前观察光学单元(anterior-ocular observationoptical system) 11来执行。所述光学透镜单元11由固视视标42(fixation target plate)、图像分光棱镜43(imaging splitting prism)和透镜41、44构成。另外,在固视视标42附近侧面配置有对固视视标进行照明的照明光源45。然后,当拍摄检查对象的眼底时,所述单元11脱离观察通道(光轴l3)。
5.但是,对于现有专利1,在从眼前观察模式(anterior-ocularobservation mode) 转换为眼底观察模式(fundus observation mode)的过程中,由于所述观察光学单元11在光轴l3线上反复移动导致的不准确的重新设置,目标位置可能会移动。因此,当为了拍摄眼底而从眼前观察模式变更为眼底观察模式时,在固视视标42(fixationtarget plate)变更为另一视标18的过程中,检查对象会在视野中漏掉另一视标18。
6.另外,在所述观察单元11中,辅助要素42、43导致所述单元11设计复杂,分光棱镜43会在诊断过程中降低作为观察部位的眼睛眼前部分的图像质量。
7.根据现有专利2(us8960908),在眼底拍摄模式下,为了使检查对象的眼睛瞳孔轴固定于所需方向,来自内部固定灯单元(internal fixation lamp unit) 32的光线经半反射镜(half mirror)30进入观察通道的光路径。与此同时,为了能够迅速变更眼睛固定点,所述固定灯单元32制造成由多个led构成的led矩阵形态。此时,检查对象将视线固定于视线led矩阵点亮的led 之一,且检查者可以通过转换led而获得眼底多个部分的图像。具有这种结构的装置在拍摄眼底时,眼底照相机光学系统用于对准的最重要过程之一是聚焦于视网膜。因而通过使用分割单元(split unit)22构建的自动聚焦装置而便利、准确地执行操作,其中,所述分割单元22由led 221、使led 221 释放的光分割的分光棱镜(prism for splitting)222和焦点系数遮罩(focus indexmask)223构成。所述装置中位于照明通道上的焦点显示组件,配置为使所述遮罩223的系数位于在光学上与眼底表面连接的(conjugated)平面。在聚焦之前所述系数遮罩使用m2驱动马达而暂时进入照明通道的光线路径。如果聚焦透镜28的聚焦功能受限(例:
±
15屈光度),则不足以补偿严重的屈光不正
(ametropia)。此时,矫正透镜29(diopter correction lens)使用m4马达而进入成像光学系统105(imaging optical system)的成像通道的光路径(当患者严重远视时为正透镜-291,当患者严重近视时为负透镜-292)。排列于不同光学通道的所述分割单元22和所述聚焦透镜28必须同时移动。分割单元22 通过m1驱动马达而沿照明通道的轴移动,聚焦透镜28使用m3马达而沿成像通道的轴移动。此时,聚焦透镜28的特定位置需准确对应于分割单元22 的确定位置。这种要求可通过设置相应传感器实现。即,由驱动所述聚焦透镜28而聚焦的聚焦透镜位置传感器s3(focus lens position sensor)和分割位置传感器s1(split position sensor)实现。在聚焦步骤结束时,在为了拍摄而打开白色光源之前,所述分割单元22通过m2马达而脱离照明通道,以免在眼底投射阴影。
8.但是,对于现有专利2,要求分割单元22和聚焦透镜28同时精密移动并在照明通道中插入或取出所述分割单元,作为用于此的附加的机械要素,驱动马达m1、m2、m3及传感器s1和s3是必不可少的。因此,装备设计复杂,机械式对焦步骤繁琐,运转可靠性低下。
9.根据现有专利3(us8480232),为了进行用于眼底成像的眼底照明和对准过程,眼底装置包括照明光学系统(illumination optical system)o1和观察 /成像光学系统(observation/imaging system)o2的光通道。在o1通道中有包括红外线led 11a及白色led 11b的光源单元(light source unit)11,红外线或白色光由此可实现眼底可视化。此时,两个光源可以借助驱动马达m1 而移动,使所述led交替进出照明通道o1。另外还有可移动的环状光阑(ringslit)12,以便在检查对象的大瞳孔或小瞳孔条件下拍摄时,为所述光源单元 11的光提供所需的路径。另外,装置在设置于o2通道的具有孔的反射镜(holedmirror)16的孔内部包括对准系数投影单元(alignment index projection unit) 17,所述单元由两个ir led 17a和两个光导17b构成。所述光导的末端部分伸出到反射镜孔外。所述单元17被设计成通过在光导17b的输出末端跟踪从眼角膜反射的图像的位置而在观察眼底期间控制眼底照相机相对于眼睛的位置。
10.但是,对于现有专利3,为了实现上面提到的动作而包括大量的动态构成要素,因而装备更加复杂,不稳定性增加。另外,所述单元17为了确定眼底照相机的准确位置而在供眼睛图像穿过的反射镜16的孔内部设置有光导17b,导致装置的设计和调整操作变得复杂。
