时间分辨乳房成象装置的制作方法

文档序号:1072242阅读:278来源:国知局
专利名称:时间分辨乳房成象装置的制作方法
技术领域
本发明一般涉及一种医疗诊断成象装置,特别涉及一种把近红外激光用作放射源的乳房摄影机。
背景技术
乳腺癌是造成美国女性死亡的一个元凶。只有早期检查出恶性肿瘤才能有效治疗乳腺癌。当前作出很大努力对乳腺肿瘤的症状进行普查。这种普查需要使用复杂的自动设备才能可靠地完成检查过程。
当前x线照相法的x线吸收密度分辨率还不足以可靠地早期检查出恶性肿瘤。研究表明,如乳房肿瘤的大小在1cm以上,转移的可能性会大大增加。这一大小的肿瘤在乳房照片中很少能生成可检出的对比度。乳房肿瘤长到2-3cm时乳房照片中才会生成可检出的对比度。在现有乳房摄影中用来推断肿瘤的钙沉积也与大尺寸的肿瘤有关。因此,乳房摄影在检出乳房肿瘤上不太有效。
当前使用在门诊部和医院中的大多数乳房摄影设备需要使用乳房压缩技术,这一技术造成病人不舒服,在许多情况下给病人带来痛苦。此外,x线为电离辐射,在广泛使用的乳房摄影中增加了危险因素。
也有人提出使用超声波,例如美国专利No.4,075,883,它要求乳房浸没在一被流体充满的扫描室中。美国专利No.3,973,126也要求乳房浸没在一被流体充满的室中进行x线扫描。
美国专利No.5,692,511公开了一种激光成象装置。
近来,对使用光、确切说激光非侵害地探查体内以揭示内部结构进行了研究。这一技术称为光成象。光体层摄影主要由光成象和谱测量构成。过去几十年的迅速进展使得光体层摄影即将可应用于临床。与x线光子不同,光波长光子在体内组织中不以直线传播。这一现象使得光子在从被扫描样本射出前在组织中发生散射。
由于x线光子基本上沿直线传播,因此使用基于Radon变换的较直接的技术通过使用计算机算法生成CT图象。围绕被扫描物体转动360°进行许多测量。使用这些称为投影的测量对数据进行反向投影,从而生成一表示被扫描物体的内部的图象。
在光体层摄影中所用的数学公式和投影技术执行与x线体层摄影类似的重建功能。但是,由于光子不沿直线传播,因此生成截面图象的技术更数学化,并毫无例外地需要建立被扫描物体的边界。边界确定由于是生成内部结构细节的重建技术的基础,因此非常重要。当前的算法不使用任何直接测量技术来建立被扫描物体的边界。
光子在乳房组织中不沿直线传播,而可描述成“醉鬼步伐”。光子在乳房中的自由路径平均约为1mm,在该短距离后光子向一不同方向偏转。一般来说,光子向前散射,其散射角的余弦平均约为0.9。乳房组织的折射率约为1.5,因此光子在乳房中的传播速度约为2×108m/s。
按照本发明,根据光在乳房组织中的传播的知识、乳房在选定扫描位置上的周边的确定和扫描器的已知结构,可使用一种方法选择在乳房中传播路径最短的光子以生成乳房内部的CT图象。
本发明的目的和概述本发明的一个目的是提供一种检测器阵列,该检测器阵列可检测从被扫描物体射出的光的截然不同的光强。
本发明的另一个目的是为一检测器提供一种处理电路,该处理电路可适应该检测器的动态范围。
本发明的另一个目的是提供一种检测器,具有多增益放大器适应检测器信号的动态范围,该检测器信号的相对幅度范围约为10-11-1。
本发明的另一个目的是提供一种处理电路,该处理电路可检测从被扫描乳房射出的最早到达光子。
本发明的另一个目的是使用近红外线的短脉冲收集数据以重建一乳房内部邻接截面图象。
本发明的另一个目的是直接确定被扫描物体的边界,从而大大缩短重建被扫描物体内部图象所需时间。
本发明的另一个目的是在被扫描物体的受照射的同一边上提供一个或多个传感器检测光束在被扫描物体上的照射点的位置并使用该信息确定该物体的边界。
本发明的另一个目的是提供一种装置,该装置使用光缆把激光光束导入乳房中后把由一准直器收集的光线耦合到一光检测器。
本发明的另一个目的是提供一种装置,该装置使得数据收集电路与经光缆和光学器件传送的光子的到达同步。
本发明的另一个目的是提供处理电路,以允许收集数据确定每一扫描位置的TPSF,然后使用TPSF估计传播散射系数μs′和吸收系数μa。
本发明的另一个目的是使用所有TPSF数据或TPSF数据的时间选通部分提供图象重建所需数据。
总之,本发明提供用于激光成象装置的一种检测器阵列,包括设置在一圆弧上的多个检测器,该圆弧围绕一开口,该开口中放置待扫描物体;以及与各检测器连接的一多增益放大电路。
本发明还提供用于激光成象装置的一种检测器阵列,包括设置在一圆弧上的多个检测器,该圆弧围绕一开口,该开口中放置待扫描物体;以及一多增益放大电路,该放大电路处理各检测器的输出,从而生成用于图象重建的数据。
