一种呼吸道合胞体病毒疫苗及其制备方法与应用

文档序号:10620100阅读:553来源:国知局
一种呼吸道合胞体病毒疫苗及其制备方法与应用
【专利摘要】本发明公开了一种呼吸道合胞体病毒疫苗及其制备方法与应用。本发明的呼吸道合胞体病毒疫苗的活性成分为呼吸道合胞病毒G蛋白和免疫抑制剂;所述呼吸道合胞病毒G蛋白的氨基酸序列如序列表中序列2所示;所述免疫抑制剂为环孢菌素A。通过试验证明:本发明的呼吸道合胞体病毒疫苗不但能增强免疫动物后中和病毒抗体水平的体液免疫反应,同时还能抑制过强的细胞免疫反应,有效和特异性的抑制炎症相关病理反应,而且技术成熟,成本低,无副作用,易于推广。
【专利说明】
一种呼吸道合胞体病毒疫苗及其制备方法与应用
技术领域
[0001] 本发明属于生物技术领域,具体涉及一种呼吸道合胞体病毒疫苗及其制备方法与 应用。
【背景技术】
[0002] 呼吸道合胞体病毒RSV (Respiratory Syncytial Virus),为副黏病毒科单链负义 RNA病毒,主要引发新生儿与老年人下呼吸道疾病,也是导致1岁以下婴儿肺炎的主要原因 之一。流行病学数据显示,大约60%的新生儿在RVS流行季受该病毒感染,5岁以下儿童约 有18 %感染过RSV病毒,其中重症病例约为18%,住院病例比例约为20%,门诊病例15%。 感染者中,全球每年约有3万婴幼儿死于RSV感染。每年约1/13五岁以下儿童因 RSV就 医,其中60% RSV门诊病例为2-5岁儿童。在中国,就重庆市一个地区,因 RSV感染导致的 儿科病毒性肺炎住院病例约为40%,基本与流感病例比例相同。
[0003] 尽管RSV作为一种严重危害婴幼儿健康的疾病,经过近50年的研究,全球仍没有 一种被批准的有效、安全的疫苗问世。进入临床研究的RSV疫苗有许多种类:(1)研制的是 灭活疫苗,可以产生抗病毒蛋白的抗体,但是中和抗体水平低并且在服苗者肺部产生了由 Th2和粒细胞介导的严重的炎性细胞浸润,导致接种者在接触病毒后产生严重疾病,甚至引 起死亡;(2)亚单位疫苗,RSV病毒外壳蛋白F和G是主要具有中和表位的蛋白,在动物模型 上发现选择用纯化后的F和G蛋白作为疫苗可以有效的产生中和抗体抑制病毒复制,并且 抑制Th2细胞的激活,但是在人免疫后出现了病毒感染加重的病例,安全性不能保证,仅基 于RSV F蛋白的亚单位疫苗,具有很好的抑制病理性免疫反应作用但是免疫原性不佳;(3) 通过滴鼻给药能够刺激局部和系统免疫应答的减毒活疫苗,大部分的减毒疫苗包括应用最 多的"cpts248/404"对大于6个月的婴儿有很好效果,但是对6个月以下婴儿肺部会产生 中度炎性反应,同样安全性不能保证。除此之外,还有很多临床研究的RSV疫苗,但至今为 止全球仍没有一种被批准的有效、安全的RSV疫苗问世。针对RSV疫苗开发过程中所面对 两个主要障碍:1)获得高滴度中和抗体水平;2)降低炎性细胞在肺部产生炎症损伤。

【发明内容】

[0004] 本发明的一个目的是提供一种呼吸道合胞病毒疫苗。
[0005] 本发明提供的呼吸道合胞病毒疫苗的活性成分为呼吸道合胞病毒G蛋白和免疫 抑制剂。
[0006] 上述呼吸道合胞病毒疫苗中,所述呼吸道合胞病毒G蛋白的氨基酸序列如序列表 中序列2所示。
[0007] 上述呼吸道合胞病毒疫苗中,所述免疫抑制剂为环孢菌素 A、地塞米松、雷帕霉素 或环磷酰胺;所述免疫抑制剂具体为环孢菌素 A。
[0008] 上述呼吸道合胞病毒疫苗中,所述呼吸道合胞病毒G蛋白和所述环孢菌素 A的质 量比为 1:100-100:1。