11.因此,这种眼底照相机分别在眼前观察模式和眼底观察模式下工作时,或从眼前观察模式转换为眼底观察模式并运转时,检查对象的瞳孔需要稳定地固定,同时需要提高所拍摄的眼底图像质量。
12.公开于该背景技术部分的信息仅仅旨在增加对本实用新型的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。


技术实现要素:

13.本实用新型的目的在于提供一种用于眼科的光学成像装置及其成像系统,即使在从眼前观察模式转换为眼底观察模式时,也可以使检查对象的视线固定,从而可以减小由此导致的瞳孔位置的误差。
14.为实现上述目的,本实用新型提供了一种用于眼科的光学成像装置,包括成像通道、照明通道、系数通道、分支通道以及控制单元;成像通道用于观察检查对象的眼前;照明
通道为了拍摄眼底而对检查对象眼底进行照明;系数通道从成像通道分支,用于在固定检查对象的瞳孔位置的同时固定检查对象的视线;分支通道从系数通道分支,用于形成对检查对象眼底的焦点系数;控制单元用于以机械方式或电方式控制成像通道、照明通道、系数通道及分支通道中至少任一个上配置的光学和机械结构物。
15.在一优选的实施方式中,在成像通道中配置有从检查对象的眼前起依次排列的眼科透镜模块、眼前成像适配器、成像光圈、成像透镜模块、第一分束镜、图像接收器,眼前成像适配器通过第一驱动马达进出成像通道,成像透镜模块包括从检查对象眼前起依次排列的成像中继透镜和聚焦透镜。
16.在一优选的实施方式中,第一分束镜由正六面体形状的偏光棱镜形成。
17.在一优选的实施方式中,在照明通道中包括照明光源部以及照明中继透镜:照明光源部向检查对象眼底照射光,照明光源部包括光源及环状光阑;光源具有与照明通道的光轴一致的中心轴并配置成环形;环状光阑用于调节从光源释放的光;照明中继透镜将从照明光源部释放的光传递到检查对象眼底。
18.在一优选的实施方式中,配置成环形的光源包括可见光源和近红外线光源,可见光源和近红外线光源规则或不规则排列。
19.在一优选的实施方式中,配置成环形的光源为具有双波长范围的led阵列。
20.在一优选的实施方式中,在照明通道中包括照明光源部以及照明中继透镜;照明光源部向检查对象眼底照射光,照明光源部包括光纤束及可见光源和近红外线光源;光纤束为环形,由第一光纤和第二光纤结合形成;可见光源和近红外线光源分别配置成第一光纤的入口和第二光纤的入口;照明中继透镜将从照明光源部释放的光传递到检查对象眼底。
21.在一优选的实施方式中,在照明通道中包括照明光源部以及照明中继透镜;照明光源部向检查对象眼底照射光,照明光源部包括第一光源、第二光源及光分离器,其中,光分离器使第一光源和第二光源释放的光同轴释放,第一光源以光分离器为基准配置成照明通道的光轴上,第二光源与照明通道的光轴垂直配置;照明中继透镜将从照明光源部释放的光传递到检查对象眼底配置成。
22.在一优选的实施方式中,在系数通道中配置有依次排列的第二分束镜、准直系数单元、缩放模块、led矩阵,准直系数单元包括准直系数光源以及准直系数光导;准直系数光源形成观察检查对象眼前所需的点光源;准直系数光导用于引导从准直系数光源产生的光。
23.在一优选的实施方式中,第二分束镜以正六面体形状形成。
24.在一优选的实施方式中,缩放模块包括为了定位检查对象的瞳孔位置而依次排列的第一缩放透镜、包括对准系数光源和对准系数平面光导的对准单元、第二缩放透镜。
25.在一优选的实施方式中,在分支通道中配置有焦点系数投影单元,焦点系数投影单元包括依次配置的焦点系数分光棱镜、焦点系数遮罩和焦点系数光源,焦点系数分光棱镜包括平板部以及正楔形部和负楔形部;平板部设置在中央;正楔形部和负楔形部相对于平板部具有相同倾斜度并在两侧形成。
26.在一优选的实施方式中,焦点系数遮罩的缝隙相对于焦点系数分光棱镜的平板部的长度方向垂直配置。
27.为实现上述目的,本实用新型提供了一种用于眼科的光学成像装置,包括第一光源、第二光源和第三光源、第四光源、第五光源、第六光源、第七光源以及控制单元;第一光源配置成用于观察检查对象眼前的成像通道;第二光源和第三光源配置成向检查对象眼底进行照明的照明通道;第四光源、第五光源、第六光源配置成从成像通道分支的系数通道;第七光源配置成从系数通道分支的分支通道;控制单元以电方式控制第一光源至第七光源;其中,控制单元为了观察检查对象眼前而使第一光源和第六光源开启,为了定位检查对象眼底而使第三光源、第四光源和第五光源开启,为了聚焦检查对象眼底而使第四光源、第五光源和第七光源开启,为了拍摄检查对象眼底而使第二光源开启。
28.在一优选的实施方式中,第一光源、第三光源、第五光源和第七光源为近红外线光源,第二光源、第四光源和第六光源为白色光源。