本发明还提供用于激光成象装置的一种光检测电路,包括用来响应从一被扫描乳房射出的激光脉冲的一光检测器;一与该光检测器的输出连接的多增益预放大电路,一与该多增益预放大电路连接、对该光检测器的输出取样的开关;一扩展取样后信号的RC电路;一与该RC电路的输出连接的放大器;以及对该输出的各样本进行积分的积分器。一时间选通电路与该开关连接,在该输出出现过程中以不变时间间隔打开和闭合该开关。一激光脉冲同步电路与该时间选通电路连接,向该时间选通电路提供激光脉冲何时会到达该光检测器的信号。
本发明还提供用于被扫描物体图象重建的一种数据收集方法,包括在一围绕被扫描物体的圆弧上设置多个检测器;把一多增益放大电路与各检测器连接;把一激光光束照射到该物体的一点上;对各检测器的输出曲线以足够的时间间隔进行取样以改造该曲线;对各样本积分;对若干激光脉冲重复该取样和积分;记录各脉冲的各输出用于图象重建;旋转这些检测器和该激光光束到一圆圈上的另一点;以及重复上述过程,直到转完一整圈。
本发明还提供一种用于确定一被扫描物体的周边的装置,包括其中放置一被扫描物体的扫描室;设置在所述扫描室中、照射被扫描物体的激光光束源,所述激光光束可围绕该物体旋转;设置在所述室中的一传感器阵列,每一所述传感器可检测由于所述激光光束从该物体射出而从该物体表面反射的光;各所述传感器设置成所述传感器中的至少一个传感器对从该表面上离一基准点预定距离的一点发出的光生成一峰值响应,从而在所述激光光束在该圆圈的各角位上确定离该基准点一距离的一特定点,从而转完一圈后生成表示该表面的周边的一组点。
从下述详细说明中可清楚看出本发明的上述和其他目的。
附图的简要说明

图1为本发明光成象装置的侧视图,示出一病人躺在一支撑平台上,她的一个乳房位于一扫描室中,该扫描室不透光。
图2为扫描室的俯视图,示出一激光光束、一光检测器组件阵列和确定一被扫描物体的周边的装置之间的几何关系。
图3为本发明中所用信号处理系统的方框图。
图4为图1扫描室的俯视图,示出激光光束、通过该物体的弦路径与检测器组件之间的几何关系。
图5示出检测器信号的相对幅度与通过被扫描物体的对应弦路径长度之间的关系。
图6示出本发明所用一检测器组件。
图7示出图2具有84个检测器的扫描器的各检测器的灵敏度与其几何位置之间的关系。
图8为图1扫描装置的示意图。
图9A示出在非衰减介质中传播的一激光脉冲。
图9B示出称为光子香蕉路径的各不同路径,该激光脉冲在该乳房中传播。
图10为一受穿过乳房后的激光脉冲照射的高速光检测器的响应曲线。
图11简示出本发明所用光检测电路。
图12A和12B示出一激光脉冲穿过乳房所花时间和穿过一平行路径的同步脉冲。
图13示出该扫描器中的相对电子信号。
图14简示出一光检测信号处理系统,示出适应检测器输出的动态范围的三个放大级。
图15简示出本发明所用一单片微波集成电路放大器。
图16A、16B、16C和16D简示出本发明所用RC电路和有关波形。
图17为放大光检测器输出的处理电路的另一实施例。
图18为放大光检测器输出的处理电路的另一实施例。
图19简示出本发明所用一高速开关。
图20为本发明所用一可编程延迟芯片的方框图。
图21为级联在一起、以增加延迟间隔数的多个可编程延迟芯片的方框图。
图22A、22B、22C、22D和22E示出用不断加长的时间选通周期取样的TPSF曲线。
图23为本发明所用一激光系统的方框图。
本发明的详细说明图1示出一扫描装置2,该扫描装置例如可见作为参考材料包括在此的美国专利No.5,692,511。一病人4面向下躺在装置2的顶面上,其乳房6下悬在一不透光的扫描室8中。一激光光束从一激光源10传到扫描室8而照射乳房6。
扫描室8包括一扫描器9,图2为其俯视图。该扫描室包括设置在一圆弧上的多个检测器组件12从而界定一开口,乳房之类被扫描物体14位于该开口中。一激光光束16照射在该物体的点18上。从物体14射出的光、例如光线20被各检测器组件12拾取后用来生成被扫描物体的图象。光线20的路径由从激光光束16的入射点18到被扫描物体周边19上的各射出点的弦表示。
各检测器组件12沿方向23围绕物体14等角距分布在中心为22的一圆圈上,总的角位移为360°。激光光束16在该圆圈23的每一角位上照射物体14。在某一时刻或时段同时收集的由被扫描物体周边上各弦20描述的从物体射出的光被各检测器组件12拾取。每一检测器组件的纵向轴线通过圆心22。各检测器组件12固定在一支架36上,该支架沿圆圈23围绕被扫描物体14。
转完一圈后,该检测器组件12阵列和激光光束16垂直移动到一个新位置扫描物体的另一断层面平面,直到物体的所有断层面平面受到扫描。