[0009] 上述呼吸道合胞病毒疫苗中,所述呼吸道合胞病毒G蛋白和所述环孢菌素 A的质 量比为1:1、2:10、4:10、6:10或8:10。
[0010] 上述呼吸道合胞病毒疫苗中,所述呼吸道合胞病毒G蛋白和所述环孢菌素 A的质 量比进一步具体为1:1。
[0011] 本发明的另一个目的是提供一种制备呼吸道合胞病毒疫苗的方法。
[0012] 本发明提供的制备呼吸道合胞病毒疫苗的方法包括如下步骤:
[0013] 将环孢素 A溶液与呼吸道合胞病毒G蛋白混匀,得到呼吸道合胞病毒疫苗。
[0014] 上述方法中,所述呼吸道合胞病毒G蛋白的氨基酸序列如序列表中序列2所示。
[0015] 上述方法中,所述环孢素 A溶液中的环孢素 A与所述呼吸道合胞病毒G蛋白质量 比为 1:100-100:1。
[0016] 上述方法中,所述环孢素 A溶液中的环孢素 A与呼吸道合胞病毒G蛋白的质量比 具体为1:1、2:10、4:10、6:10或8:10。
[0017] 上述方法中,所述环孢素 A溶液的制备方法:将环孢素 A溶于丙二醇中,得到混合 液;将所述混合液与PBS溶液等体积混匀,得到所述环孢素 A溶液。
[0018] 上述方法中,所述环孢素 A在所述丙二醇中的浓度为0. 2mg/ml。
[0019] 上述方法中,所述PBS溶液由溶质和溶剂组成,溶剂为水;溶质及其在PBS溶液中 的浓度为:135mM NaCl、2. 7mM KC1、I. 5mM NaH2P04、8mM NaHPO4;所述 PBS 溶液的 pH 为 7. 4。
[0020] 上述呼吸道合胞病毒G蛋白在制备呼吸道合胞病毒的疫苗中的应用也属于本发 明的保护范围。
[0021] 上述呼吸道合胞病毒G蛋白和免疫抑制剂在制备呼吸道合胞病毒的疫苗中的应 用也属于本发明的保护范围。
[0022] 上述应用中,所述呼吸道合胞病毒G蛋白的氨基酸序列如序列表中序列2所示。
[0023] 上述应用中,所述免疫抑制剂为环孢菌素 A。
[0024] 上述呼吸道合胞病毒疫苗在如下(1)-(12)中至少一种中的应用也属于本发明的 保护范围:
[0025] (1)制备提高哺乳动物的呼吸道合胞病毒特异性IgG抗体水平的产品;
[0026] (2)制备提高哺乳动物的呼吸道合胞病毒特异性中和抗体水的产品;
[0027] (3)制备抑制哺乳动物的呼吸道合胞病毒特异性T淋巴细胞增殖的产品;
[0028] (4)制备抑制哺乳动物的呼吸道合胞病毒表面糖蛋白G特异性T淋巴细胞增殖的 产品;
[0029] (5)制备诱导哺乳动物的呼吸道合胞病毒特异性调节性T细胞的产生的产品;
[0030] (6)制备诱导哺乳动物的呼吸道合胞病毒表面糖蛋白G特异性调节性T细胞的产 生的广品;
[0031] (7)制备促进哺乳动物的呼吸道合胞病毒特异性调节性T细胞分泌IL10、IL21和 /或⑶40L的产品;
[0032] (8)制备促进哺乳动物的呼吸道合胞病毒表面糖蛋白G特异性调节性T细胞分泌 IL10、IL21 和 / 或 CD40L 的产品;
[0033] (9)制备降低哺乳动物的呼吸道合胞病毒的病毒载量的产品;
[0034] (10)制备抑制哺乳动物的肺部炎性细胞的增殖的产品;
[0035] (11)制备降低呼吸道合胞病毒对哺乳动物肺部组织的损伤的产品;
[0036] (12)制备抑制哺乳动物的炎症反应的产品。
[0037] 上述应用中,所述抑制哺乳动物的炎症反应是通过降低肺指数实现的。