29.为实现上述另一目的,本实用新型还提供了一种简单稳定的用于眼科的光学成像系统,无需为了拍摄眼底而设置使焦点位于眼底面的复杂的光学结构物或机械结构物。用于眼科的光学成像系统包括拍摄部以及影像生成部;拍摄部用以拍摄检查对象眼底图像,拍摄部包括成像通道、照明通道、系数通道、分支通道及控制单元;成像通道用于观察检查对象眼前;照明通道为了拍摄眼底而向检查对象眼底进行照明;系数通道从成像通道分支,用于在固定检查对象的瞳孔位置的同时固定检查对象的视线;分支通道从系数通道分支,用于形成对检查对象眼底的焦点系数;控制单元用于以机械方式或电方式控制成像通道、照明通道、系数通道和分支通道中至少一个;影像生成部用以对拍摄部拍摄的眼底图像进行影像处理而生成眼底影像。
30.为实现上述再一目的,本实用新型又提供了一种能够在光学结构物组装时提高自由度的用于眼科的光学成像装置及其成像系统。用于眼科的光学成像系统包括拍摄部以及影像生成部;拍摄部用以拍摄检查对象眼底图像,拍摄部包括第一光源、第二光源和第三光源、第四光源、第五光源、第六光源、第七光源及控制单元;第一光源配置成用于观察检查对象眼前的成像通道;第二光源和第三光源配置成向检查对象眼底进行照明的照明通道;第四光源、第五光源、第六光源配置成从成像通道分支的系数通道;第七光源配置成从系数通道分支的分支通道;控制单元以电方式控制第一光源至第七光源;其中,控制部为了观察检查对象眼前而使第一光源和第六光源开启,为了定位检查对象眼底而使第三光源、第四光源和第五光源开启,为了聚焦检查对象眼底而使第四光源、第五光源和第七光源开启,为了拍摄检查对象眼底而使第二光源开启;影像生成部对拍摄部拍摄的眼底图像进行影像处理而生成眼底影像。
31.本技术的课题不限于以上提及的课题,普通技术人员可以从以下描述明确理解未提及的其他课题。
32.与现有技术相比,本实用新型的用于眼科的光学成像装置及其成像系统具有以下有益效果:其可以在拍摄眼底时稳定地固定检查对象的瞳孔,因而具有提高眼底图像的质量的效果。另外,光学成像装置中包括的多种光学结构物彼此稳定地实现光学结合,具有可以轻松执行模式转换的效果。
33.本技术的效果不限于以上提及的效果,普通技术人员可以从以下描述明确理解未提及的其他效果。
附图说明
34.图1是简要示出根据本实用新型一实施例的用于眼科的光学影像装置的图。
35.图2是示出根据本实用新型的用于眼科的光学影像装置的电子框图的图。
36.图3是简要示出根据本实用新型一实施例的用于眼科的光学成像装置的图。
37.图4a是示出根据本实用新型一实施例的照明通道中配置的照明光源部的侧视图的图,图4b是沿图4a的x-x线截取的光源的剖面图。
38.图5a是示出根据本实用新型另一实施例的照明通道中配置的照明光源部的侧视图的图,图5b是沿图5a的x-x线截取的光源的剖面图。
39.图6a是示出根据本实用新型另一实施例的照明通道中配置的照明光源部的侧视图的图,图6b是沿图6a的x-x线截取的光源模块的剖面图。
40.图7是示出根据本实用新型又一实施例的照明通道中配置的照明光源部的示意图。
41.图8是用于通过根据本实用新型一实施例说明准直系数单元的光传递过程的图。
42.图9是示出根据本实用新型一实施例的焦点系数分光单元的立体图。
43.图10a至图10c是示出根据本实用新型一实施例的由于焦点系数遮罩在眼底投影而在图像接收器形成的焦点系数的图。
44.主要附图标记说明:
45.100-拍摄部,200-驱动部,300-影像生成部,400-控制部,410-模式设置部,420-照明切换控制部,430-存储部,500-操作部,600-显示部,700-用于眼科的光学成像装置,oi-成像通道,ol-照明通道,ox-系数通道,ow-分支通道,71-眼科透镜模块,72-眼前成像适配器,73-反射镜,74-成像光圈,75
‑ꢀ
成像透镜模块,76-第一分束镜,77-图像接收器,78-主控制单元,optical axisof ol-ol光轴,paseed light ray-传递光线,scattered light rays-散射光线,markpoint-标记点,vertical axis-中心线,central line-纵轴。
具体实施方式
46.下面将结合附图详细描述本实用新型的实施例。然而,附图说明只是为了更容易地揭示本实用新型的内容,本领域普通技术人员可以容易地理解到本实用新型的范围不限于附图的范围。
47.另外,本实用新型的详细说明和权利要求中所使用的术语仅用于描述具体实施例,不用于限制本实用新型。除非上下文另有明确规定,否则单数表达包括复数表达。
48.在本实用新型的详细说明和权利要求中,“包括”、“具有”等词语意在表示存在说明书中描述的特征、数量、步骤、动作、构成要素、部件或其组合;应理解,这并不排除存在或添加一个或多个其他特征、数量、步骤、操作、构成要素、部件或其组合的可能性。
49.进一步地,涵盖本实用新型的详细说明中示出的实施例的所有可能的组合。本实用新型的多样实施例虽然互不相同,但应理解为不必相互排斥。例如,在此描述的特定形状、结构及特性与一个实施例相关联,在不超出本实用新型的思想及范围的前提下可以以其他实施例实现。另外,各个公开的实施例内的个别构成要素的位置和配置应理解为可以在不超出本实用新型的思想及范围的前提下变更。因此,后述的详细说明并非出于限定之意,如能适当说明,本实用新型的范围仅由与其权利要求所主张的内容均等的所有范围和
所附权利要求所限定。附图中类似的附图标记指称在多个方面相同或类似的功能。