每一检测器组件12包括一不透光壳体24,该壳体有一开口前端26和一后端28,检测器30位于该后端中。最好是,用一光缆连接各检测器与各壳体(见图6),从而使得各检测器30位于离开壳体24很远处,这在下文交代。壳体24的横截面可呈管状、圆形、方形或其他形状。壳体24用来限制其检测器30的视野,从而每一检测器只看到被扫描物体的一对应小区域。每一检测器组件12的视野用标号32表示。一检测器组件所能见到的被扫描物体的一小片表面用标号34表示。
视野32和对应小片表面34构作成相邻小片表面之间的重叠尽可能小。这样,在该圆圈的每一角位上,每一检测器组件只与一小片表面对应,从而从一小片表面射出的光只由其视野覆盖该小片表面的检测器检测。由于激光光束16可以任何路径、例如由弦20描述的路径穿过物体,因此各检测器30可检测从对应小片表面射出的任何光。各壳体的详细情况见未决的申请日为1997年11月4日的申请no.08/963,760,该申请根据申请日都为1996年11月29日的临时申请nos.60/032,591、60/032,592和60/032,593要求优先权,所有这些申请作为参考材料包括在此。
从图3可看得最清楚,每一检测器或传感器30与其处理电路40连接。一多路转接器42用来连接各积分器输出与一模数转换器44。数字化的检测器或传感器响应存储在一存储器46中,以便计算机47在以后图象重建时使用。该电路用来在扫描室8的该圆圈中的每一角位上同时收集所有检测器30上的数据。电路40的一个例子见未决的申请日为1997年11月26日的申请no.08/79,328,该申请根据申请日为1996年11月29日的临时申请no.60/032,590要求优先权,这两个申请作为参考材料包括在此。电路40的一改进实施例将在下文交代。
在扫描室8的该圆圈的各角位上收集被扫描物体的周边数据。周边数据的若干收集方法见未决的申请日为1997年11月6日的申请no.08/965,148和申请日为1997年11月6日的申请no.08/965,149,申请08/965,148根据申请日为1996年11月8日的临时申请nos.60/029,897和60/029,898要求优先权,申请08/965,149根据申请日为1996年11月8日的临时申请no.60/029,898要求优先权,所有这些申请作为参考材料包括在此。
从图2中可看得最清楚,最好是,一对传感器阵列49和透镜51设置在激光光束16的同一边上。激光光束16通过该圆圈中心22照射到的被扫描物体上。点18处生成一亮点,然后沿直线53反射到传感器阵列49上。在离开该圆心的每一距离上,传感器阵列49中的某一特定元件检测该亮点。随着激光光束16和扫描器的其余部分以该圆心为中心围绕被扫描物体旋转,传感器阵列49的输出信号与被扫描物体的周边直接相关。通过使用一个或多个直径已知的被扫描物体收集数据,可相对被扫描物体直径校正传感器信号的大小。校正后,传感器信号可用电子器件解码,从而标出扫描器围绕被扫描物体旋转时被扫描物体周边的坐标。
所有传感器49都为CCD传感器,例如Texas Instruments、EG&G和其他公司制造的CCD电视拾取装置,并包括把光线53聚焦在传感器上的透镜51。在本发明中,传感器49为线性、一维CCD装置,而不是用于电视的表面2维阵列。CCD传感器生成一与沿该直线接收的光对应的模拟信号。一处理电路55(见图8)可用作一模拟电路、一数字硬件或运行在一可编程装置上的软件。一ADC(模数转换器)使该视频信号在受计算器处理前数字化。
最好在收集每一断层面的数据过程中获得周边数据,以尽可能减少由于物体在各断层面位置之间移动造成的误差。周边数据用来计算弦长20,然后与对应检测器数据一起用来重建物体图象。从周边数据可获得扫描器9每一扫描位置的弦长20。周边数据由每一角位上从圆心22到点18的距离构成。
图4简示出扫描器9。各检测器30用AA、BB、…KK表示,示出它们在该圆弧上的位置。激光光束在物体中的光路长度用弦18-A、18-B、…、18-K表示。在圆圈23的每一角位上,检测器AA、BB、…KK的检测器信号的相对幅度一般用图5所示曲线48表示。由于弦长18-A和18-K较短,因此检测器AA和KK的信号最强。检测器FF的信号由于其弦长18-F较长而较弱。因此可看到,信号强度一般从检测器AA到FF递减,从FF到KK递增。检测器信号的相对幅度范围放大前可为10-10-1。
图6示出检测器组件12一优选实施例。壳体24中的一平凸透镜52把光线聚焦到一球形透镜54上,该球形透镜把光线射入一光缆56中。光缆56的远端有另一平凸透镜58,该透镜可与一不透光壳体60中的光检测器30制成一体。光缆56足够长,从而检测器30及其处理电路40远离扫描室8并与其他检测器30之间的距离足够长,防止相互发生电子干扰。