[0038] 本发明将呼吸道合胞病毒G蛋白和免疫抑制剂(CSA) -起免疫动物,免疫后可以 诱导出一群抗原特异性Treg细胞,从而开发出诱发高水平的中和抗体和无病理性损伤的 呼吸道合胞病毒疫苗。通过试验证明:本发明的呼吸道合胞病毒疫苗不但能增强免疫动物 后中和病毒抗体水平的体液免疫反应,同时还能抑制过强的细胞免疫反应,有效和特异性 的抑制炎症相关病理反应,而且技术成熟,成本低,无副作用,易于推广。
【附图说明】
[0039] 图1为琼脂糖凝胶电泳检测pET28a-N0G质粒。其中1为DL15000 DNA Marker ; 2为DL2000 DNA Marker ;3为pET28a-noG质粒;4为限制性内切酶Nco I/Xho I消化后的 pET28a-noG 质粒。
[0040] 图2为SDS-PAGE电泳检测重组蛋白(G蛋白)在大肠杆菌中的表达。其中,1为 蛋白质标准分子量;2为E. coli BL21 pET28a-noG未经IPTG诱导破膜后上清;3为E. coli BL21 pET28a-noG 未经 IPTG 诱导破膜后包涵体;4 为 E.coli BL21 pET28a-noG 经 0.5mM IPTG诱导破膜后上清;5为E. coli BL21 pET28a-noG经0. 5mM IPTG诱导破膜后包涵体;6 为 E.coli BL21 pET28a-noG 经 ImM IPTG 诱导破膜后上清;7 为 E.coli BL21 pET28a-noG 经ImM IPTG诱导破膜后包涵体;8为E. coli BL21 pET28a-noG经2mM IPTG诱导破膜后 上清;9 为 E. coli BL21 pET28a-noG 经 2mM IPTG 诱导破膜后包涵体;10 为 E. coli BL21 pET28a-noG经3mM IPTG诱导破膜后上清;
[0041] 11 为 E. coli BL21 pET28a 经 3mM IPTG 诱导破膜后包涵体;12 为 E. coli BL21 pET28a经5mM IPTG诱导破膜后上清;13为E.coli BL21 pET28a经5mM IPTG诱导破膜后 包涵体。
[0042] 图3为Western Blot验证原核表达NOG蛋白。图3a为羊抗RSV抗体的验证结 果;其中 1 为 E.coli BL21 pET28a-noG 经 2mM IPTG 诱导破膜后上清;2 为 E.coli BL21 pET28a-noG经2mM IPTG诱导破膜后包涵体;3为His-Tag G蛋白对照。图3b为小鼠抗His Tag抗体的验证结果;其中,1为E. coli BL21 pET28a-noG经2mM IPTG诱导破膜后上清;2 为E. coli BL21 pET28a-noG经2mM IPTG诱导破膜后包涵体;3为His-Tag G蛋白对照;4 为His-Tag IL-17蛋白对照。
[0043] 图4为不同免疫剂量免疫后小鼠的中和抗体水平和T细胞增殖水平。
[0044] 图5为肺部病毒载量检测免疫后小鼠的肺部病毒载量。
[0045] 图6为称量肺重量检测联合免疫小鼠攻毒后肺指数。
[0046] 图7为肺部病理切片检测免疫后小鼠的肺部病理变化。
[0047] 图8为ELISA检测免疫后兔子的IgG抗体水平检测结果和T细胞增殖实验检测免 疫后兔子的T细胞增殖水平检测结果。图8a为ELISA检测免疫后兔子的IgG抗体水平检 测结果;图8b为T细胞增殖实验检测免疫后兔子的T细胞增殖水平检测结果。
[0048] 图9为流式检测免疫攻毒后小鼠肺部灌洗液中Treg细胞绝对数量。