50.图1是简要示出根据本实用新型一实施例的用于眼科的光学成像系统的图,图2是示出根据本实用新型的用于眼科的光学成像系统的电子框图的图。
51.参照图1和图2,根据本实用新型的用于眼科的光学成像系统1000包括拍摄部(imaging unit)100、驱动部(driving unit)200、影像生成部(imagegenerator)300、控制部(controller)400、操作部(operating unit)500和显示部(display device)600。
52.如图1所示,用于眼科的光学成像系统具有包括底板111和头部支架121 的支撑部130,并获得被头部支架121支撑的检查对象的眼底影像。支撑部130可以由多样形态构成,只要是本技术领域的技术人员便可以容易地实施,因而不再赘述。
53.拍摄部100包括用于构成照明光学系的照明透镜模块和用于构成拍摄光学系的拍摄透镜模块,例如眼科透镜模块、成像透镜模块等。所述照明透镜模块可以包括波长不同的可见光源和近/红外线光源,可以包括光源切换部(light switching unit)110,所述光源切换部(light switching unit)110选择性地切换可见光源和近/红外线光源,以使所述可见光源或近/红外线光源释放的光向检查对象眼底照明。光源切换部110可以为诸如分束镜(beam spliter) 的机械式单元,也可以利用电子信号处理而取代机械式单元。这种光源切换部110受到所述控制部400控制而可以选择性地运转。所述拍摄部100的具体构成和操作方法将在后面描述。
54.驱动部(driving unit)200受到所述控制部400控制,可以对应于上述选择的光源而选择性地驱动所述拍摄部100的内部构成要素,例如照明透镜模块或成像透镜模块。另外,驱动部200可以包括用于移动安装架的马达驱动部。
55.影像生成部(image generator)300受到所述控制部400控制,对所述拍摄部100拍摄的眼底区域进行影像处理而生成眼底影像并输出,将所述眼底影像存储于存储部430或显示于显示部600。
56.操作部(operating unit)500包括用于供眼科医生和眼科护士等医务人员可以选择根据本实用新型的可见光拍摄模式和红外线光拍摄模式的模式选择装置和用于透镜聚焦操作等所需的多样操作装置,将通过选择装置和操作装置产生的信号(命令)输出到控制部400。
57.所述操作装置可以包括但不限于按钮、操纵杆、触摸板、鼠标等中至少一种以上。
58.显示部(display device)600受到所述控制部400的控制,显示本实用新型的用于眼科的光学成像装置的运转所产生的运转信息,显示根据本实用新型一实施例的模式信息、根据模式的近/红外线眼底影像和可见光线眼底影像中至少一种以上。
59.控制部400可以为cpu、ap(application processor,应用处理器)、微控制器等,包括模式设置部(mode setting unit)410、照明切换控制部 (lightswitching controller)420和存储部(memory)430,控制根据本实用新型的用于眼科的光学成像装置的全面运转。
60.具体地,如果从操作部500输入模式选择信号并由此发生模式选择事件,则模式设置部410判断是眼前观察模式、眼底观察模式、拍摄眼底模式中哪一种,或者判断模式选择信号为可见光线拍摄模式还是近/红外线拍摄模式,并对应于判断的模式而控制驱动部200,选择性地驱动拍摄部100的内部构成。
61.所述模式设置部410设置了模式后,照明切换控制部(light switching
controller)420对应于设置的模式而控制光源切换部110,使得向检查对象眼底照射可见光或近/红外线光。
62.存储部(memory)430可以包括诸如ram(random acces memory)的易失性存储器、诸如rom(read only memory)和闪速存储器的非易失性存储器形态的计算机可读介质,另外,可以包括磁盘驱动器,例如包括但不限于硬盘驱动器(hard disk drive)、固态硬盘(solid statedrive)、光盘驱动器等。另外,存储部430包括:程序区域,所述程序区域存储用于控制根据本实用新型的用于眼科的光学成像装置全面运转的控制程序;临时区域,所述临时区域临时存储在所述控制程序中发生的数据;以及数据区域,所述数据区域存储通过所述操作部500输入的信息和所述影像。
63.图3是简要示出根据本实用新型一实施例的用于眼科的光学成像装置的图。
64.参照图3,根据本实用新型的用于眼科的光学成像装置700可以包括眼科透镜模块71、成像透镜模块75、照明中继透镜83、缩放模块95、焦点系数单元85等多样的光学和机械结构物作为可插入于前述图1的拍摄部100的结构,并可以通过这种光学结构物形成成像通道oi、照明通道ol、系数通道 ox和分支通道ow。另外,用于眼科的光学成像装置700可以包括:主控制单元78,所述主控制单元78用于以机械或电方式控制所述光学和机械结构物;显示部79,所述显示部79可以显示因成像装置700运转而呈现的检查对象的眼前或眼底图像。另外,成像装置700可以包括但不限于设计成可实现装置构成要素的运转的电子装置、控制及显示、机械及电驱动装置等。