本发明使用84个检测器组件,但也可使用不同数量的检测器组件。各检测器30看到的信号的相对幅度按照在扫描器8中壳体24的位置的不同而可为10-10-1。为了适应这一宽广范围,各检测器组件12的效率分级,从图7可看得最清楚,效率最高的检测器组件置于检测器阵列的中央、例如在乳房中光路长度最长的检测器位置FF上,效率较低的组件置于在乳房中的光路最短的位置、例如检测器位置AA上。由于信号的相对强度为在检测器壳体阵列中的位置和各检测器组件的效率的函数,因此在设置检测组件12的位置时,把效率高的组件设置在信号弱的位置上。
图8简示出扫描装置2。激光源10的输出为一激光光束62,该激光光束射到一分束器64上后生成一射到一光缆68的激光光束66和射到另一光缆72的另一激光光束70。激光光束66从光缆68射出后射到另一分束器74,然后成为功率减小的激光光束16射入一准直透镜78(见图2)。该准直透镜78控制激光光束16的直径。从分束器74射出的第二光束80射到一功率监控二极管82,该二极管与一功率监控电路84连接,该电路使用一放大器和一模数转换器生成一表示激光光束16的功率大小的数字信号。照射在乳房6上的激光光束16沿乳房6中的弦20传播后在乳房周边19上的各位置34射出,这可从图2看得最清楚。壳体24为把视野限制在乳房6周边上对应位置34上的光准直器。进入各壳体24中的光线穿过光缆56后照射到光缆56另一端上的检测器30上。
每一检测器30与采样和维持电路40联接,电路40的输出与多路转换器42联结,该多路转换器与模数转换器44连接,该模数转换器与计算机47连接。
从光缆72射出的激光光束70与一光检测器102联结,该光检测器生成一被激光同步电路104使用的信号,该电路104在激光源10每次生成一功率脉冲时生成一电子脉冲。激光脉冲到达检测器102的时间、从而激光同步脉冲的生成时间受光缆72的长度的控制。激光同步脉冲的生成时间由一生成一延迟信号的时间延迟电路106进行微调。可把几英尺长的电缆用作时间延迟电路106。时间延迟激光同步脉冲用作一高速时间选通电子开关控制电路108的输入。计算机47也向控制电路108提供一延迟控制信号。一受计算机47控制的激光脉冲计数器110向电路40提供一信号以控制出现在该电路中的积分时间,这在下文交代。
如图9A所示,一激光脉冲在空气之类非衰减介质中沿直线传播。从图9B可看得最清楚,射入一乳房的激光脉冲不沿直线传播。乳房组织造成光子束散射,从而在乳房中沿锯齿形路径传播。该锯齿形路径在2维或3维空间中称为香蕉路径。如图9所示,方波激光脉冲穿过乳房后以所示一般形状射出。由于各光子的路径不同,在乳房表面测量点上测得的光子强度与时间有关。少数光子首先到达,然后是穿过较长路径的光子,最后是在乳房中的路径最长的光子。最先到达的光子用来重建图象。
可用一具有高速响应特性的检测器显示穿过乳房的一激光脉冲的光子强度对时间的曲线图,该曲线称为瞬时点扩展函数(TPSF)曲线。图10示出一在一介质中传播的激光的TPSF曲线。TPSF曲线可与散射方程适配。曲线适配后,散射方程可用来确定吸收系数μa等乳房特性,然后计算传播散射系数μs′和折射率η。该曲线的部分111表示从乳房最早射出,从而散射程度最低的光子。曲线的部分111表示的最早到达的光子用来重建图象。部分113表示高度散射的光子,在重建图象时不予使用。
具有图10所示响应特性的检测器电路的上升时间、即幅度从10%峰值达到90%峰值所需时间约为300皮秒(ps)。由此可知,该检测器电路的带宽约为0.35/300ps或1.2GHz。
在图11所示本发明使用的检测器电路112中,光检测器30反向偏置以减小由电容114表示的光二极管电容。电容116隔离光二极管30与偏压电源。光子开始照射光二极管几皮秒后二极管30中出现电流。整个电路的上升时间决定于由结电容、壳电容和杂散电容构成的组合电容和负载电阻118。在高频应用场合,负载118最好为50欧。对于电容为1pf的光二极管,上升时间如下计算,tr=2.2RLCd=2.2(50欧)(1×10-12f)=110ps该光二极管电路的频率响应约为0.35/110×10-12=3.2GHz。
现在已有能获得图10所示快速光脉冲的波形的高速光检测器。光检测器技术的进展已产生有效面积很小、从而电容很低的光检测器。
下面说明一激光脉冲在该扫描装置2中的传播。可计算激光脉冲穿过乳房后到达检测器30的时刻。如图12A所示,在从分束器64出发穿过光缆68的光路中,一激光脉冲到达从乳房射出点的各距离是已知的,表为d1、d2、d3、d4和d5。从乳房的周边数据可知d4。可从这些已知距离和光在空气、光缆68和乳房中的已知速度算出对应时间t1、t2、t3、t4和t5。激光脉冲在乳房中的传播速度可使用近似值。乳房组织的折射率η的标称值一般为1.54。光在乳房中的速度cb可如下计算,cb=光在真空中的速度/折射率η,