[0049] 图10为流式检测免疫攻毒后小鼠脾脏Treg细胞分泌IL-IO水平、IL-21水平、 ⑶40L水平。图IOa为流式检测免疫攻毒后小鼠脾脏Treg细胞分泌IL-IO水平;图IOb为 流式检测免疫攻毒后小鼠脾脏Treg细胞分泌IL-21水平;图IOc为流式检测免疫攻毒后小 鼠脾脏Treg细胞分泌⑶40L水平。
[0050] 图11为流式检测免疫攻毒后小鼠肺门淋巴结Treg细胞分泌IL-10水平和⑶40L 水平。图Ila为流式检测免疫攻毒后小鼠肺门淋巴结Treg细胞分泌IL-10水平;图Ilb为 流式检测免疫攻毒后小鼠肺门淋巴结Treg细胞分泌CD40L水平。
[0051] 图12为ELISA方法检测RSV疫苗在兔子上免疫后的不同时间点的IgG抗体水平 和流式检测第123天血液中T细胞的增殖情况。图12a为ELISA方法检测RSV疫苗在兔子 上免疫后的不同时间点的IgG抗体水平;图12b为流式检测第123天血液中T细胞的增殖 情况。
[0052] 图13为流式检测T细胞增殖结果。
[0053] 图14为ELISA检测RSV疫苗与HBV疫苗免疫后小鼠的IgG抗体水平检测。图14a 为实验分组及各组的免疫情况;图14b为ELISA检测RSV疫苗与HBV疫苗免疫后小鼠的IgG 抗体水平检测结果。
【具体实施方式】
[0054] 下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
[0055] 下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
[0056] ECL试剂是瑞典GE Healthcare Eurpoe公司的产品。
[0057] 灭活疫苗FI-RSV 的制备方法:IO7TCID5qRSV病毒(美国 ATCC,catalog no. VR-26?) 经甲醛72h,37°C反应后,利用50000g高速离心Ih纯化后制得。
[0058] 环孢素 A(CSA)是台上市化学制药有限公司公司的产品,产品目录号国药准字 H10940111。
[0059] 载体pET28a (+)是Novagen公司的产品,产品目录号69864-3。
[0060] 大肠杆菌BL21(DE3)是天根生化科技(北京)有限公司的产品,产品目录号 CB105-02。
[0061] 1640培养基是迈晨科技有限公司的产品,货号CM10040。
[0062] 山羊抗RSV多克隆抗血清是美国Meridian公司产品,产品目录号B656860G。
[0063] HBV疫苗是华大制药有限公司的产品。
[0064] 实施例1、呼吸道合胞体病毒(RSV)疫苗的制备 [0065] 一、G蛋白的获得
[0066] 1、G蛋白的编码基因的获得
[0067] 本发明的呼吸道合胞病毒G蛋白的编码基因序列如序列表中序列1所示,呼吸道 合胞病毒G蛋白的氨基酸序列如序列表中序列2所示。
[0068] 2、表达载体pET28a_noG的构建
[0069] 通过全基因合成的方法合成步骤1的呼吸道合胞病毒G蛋白的编码基因序列,用 限制性内切酶NcoI与XhoI对呼吸道合胞病毒G蛋白的编码基因序列和载体pET28a(+)进 行双酶切,连接,得到重组载体,将重组载体命名为pET28a-noG。对pET28a-noG载体进行酶 切鉴定的结果如图1所示。
[0070] 对pET28a-noG载体进行测序验证,结果表明:pET28a-noG载体为将载体 pET28a(+)的NcoI与XhoI酶切位点间的DNA替换为序列表中序列1所示的呼吸道合胞病 毒G蛋白的编码基因,保持载体pET-28a (+)的其他序列不变得到的重组载体,表达糖蛋白 G0
[0071] 3、重组菌的获得