65.成像通道(imaing channel)oi是通过检查对象的眼前观察和眼底观察而使眼前可视化并拍摄眼底的通道,在所述成像通道oi中从检查对象眼底(f) 起可以依次配置有眼科透镜模块(ophthalmic lens module)71、眼前成像适配器(anterior eye imaging adapter)72、反射镜(mirror)73、成像光圈 (imagingaperture)74、成像透镜模块(imaging lens module)75、第一分束镜(firstbeamsplitter)76和图像接收器(imaging camera)77。
66.眼科透镜模块71可以由多个透镜构成,以使从眼底反射的光可以收敛于反射镜73和成像光圈74位置。眼前照明光源(anterior eye illumination lightsource)71a邻接成像通道oi中的眼科透镜71配置,可以对检查对象眼前进行照明。
67.眼前成像适配器72在检查对象的眼前观察模式时配置成成像通道oi内,在眼底观察模式、眼底聚焦模式或眼底拍摄模式时,通过与所述眼前成像适配器72以机械方式或电方式联动的第一驱动马达72a的运转而从成像通道 oi脱离。第一驱动马达72a在主控制单元78的控制下可以使眼前成像适配器 72能够进出成像通道的轴。
68.反射镜73是形成有孔的倾斜的反射镜,配置成眼科透镜模块71与成像透镜模块75之间,使通过照明通道ol传递的光向所述检查对象的眼底方向反射,反射镜73的孔可以发挥光通路作用,以使借助于所述眼科透镜模块71 而从眼底反射的光收敛并向所述成像透镜模块75行进。成像光圈74可以配置成与所述反射镜相同位置,调节从眼底反射的光。
69.成像透镜模块75形成光路径通道,以使穿过反射镜73和成像光圈74的光入射到图像接收部77,所述成像透镜模块75从检查对象眼底起可以依次包括成像中继透镜(imaging relaylens)75a和聚焦透镜(focusing lens)75b。成像中继透镜75可以以由多个透镜在光学上结合的模块形成,聚焦透镜75b 可以以机械或电方式与第二驱动马达75c联动,以便能沿成像通道oi的轴移动。
70.第一分束镜76对从检查对象眼前或眼底反射的光通过所述成像通道oi 而入射的光量进行分离并传递到图像接收器77和系数通道ox。另外,第一分束镜76将通过系数通道ox而入射的光向所述眼前成像适配器72方向传递。这种第一分束镜76可以由正六面体形态的立方体分束器形成,可以消除重影现象,提高对反射表面的损伤的耐久性,并增强组装和调整的容易性,另外,可以以偏光分束镜形成,以便能够消除因系数通道ox入射的光而在成像通道oi上配置的光学透镜表面发生的光眩目。
71.图像接收器77从第一分束镜76隔开既定间隔配置,包括图像传感器(未示出),将输入的光变换成眼前或眼底图像信号。此时,图像传感器可以使用 ccd(charge coupled device,电荷耦合器件)图像传感器或cmos (complementary metal oxide semiconductor,互补金属氧化物半导体)图像传感器。
72.照明通道ol是在眼底观察模式或眼底拍摄模式时用于向检查对象眼底进行照明的通道,所述照明通道ol上可以配置有向检查对象眼底照射光的照明通道光源部81和将照明光源部81释放的光传递到所述检查对象眼底方向的照明中继透镜83。照明光源部81可以包括可见光源81a、近/红外线光源 81b及用于调节从可见光源81a和近/红外线光源81b释放的光的环状光阑 (ring slit)81c。照明中继透镜83可以由扩散透镜和聚光透镜等多个透镜在光学上结合而作为一个单位透镜模块形成,照明光源部81可以以多样形态构成,关于此的具体实施例将在后面描述。
73.系数通道ox是借助于成像通道oi中配置的第一分束镜76而从所述成像通道oi分支的通道,用于在眼前观察模式、眼底观察模式、眼底聚焦模式下固定检查对象的瞳孔位置并同时固定所述检查对象的视线,在所述系数通道ox上可以配置有依次排列的第二分束镜(second beamsplitter)91、准直系数单元(visible index collimating unit)93、缩放模块(scalingmodule)95 和led矩阵(visible led matrix)97。另外,在所述准直系数单元93与缩放模块95之间形成有led矩阵图像平面(led matrix image plane)94,借助于所述缩放模块95,所述led矩阵97可以投射于所述led矩阵图像平面94。
74.第二分束镜91使通过分支通道ow入射的光朝向所述系数通道ox的轴向。这种第二分束镜91可以由正六面体形态的立方体分束器形成,可以消除重影现象,提高对由光反射所致的表面损伤的耐久性,并增强组装和调整的容易性。