cb=3×108m/s/1.5=2×108m/s。
弦长从周边数据已预先确定,因此在乳房中的传播时间t4为,t4=弦长/cb。
激光脉冲从乳房射出后穿过光缆56,然后照射到检测器30上。光缆56的距离已知为d5,相应传播时间为t5。TPSF曲线的持续时间用tpt表示。
从电缆72的已知长度d6可算出激光脉冲从分束器64在光缆72中的传播时间t6。时间t6可调节,这只须增加光缆72的长度从而延迟激光脉冲到达光检测器102,或缩短光缆72的长度从而缩短该到达时间。时间t6选择成比激光脉冲到达检测器30的时间稍短,这一点从图12B可看得最清楚。
光检测器102每检测到一激光脉冲时激光同步电路104就使用光检测器102的输出生成一脉冲。用生成一延迟脉冲的时间延迟电路106可把该同步脉冲的生成时间微调一数量tft。该激光同步脉冲用作高速时间选通电子开关控制电路108的一输入。电路108的输出受计算机47的控制。
电路108的时间选通信号在约17那秒的周期上用约17皮秒的增量调节,TPSE曲线的宽度约为17那秒。如图12B所示,设分束器64处时间为t=0,激光脉冲到达检测器30的预期时间为ta。同步激光脉冲到达检测器102的预期时间为t6。时间延迟电路106生成一时间延迟以在时间ta紧前的tft微调同步脉冲。对TPSE曲线取样的时间周期tg从tpt起点紧前到tpt终点之后,从而包含TPSF曲线的持续时间。
图13示出各信号的相对电子时序。在光缆72中传播的激光光束70包括在激光同步检测器102处生成一信号122的激光脉冲120。同步电路104生成一信号124,该信号造成时间延迟106,从而生成时间延迟信号126。信号126启动一时间选通信号128,该信号用一受计算机47控制的可编程延迟芯片在约17那秒周期上以约17皮秒调节,这在下文交代。时间选通信号128对TPSF曲线的将耦合到电路40中的一积分器上的部分取样。该积分器的输入为TPSF曲线的该被选部分。该积分器生成一信号130。该积分器还受一维持信号132和一复位信号134的控制。
图14简示出信号处理电路40。电路40为检测器30的检测器信号提供三种不同幅度。每一高频线性预放大器136的输出连接到高速时间选通电子开关140、RC电路142、一放大器144和一积分器146。积分器146包括一维持开关145和一复位开关147。
电路40构作成包括一低增益级148、一中增益级150和一高增益级152。这三个增益级用来适应检测器信号的相对幅度为10-10-1的很大动态范围。
最好使用一高速电子开关153断开电源与预放大器136和高速时间选通电子开关140,以大大减少该电路在各激光脉冲之间所使用的电力。
高频线性预放大器136为一单片微波集成电路(MMIC),它是一种射频放大器,专门设计成在高射频下具有优良性能。从图15可看得最清楚,MMIC136本身为单一元件,具有4个电子接线端,即一输入端、一输出端和2个接地端。一输入电容154用来把输入信号交流耦合到MMIC上。一输出电容156用来把放大的输出信号交流耦合到该电路的下一级。电阻158通过生成一电压降而在MMIC的输出端上确立一DC电压,从而设定该装置的工作点。一扼流线圈160用来隔离电阻158与该MMIC。电容154和156对MMIC电路性能最佳化至关重要。在MMIC的GHz工作频率下,必须使用其壳结构使得引线电感最小的微波电容。MMIC根据它们产生的增益及其有用工作频率范围加以选择。本发明使用Mini-Circuits的ERA-1和ERA-5型MMIC。
如图16A、16B、16C和16D所示,RC滤波器142扩展样本信号155的宽度生成一扩展信号157后由放大器144放大成放大信号159供积分器146生成更大的检测器信号。由于信号155的取样受时间选通的控制,因此取样后信号155宽度扩展后生成信号157、然后由放大器144放大并不破坏取样过程,而是为积分器146积分提供更宽时间窗。这一扩展对减少任何一次测量所用激光脉冲数量、从而缩短进行一次扫描所需时间来说起着关键作用。
图17示出电路40的另一实施例162。各检测器30的输出与三个增益级、即低增益级164、中增益级166和高增益级168直接连接。取样开关140分别受到控制。
图18清楚示出信号处理电路40的一优选实施例176。电路176包括高增益预放大级178、中增益预放大级180和低增益预放大级182。高增益预放大级178由三个级联的MMIC预放大器136组成,其总增益等于各MMIC的增益的乘积。
低增益预放大级182的总增益为两MMIC预放大器136的增益和电阻电路184的衰减的乘积。该总增益设定为1。
中增益预放大级180的总增益为三个MMIC预放大器136的增益和电阻电路186的衰减的乘积。电阻电路186中的电阻的值选择成中增益预放大级180的总增益等于两个级联MMIC预放大器的总增益。