[0072] 将步骤2中的pET28a_n〇G载体转化大肠杆菌BL21(DE3),转化后的菌株命名为 BL21 (DE3)/pET28a-noG,同时设置转化pET-28a(+)空载体的BL21 (DE3)作为对照,转化后 的菌株命名为 BL21 (DE3)/pET-28a (+)。
[0073] 4、重组菌的诱导表达
[0074] 用不同浓度的异丙基巯基半乳糖苷(IPTG)诱导G蛋白的表达,具体步骤如下:挑 取过夜生长的BL21 (DE3)/pET28a-n〇G的单菌落,接种于LB培养基中,37°C震荡培养至对数 生长期(〇D 6。。= CL 5),加入终浓度分别为 CL 5mmol/L、lmmol/L、2mmol/L、3mmol/L、5mmol/L 的IPTG,于37°C诱导4小时。
[0075] 诱导结束后收集菌体,使用PBS溶液反复清洗3次菌体后,将菌体超声破碎, 12000rpm离心,将上清液与重悬后的沉淀(包涵体)分别进行SDS-PAGE电泳,验证蛋白表 达,结果如图2所示。从图2可以看出:转化了重组质粒pET-28a-G的大肠杆菌BL21(DE3) 在37°C、0. 5mM IPTG诱导4h可以得到大量原核表达的呼吸道合胞病毒G蛋白(约35kDa)。
[0076] 二、G蛋白抗原性的验证
[0077] 将步骤一中的得到的G蛋白在12%的SDS-PAGE胶上分离,然后使用Bio-Rad转膜 系统将G蛋白转移至PVDF膜上。
[0078] 将膜浸泡在5%的脱脂奶粉(PBST)中,于37°C条件下封闭2h,PBST洗膜3次。将膜 浸泡在用3%的脱脂奶粉(PBST)稀释2000倍的山羊抗RSV多克隆抗血清(美国Meridian 公司产品)或稀释6000倍小鼠抗His-Tag(Abmart公司)中,于37°C条件下孵育1小时, PBST洗膜3次。
[0079] 将膜浸泡在用3%脱脂奶粉(PBST)稀释1000倍的HRP牛抗山羊IgG或HRP羊抗 小鼠 IgG(美国Santa Cruz公司产品)中,于37°C条件下孵育1小时,PBST洗膜3次。参 照使用说明,利用电化学发光(ECL)法检测免疫复合物。诱导表达的目的蛋白经过羊抗RSV 抗体和小鼠抗His Tag抗体进行Western Blot杂交验证。
[0080] 羊抗RSV抗体的验证结果如图3a所示,小鼠抗His Tag抗体的验证结果如图3b 所示。结果表明:表达的目的蛋白确实为不含有His Tag的RSV G蛋白,重组G蛋白具有良 好抗原性,可以被抗RSV抗体识别。
[0081] 三、G蛋白的提取和纯化
[0082] 1、一级种子液的获得
[0083] 挑取BL21 (DE3)/pET28a-noG的单菌落于50ml加了适量抗生素的LB培养基中, 37°C,220转振荡8-10小时,得到一级种子液。
[0084] 2、二级种子液的获得
[0085] 将步骤1得到的一级种子液以5 %的接种量接入500ml的LB培养基(含抗生素) 中,37°C,220转振荡8-10小时,得到二级种子液。
[0086] 3、G蛋白的获得
[0087] 将步骤2得到的一级种子液以5% -10%的接种量接入发酵罐中,当OD = 3时,以 I. 2ml/min 加入补料;当 OD = 24 时,开始加入 IM IPTG 20ml,2h 加入 IM IPTG 10ml,4h 后 加入IM IPTG 10ml。诱导结束后收集菌液,所述菌液中含有呼吸道合胞病毒G蛋白。
[0088] 4、G蛋白的提取及纯化