75.准直系数单元93用于在眼前观察模式下,在使检查对象眼前可视化时固定视线,可以包括:准直系数光源(collimating index lightsource)93a,所述准直系数光源(collimating index lightsource)93a形成用于观察检查对象眼前所需的点光源并释放可见光;准直系数光导(collimating index planar lightguide) 93b,所述准直系数光导(collimating index planar lightguide)93b用于引导从所述准直系数光源93a释放的光。
76.另一方面,当从眼前观察模式转换为眼底观察模式时,成像通道oi中配置的眼前成像适配器72被从成像通道oi去除,因而检查对象瞬间失去目标靶,用于眼底观察的检查对象的瞳孔位置会发生误差。根据本实用新型一实施例,即使所述眼前成像适配器72在眼前观察模式下被从成像通道oi去除,从成像通道oi分支的系数通道ox中配置的准直系数单元93也使视线固定于视标,而不会使检查对象失去作为目标靶点的视标,因而不发生因模式变更导致的误差。
77.缩放模块95可以包括:对准单元(accuratecameraalignmentunit)96,所述对准单元(accuratecameraalignmentunit)96用于在眼底观察模式和眼底聚焦模式下对准检查对象的瞳孔位置进行定位;第一缩放透镜(firstscalinglens)95a和第二缩放透镜(secondscalinglens)95b,所述第一缩放透镜(firstscalinglens)95a和第二缩放透镜(secondscalinglens)95b沿着系数通道ox的轴分别配置成所述对准单元96的前方、后方。另外,对准单元96包括释放近红外线光的对准系数光源(alignmentindexlightsource)96a和对准系数光导(alignmentindexplanarlightguide)96b,在眼底观察模式和眼底聚焦模式下运转。
78.另一方面,准直系数光导93b和对准系数光导96b可以制作成剖面为四边平面的光导形态,因而可以脱离系数通道0x的光轴进行配置。
79.led矩阵97在眼底观察模式下固定检查对象的眼睛位置,与所述缩放模块95一同变更检查对象的固定视线方向,以观察眼底的多样部位。
80.分支通道ow是从系数通道ox分支并用于在眼底聚焦模式下形成对检查对象眼底的焦点系数的通道,可以配置有包括焦点系数光源(focusindexlightsource)85a和焦点系数分光单元(focusindexsplittingunit)85b的焦点系数投影单元(focusindexprojectionunit)85。焦点系数分光单元85b可以以多样形态构成,后面将对此具体描述。
81.这种焦点系数投影单元85位于与成像通道oi的图像平面在光学上共轭的平面(opticallyconjugatedplane),成像通道oi中配置的聚焦透镜75b在将系数图像聚焦于眼底的同时,将眼底表面与图像接收器77的平面进行光学耦合。因此,在聚焦系数被固定的状态下,如果聚焦于眼底,则成像通道oi中只有聚焦透镜75b运转并拍摄眼底图像。
82.焦点系数投影单元85配置成从系数通道ox分支的分支通道ow,因而拍摄眼底时不会以机械及器械方式从成像通道oi或系数通道ox的光路径脱离。因此,根据本实用新型的光学成像装置700在拍摄眼底时,无需设置或移动复杂的光学结构物或机械和器械结构物,可以简单、稳定地拍摄高质量的眼底图像。
83.根据本实用新型的用于眼科的光学成像装置700无需使用校正透镜便可以提供根据成像通道oi内光学系统的大校正范围(-10屈光度至+10屈光度)的屈光度校正,无需追加校正透镜便可在检查对象的眼睛屈光不正的情况下防止因眼睛折射导致的错误。
84.图4a是示出根据本实用新型一实施例的照明通道中配置的照明光源部的侧视图的图,图4b是沿图4a的x-x线截取的光源的剖面图。
85.如图4a和图4b所示,照明光源部81包括光源41、43和从所述光源41、43隔开既定间隔配置的环状光阑45。光源41、43可以包括可见光源41和近红外线光源43,具有与照明通道ol的光轴(opticalaxis)一致的中心轴并配置成环形。光源41、43可以使用但不限于白色led、红外线led。环形光源41、43的可见光源41和近红外线光源43可以彼此交替地规则排列或不规则排列。可见光源41和近红外线光源43的数量可以根据眼底观察模式或眼底拍摄模式所需的光量而不同地调节。
86.图5a是示出根据本实用新型另一实施例的照明通道中配置的照明光源部的侧视图的图,图5b是沿图5a的x-x线截取的光源的剖面图。
87.如图5a和图5b所示,照明光源部81可以包括光源51和从所述光源51隔开既定间隔配置的环状光阑55。如图4b所示,光源51可以具有与照明通道ol的光轴(opticalaxis)
一致的中心轴并配置成环形。光源51是在可见光波段和红外线波段均可照射光线的双波段led,例如可以包括具有双波长范围的led阵列(led array ranged with double wavelength)。
88.图6a是示出根据本实用新型另一实施例的照明通道中配置的照明光源部的侧视图的图,图6b是沿图6a的x-x线截取的光源模块的剖面图。