把图19所示二极管桥式开关190用作取样开关140。二极管桥式开关190以极高速度开合以适应17皮秒取样间隔。但是,该开关生成一瞬时开关信号和DC偏置,该DC偏置补偿作为输入出现在向该桥提供所需信号的MMIC的输出上。在该优选电路176中,从开关190反射的信号在通过中和低增益预放大级180和182中的MMIC预放大器136时最好受MMIC的50欧的特征输入阻抗和电阻电路184和186的衰减。该反射信号是不希望有的,因为该反射信号可能比某些检测器信号大。
在电路168中,从二极管桥式开关反射的瞬时信号作为高增益预放大级168的输入。尽管该反射信号被衰减约10倍,但被三个级联MMIC预放大器136放大约103倍。反射信号的DC偏置使得高增益预放大器积分器140迅速积分成一供电干线。
回到图19,开关190包括一二极管桥式电路191,该电路通常用作-RF开关如在取样示波器中那样对一波形的一(瞬时)部分取样。该二极管桥式电路191由线路193和195上分别通过二极管194和197作用的电压源接通和切断。为合上该开关,线路193上的电压为正电压而反向偏置二极管194;线路195上的电压为负电压而反向偏置二极管197。因此,该桥的所有二极管导电,输入端IN的信号出现在输出端OUT。
线路193上的电压为负电压、线路195上的电压为正电压时,二极管196和198反向偏置,输出OUT与输入IN隔离。一般来说,线路193和195上的电压波形互成镜象。
线路193和195上的电压由信号SAM提供,信号SAM为通常为伪的差分ECL。因此,晶体管199通常接通,晶体管200通常切断。偏置电压201和202设定成稍大于最大输入信号,但大大小于电压203和205。二极管桥式电路191通常切断,此时二极管194和197导电。
为对输入取样,同时把SAM+激励成高、SAM-激励成低。晶体管200接通,晶体管199切断。经电容207和209耦合,二极管194和197激励成反向偏置状态。此时二极管桥式电路191的输入与输出接通。
从图20可看得最清楚,把一可编程延迟芯片192用作电子开关控制电路108。该可编程延迟芯片192由Motorola制造,型号为MC10E195-MC100E195。也可使用型号MC10E196-MC100E196。该可编程延迟芯片192可生成一系列相隔17皮秒的延迟。从图21可看得最清楚,可级联若干可编程延迟芯片192生成所需延迟。本发明使用8个可编程延迟芯片以约17皮秒间隔对整个TPSF曲线取样,从而为大乳房中最长期望弦长的长达17ns的TPSF曲线提供1024个取样步骤。
TPSE数据在t。间隔中的被取样部分可选择在17那秒窗上的约17皮秒步骤。该取样间隔最好为8段17皮秒间隔。
用可编程延迟芯片192电子控制延迟时间。由于检测器信号小,因此使用多个、最好为5个激光脉冲生成一更大信号。由于信号幅度无法预料,因此使用三个不同数量的激光计数生成一递增信号。因此,对任何一个时间选通间隔,可收集由8、16和32个激光脉冲构成的组。激光脉冲数可设定为从1到128个脉冲的间隔值。在预定数量的激光脉冲取样后,设定下一个时间选通沿TPSF曲线的该部分取样。TPSF曲线的长度也是未知数,事实上视被扫描乳房的不同部分而不同。乳房中的较长弦生成其上升边时间递减的较长TPSF曲线。时间延迟间隔和捕获整个TPSF所需时间周期的总宽度事先也不知道。激光脉冲计数和时间选通延迟的递增反复进行,直到覆盖各数值的可用范围。这种数据收集的结果是为了获得可覆盖实际体内扫描中遇到的大量变量的数据。例如,所获得的一种数据含有约16兆字节的数据。
计算机47设定时间选通延迟信号以选择所要使用的TPSF数据的数量。一计算机指令设定积分器146所使用的激光脉冲数。由电路104生成的各激光同步脉冲使得激光脉冲计数器进行加1。所使用激光脉冲数由计算机47设定在激光脉冲计数器110中。
图22A-22E示出一TPSF曲线的取样过程,随着时间选通延迟tg递增对该曲线不断取样。由于ta已知(见图12B),因此高速时间选通电子开关140在ta之前电子闭合。高速时间选通电子开关140的闭合时间由计算机47和电路108确定。这一技术可检测从乳房最早射出、从而散射程度最低的光子。早早到达的光子用来重建图象,见未决申请no.08/979,624,该申请根据申请日为1996年11月29日的临时申请no.60/032,594要求优先权,这两个申请作为参考材料包括在此。
本发明所使用激光光束的特性至关重要。理论计算和物理实验证实,790-800nm波长、3mm直径、500毫瓦平均功率Pag、82MHz重复率RR、110飞秒(fs)脉冲宽度PW的激光光束对生物不造成伤害。