89.如图6a和图6b所示,照明光源部81可以包括光源模块60和从所述光源模块60隔开既定间隔的环状光阑69。光源模块60可以包括第一光纤61a、第二光纤63b、第一聚光透镜62a、第二聚光透镜62b、可见光源63a和近红外线光源61b。
90.第一光纤61a和第二光纤63b分别在远离入口侧的既定部位彼此结合而构成环形的光纤束61,环形的光纤束61被外壳65固定。可见光源63a和近红外线光源61b分别相向地配置成第一光纤61a的入口和第二光纤63b的入口,第一聚光透镜62a和第二聚光透镜62b分别配置成可见光源63a与第一光纤61a的入口之间、近红外线光源63b与第二光纤63b的入口之间,对从可见光源63a和近红外线光源61b释放的光进行聚光并分别传递给第一光纤61a 和第二光纤63b。
91.这种光源模块60的可见光源63a和近红外线光源61b可以与照明通道 ol的光轴一致地配置,可以脱离光轴而在任意位置配置组装,因而可以提高组装自由度。
92.图7是示出根据本实用新型又一实施例的照明通道中配置的照明光源部的示意图。
93.如图所示,照明光源部81包括光源71、光分离部72、聚光透镜73和环状光阑75。光源71包括沿相对于所述光分离部72相互垂直方向配置的可见光源71a、近红外线光源71b。可见光源71a可以为在400nm至700nm范围内释放窄带可见光的窄带可见光源或窄带单一波长激光器或具有400nm至 700nm连续谱的可见光发光二极管。近红外线光源71b可以为具有近红外线波段的发射中心波长的发光二极管或窄带单一波长激光器。优选近红外线发光二极管例如具有740nm、760nm、800nm、810nm、850nm或940nm的中心波长,波束宽度例如为10nm至50nm,但本实用新型不限于上述内容,根据实现本实用新型的多样环境和条件,具有多样中心波长的多样发光二极管可以用作近红外线光源71b。
94.光分离部72可以以诸如分束镜(beam spliter)的非偏光光分离器形成,以使近红外线光源71b释放的近红外线和可见光线光源71a释放的可见光可以通过相同的照明通道ol光轴(optical axia)传递,即同轴(coaxially)传递。例如,以非偏光分束镜为基准,近红外线光源71b与照明通道ol光轴垂直配置,可见光源71a配置成所述照明通道ol的轴上时,非偏光分束镜反射从近红外线光源71b释放的近红外线而使可见光源71a释放的可见光透过。相反,以非偏光分束镜为基准,近红外线光源71b配置成所述照明通道ol的光轴上,可见光源71a与所述照明通道光轴垂直配置时,非偏光分束镜使近红外线光源71b释放的近红外线透过而反射可见光源41a释放的可见光。
95.如上所述,根据本实用新型一实施例的照明通道中配置的照明光源部81,在从利用近红外线的眼底照明转换成利用可见光的眼底照明期间,可以减小光源的机械性移动的必要性,因而根据本实用新型的光学成像装置700可以稳定运转。
96.图8是用于通过根据本实用新型一实施例说明准直系数单元的光传递过程的图。
97.如图所示,准直系数单元93通过由诸如玻璃板的透明材质构成的准直系数光导
93b和准直系数光源93a而形成点光源。准直系数光导93b的剖面为四边平面,光从其侧面配置的准直系数光源93a入射,在内部发生全反射并传播。大部分光基于全反射条件而传播,但如果遇到全反射条件被破坏的小半径地点(small circular open spot),则传播的光在该地点(mark point)以散射光线(scattered light rays)形态释放。这种光如同在暗背景下从点光源发光一样被检查对象识别。因此,准直系数单元93在观察眼前时固定检查对象的视线。
98.另一方面,对准单元96的光传递也以与图8所示的准直系数单元的光传递相同的方法实现,使检查对象的瞳孔位置对准。
99.图9是示出根据本实用新型一实施例的焦点系数分光单元的立体图,图 10a至图10c是示出根据本实用新型一实施例的由于焦点系数遮罩在眼底投影而在图像接收器形成的焦点系数的图。
100.如图9所示,焦点系数投影单元85中包括的焦点系数分光单元85b可以包括焦点系数分光棱镜(focus index splittingprism)15和焦点系数遮罩(focusindex mask)25。
101.焦点系数分光棱镜15具有圆盘形状并分成三个区域,中央为平板部15b,在平板部的两侧是具有相同倾斜度的正楔形部15a和负楔形部15c。焦点系数遮罩25与焦点系数分光棱镜15在光学上结合,具有对应的圆板形状,在中央形成有缝隙25a。这种焦点系数遮罩的缝隙25a可以相对于焦点系数分光棱镜平板部15b的长度方向垂直配置。
102.如果利用焦点系数光源85a而将与焦点系数分光棱镜15在光学上结合的焦点系数遮罩25投影于检查对象眼底,则如图10a至图10c所示,借助于眼底反射的光而在图像接收器77中形成与焦点系数分光棱镜15的三个划分部分15a、15b、15c对应的三个焦点系数15a1、15b1、15c1。焦点系数的相对位置因眼底失焦的程度和符号而不同。
103.例如,图10a是连接三个焦点系数15a1、15b1、15c1中心的线(central line) 以纵轴(vertical axis)为中心逆时针方向旋转-α的情形,这意指相比准确聚焦于眼底面的焦点f,焦点位于眼底面前侧。图10b是连接三个焦点系数15a1、 15b1、15c1中心的线(central line)以纵轴(vertical axis)为中心顺时针方向旋转+α的情形,这意指相比准确聚焦于眼底面的焦点f,焦点位于眼底面后侧。图10c是连接三个焦点系数15a1、15b1、15c1中心的线(central line) 与纵轴(vertical axis)一致的情形,这意指焦点位于准确聚焦于眼底面的焦点f。
104.当要如此利用焦点系数使焦点位于眼底面时,主控制单元78分析所显示的焦点系数15a1、15b1、15c1并生成散焦信号(defocusing signal),所生成的散焦信号控制第二驱动马达75c,以使连接焦点系数15a1、15b1、15c1中心的线与纵轴一致。
105.下表1是根据本实用新型一实施例的光学成像装置的多个通道中配置的光源在多个模式下运转的示例。
106.表1
107.[0108][0109]
如表1所示,根据本实用新型的光学成像装置700如果开始检查对象眼睛,则为了使眼睛的眼前(anterior eye)可视化而转换为眼前观察模式。在眼前观察模式下设置装置的工作距离,以检查对象的瞳孔中心轴为基准设置为使作为图像接收器77的照相机配置成瞳孔的中心。可以利用诸如操纵杆的操作装置使装置的移动式头相对于被固定的底板111移动来执行设置。在所述眼前观察模式下,释放近红外线光的眼前照明光源(第一光源)71a开启 (turn-on),眼前成像适配器72通过第一驱动马达72a插入配置成成像通道 ol。此时,系数通道ox中配置的作为点光源的准直系数光源(第六光源) 93a开启(turn-on),以便固定检查对象的视线。在主控制单元78的控制下,图像接收器77捕获的所述检查对象的眼前图像显示于显示部79。另外,眼前图像可以在主控制单元78的控制下存储于存储器。另一方面,如果图像接收器77捕获的眼前图像失焦、瞳孔不位于显示部画面中央,则可以在所述主控制单元78的控制下,利用诸如操纵杆的操作装置设置准确的工作距离,以便能够获得瞳孔的最清晰图像。为了容易地进行这种设置,可以在主控制单元 78的控制下,在显示部的画面中显示同心圆形态的靶。同心圆靶距离其中心的最小直径可以设置为从工作距离观察的最小瞳孔的大小,在画面中,沿着瞳孔边缘区域以相同块显示为易于读取所计算的明暗指数的形态。因此,可以由检查者选择最准确的瞳孔聚焦位置。
[0110]
画面中显示的同心圆靶的中心与瞳孔中心对准后,眼前成像适配器72通过第一驱动马达72a向成像通道ol外移动并同时变换成眼底观察模式。在眼底观察模式下,眼前照明光源(第一光源)71a和作为可见光源的准直系数光源(第六光源)93a关闭(turn-off),同时,照明通道近红外线光源(第三光源)81b、作为近红外线光的对准系数光源(第五光源)96a和作为可见光的 led矩阵(第四光源)97开启(turn-on)。为了可以在检查对象的眼底观察多个部位,开启led矩阵97中与眼底其他部位对应的led,从而led矩阵97 发挥使检查对象的视线移动的作用。
[0111]
然后,在眼底聚焦模式下,照明通道近红外线光源(第三光源)81b关闭 (turn-off),作为近红外线光的焦点系数光源(第七光源)85a开启(turn-on)。
[0112]
在模式转换时如果利用如上所述方法适宜地控制装置中安装的光源的运转,则可以在眼底拍摄前准确固定检查对象的瞳孔位置并保持视线,另外,可以在检查对象的眼底面准确形成图像焦点。
[0113]
另一方面,如果未在眼底面形成图像焦点,则如前所述,包括焦点系数投影单元85、图像接收器77和控制单元78的自动聚焦系统启动。自动聚焦系统分析并计算在图像接收器77形成的焦点系数,并在控制单元78的控制下控制第二驱动马达75c,以使聚焦透镜沿
成像通道oi的轴移动。即,如前所述,控制单元78为了使图像焦点准确聚焦于眼底面,可以控制第二驱动马达75c,以使穿过三个焦点系数中心的线与纵轴一致。
[0114]
如上所述,通过眼前观察模式、眼底观察模式和眼底聚焦模式而满足眼底拍摄所需的所有条件后,照明通道可见光源(第二光源)81a开启(turn-on)。在照明通道可见光源81a开启期间,图像接收器77在控制单元78的控制下捕获眼底图像后进行数字图像处理和分析,并将其存储于存储器。
[0115]
这种根据本实用新型的光学成像装置700可以通过前述步骤生成能够确认检查对象的眼睛疾病的眼前图像或眼底图像,可以反复执行上述步骤而生成检查对象的双眼图像。
[0116]
如上所述考查了根据本实用新型的实施例,但除上述实施例之外,本实用新型可以在不脱离本实用新型的精神或范围的情况下以其他具体形式实施,这是本领域普通技术人员不言而喻的。因此,上述实施例应被视为示例性的而非限制性的,因此,本实用新型不限于上述描述,而是也可以在所附权利要求及其均等范围内进行变更。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1