每平方厘米的功率Pcm2计算如下光束面积=πR2=π(3/2mm)2=0.0706cm2
Pcm2=(1/0.0707cm2)×500mW=7.07W/cm2每一脉冲的能量Epp计算如下Epp=Pavg/RR=500mW/8.2×107=6.095×10-9J=6.1nJ峰值功率Pp计算如下Pp=Epp/PW=6.1nJ/110fs=6.1×10-9/1.1×10-13=55,454.5W=55.5kW在本发明中,每脉冲峰值功率无关紧要,重要的是每脉冲能量,因为每脉冲能量决定着成象可用光子数。一光子的量子能量计算如下e=hf其中,h=6.6252×10-34Js,普朗克常数以及f=频率=c/λ其中,c=3×108m/s,λ=800nme=6.6252×10-34Js×(3×108m/s/8×10-8m)=每光子2.48×10-18J每脉冲能量如上计算为6.097×10-9J。每脉冲的光子数计算如下每脉冲光子数=每脉冲能量/每光子能量=6.1×10-9J/2.48×10-18J=2.44×1010如衰减因数为108或1010,可用于成象的光子很少,特别是当光子还发生散射时。从实验可知,医疗光成象所需每脉冲能量约为100-500μJ。每脉冲的光子数计算如下每脉冲光子数=每脉冲能量/每光子能量@100μJ,每脉冲光子数=1×10-4J/2.48×10-18J=4.03×1013@300μJ,每脉冲光子数=3×10-4J/2.48×10-18J=1.2×1014激光器10的重复率必须低到防止生理副作用。如平均功率保持不变,能量已知,则重复率可计算如下
@100μJ,RR=Pavg/Epp=500mW/100μJ=0.5W/1×10-4J=每秒5,000脉冲=5kHz@300μJ,RR=Pavg/Epp=500mW/300μJ=0.5W/1×10-4J=每秒1,667脉冲=1.7kHz@500μJ,RR=Pavg/Epp=500mW/500μJ=0.5W/1×10-4J=每秒1,000脉冲=1.0kHz皮肤中的黑色素含量是造成皮肤色素沉着的原因。实验表明,黑色素吸收量最少的波长为800nm。使用该波长至关重要,因为这对所有肤色的人来说是最少吸收点。
上述信息确立乳房成象所用激光器10所需各参数。这些参数总结在下表中。
参数单位波长700-1100nm最好为 800nm平均功率0.5w每脉冲能量 100-500μJ重复率 1kHz-10kHz最好为 1kHz-5kHz脉冲宽度 小于150ps最好为 50-100ps激光器10的一种选择为锁模钛∶蓝宝石(Ti∶s)激光器,其中植有Ti∶s再生放大激光器。
图23示出本发明所用激光器10。激光器10包括一生成532nm光的二极管泵激固态激光器204,用来泵激一锁模钛∶蓝宝石(Ti∶s)激光器206。激光器206输出的波长范围为790-800nm、重复率约为82MHz、脉冲宽度约60皮秒,用作一Ti∶s再生放大器208的低功率输入。再生放大器208减小重复率、增加每脉冲能量。再生放大器208由在1kHz重复率下生成532nm激光的一闪光灯泵激激光器210驱动。用各转动镜子220折叠光路,减少各激光器所占空间。
激光器204由Spectra Physics Corp.,Mountain View,California制造,型号为Millenia。激光器206由Spectra Physics Corp.制造,型号为Tsunami。激光器208由Spectra Physics Corp.制造,型号为Spitfire。激光器210由Spectra Physics Corp.制造,型号为Magellan。
尽管激光器10由若干部件构成,但也可使用满足所需参数要求的单一激光器。
尽管以上以优选设计说明了本发明,但应看到,可按照本发明一般原理作出修正、使用和/或改动,包括对本说明书的偏离,这些偏离与本发明所属领域中的公知实践一致、可使用所述基本特征、落在本发明范围内或受后附权利要求的限制。
权利要求
1.一种用于激光成象装置的检测器阵列,包括a)设置在一圆弧上的多个检测器,该圆弧围绕一开口,该开口中放置待扫描物体;以及b)与各检测器连接的一多增益放大电路。
2.按权利要求1所述的检测器阵列,其特征在于a)所述多增益放大电路包括互相并联的一高增益级、一中增益级和一低增益级。
3.按权利要求2所述的检测器阵列,其特征在于a)所述高增益级包括互相串联的多个放大器。
4.按权利要求2所述的检测器阵列,其特征在于a)所述高增益级包括互相串联的第一、第二和第三放大器;b)所述中增益级包括与所述第三放大器并联、与所述第一和第二放大器串联的第四放大器;以及c)一分压器连接在所述第二与第四放大器之间。
5.按权利要求2所述的检测器阵列,其特征在于a)所述高增益级包括第一放大器;b)所述低增益级包括与所述第一放大器串联的第二放大器;以及c)一分压器串联在所述第一与第二放大器之间。
6.按权利要求2所述的检测器阵列,其特征在于a)每一所述级包括串联的一取样开关、一RC电路和一积分器。
7.按权利要求6所述的检测器阵列,其特征在于,a)所述取样开关为一二极管桥式电路。
8.一种用于激光成象装置的检测器阵列,包括a)设置在一圆弧上的多个检测器,该圆弧围绕一开口,该开口中放置待扫描物体;以及b)一多增益放大电路装置,用于处理各检测器的输出,从而提供用于图象重建的数据。
9.一种用于激光成象装置的检测器组件,包括a)一管状壳体,包括一开口前端和一后端;以及b)一具有第一端和第二端的光缆,所述第一端与所述后端相联。
10.按权利要求9所述的检测器组件,其特征在于a)一第一透镜设置在所述壳体中位于所述前端与后端之间;以及b)一第二透镜与所述光缆第一端相联。
11.按权利要求10所述的检测器组件,其特征在于a)所述第一透镜为平凸透镜。
12.按权利要求10所述的检测器组件,其特征在于a)所述第二透镜为球形透镜。
13.一种用于激光成象装置的光检测电路,包括a)一对从一被扫描乳房射出的激光脉冲作出响应的光检测器;b)与所述光检测器的输出连接的一多增益预放大器电路;c)一与所述多增益放大器的输出连接、对所述光检测器的输出取样的开关;d)一扩展经取样的输出的宽度的RC电路;e)一与所述RC电路的输出连接的放大器;f)一对该输出的各样本进行积分的积分器;g)一与所述开关连接的时间选通电路,所述时间选通电路在该输出出现时以不变时间间隔打开和闭合所述开关;以及h)一与所述时间选通电路连接的激光脉冲同步电路,所述激光脉冲同步电路向所述时间选通电路提供激光脉冲何时会到达该光检测器的一信号。
14.按权利要求13所述的光检测电路,其特征在于;a)所述开关为一二极管桥式电路。
15.按权利要求13所述的光检测电路,其特征在于a)所述时间选通开关为一可编程延迟芯片。
16.按权利要求13所述的光检测电路,其特征在于a)所述时间选通开关向所述开关提供一信号的次数足以有效地对所述检测器的输出取样。
17.按权利要求13所述的光检测电路,其特征在于a)所述多增益预放大器电路包括互相并联的第一、第二和第三增益级。
18.一种用于使人体体内组织成象的激光,包括a)所述激光的波长约为800nm、平均功率为0.5w、每脉冲能量约为100-500μJ、重复率约为1kHz-5kHz、脉冲宽度小于150ps。
19.一种数据收集方法,该数据用于一被扫描物体的图象重建,该方法包括a)在一围绕被扫描物体的圆弧上设置多个检测器;b)把一多增益放大器电路与各检测器连接;c)把一激光光束照射到该物体的一点上;d)对各检测器的输出曲线以足够的时间间隔进行取样以改造该曲线;e)对各样本积分;f)对若干脉冲重复(d)和(e);g)记录各脉冲的各输出用于图象重建;h)旋转这些检测器和该激光光束到一圆圈上的另一点;以及i)重复步骤(c)-(g),直到转完一圈。
20.一种用于确定一被扫描物体的周边的装置,包括a)其中放置一被扫描物体的扫描室;b)所述扫描室中、照射被扫描物体的激光光束源,所述激光光束可围绕该物体旋转;c)所述室中的一传感器阵列,每一所述传感器可检测由于所述激光光束从该物体射出而从该物体表面反射的光;d)各所述传感器设置成所述传感器中的至少一个传感器对于从该表面上离一基准点预定距离的一点发出的光生成一峰值响应,从而在所述激光光束在该圆圈的各角位上确定离该基准点一距离的一特定点,从而转完一圈后生成表示该表面的周边的一组点。
21.按权利要求20所述的装置,其特征在于a)所述传感器为CCD传感器。
全文摘要
一种用于激光成象装置的光检测电路,包括:一对从一被扫描乳房射出的激光脉冲作出响应的光检测器(30);与该光检测器的输出连接的一多增益预放大器电路(40);一与该多增益预放大器的输出连接、对该光检测器的输出取样的开关(140);一扩展取样信号的RC电路(142);一与该RC电路的输出连接的放大器(144):和对该输出的各样本进行积分的积分器(146)。一时间选通电路(108)与该开关连接,在该输出出现时以不变时间间隔打开和闭合该开关。一激光脉冲同步电路(104)与该时间选通电路连接,向该时间选通电路提供激光脉冲何时会到达该光检测器的一信号。
文档编号A61B10/00GK1279594SQ98811502
公开日2001年1月10日 申请日期1998年11月25日 优先权日1997年11月26日
发明者罗伯特·H·韦克 申请人:成象诊断系统公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1