[0089] (1)将步骤3得到的含有G蛋白的菌液用IOOk超滤器(温度:室温;压力:不超过 kg/cm2)进行清洗、浓缩,浓缩后用2-3倍体积PBS再清洗;
[0090] (2)经高压均质机破碎两次,压力850-900kg/cm2,收集均衆物,将均衆物重悬于 PBS中,每Ig均衆物(湿重,16000rpm,15min测定)溶于IOml的PBS,标记、用50ml锥形离 心管分装后,_20°C保存。
[0091] (3)将解冻后的均浆物16000rpm,15min离心收集沉淀即为包涵体,将收集到的包 涵体按照湿菌重的 1:20,用含有 1% TritonX-IOO 的 BufferA (BufferA 配方:50mM Tris -HCl、5mM EDTAUOOmM Nacl、PH8. 5)重悬清洗。
[0092] (4) 16000rpm,15min离心弃上清液,收集沉淀,上清液、沉淀分别留样检测SDS,沉 淀按照湿菌重的1:20用含有1 % TritonX-IOO的BufferA重悬清洗。
[0093] (5) 16000rpm,15min离心弃上清液,收集沉淀,上清液、沉淀分别留样检测SDS ;沉 淀按照湿菌重1:20用PBS重悬清洗。
[0094] (6) 16000rpm,15min离心弃上清液,收集沉淀,上清液、沉淀分别留样检测SDS。
[0095] (7)将2. 5g经过(6)收集的沉淀(包涵体)重悬于BufferB中(BufferB配方:8M 尿素、20mM Tris-HCl、5mM EDTAUOOmM NaclUOmM DTT、PH8. 5),待包涵体溶解于 BufferB 后,得到变性的蛋白溶液;在低速搅拌下,以5ml/min的速度将50ml变性的蛋白溶液加入到 950ml 的 BufferC(BufTer C 配方:700mM 尿素、20mM Tris-HCl、500mM 精氨酸、ImM 胱胺二 盐酸盐、5mM半胱胺酸、15%甘油、PH9.0)中,低温(4°C )搅拌(彡100rmp)40h。
[0096] (8)取经过上述(7)处理后的蛋白溶液,16000rpm/min,4°C离心收上清液,转移至 (丽8000-14000)透析袋中进行透析,复性液:透析液(V:V) = 1:10,低温(4°C )透析24h, 每12h更换1次透析液。
[0097] (9) 16000rpm,10min,4°C离心,收集透析袋中的复性溶液上清液,SDS-PAGE检测, 可见明显目的蛋白(35kDa)。
[0098] (10)取上述(9)处理后的复性溶液上清液,转移至(MW8000-14000)透析袋,放 入30% PEG8000溶液中,4°C浓缩,5-8h,透析液体积浓缩至原体积1/3~1/5,12000rpm, lOmin,4°C离心,收集上清液,加入2%甘露醇,3%葡萄糖,5mmol精氨酸(W/V),溶解后,经 0. 22um滤膜过滤,IOml西林瓶分装,5. Oml/瓶,-80°C冷冻,低温真空干燥后密封保存(含 水量< 1. 0% ),得到纯化后的G蛋白,即所述抗原。按冻干程序操作将G蛋白冻存,冻干程 序结束后干燥、压盖、铝盖封装,得到G蛋白冻干品。
[0099] 四、呼吸道合胞体病毒(RSV)疫苗的制备
[0100] 将环孢素 A (CSA)溶于丙二醇(环孢素 A的浓度为0. 2mg/ml)中,加入等体积PBS 溶液(135禮恥(:1、2.711111((:1、1.51111恥氏?04、81111恥册04卬!17.4),混匀,得到疫苗溶剂 ; 将步骤三制备得到的G蛋白冻干品溶于疫苗溶剂中,得到呼吸道合胞体病毒(RSV)疫苗,其 中,环孢素 A与G蛋白的质量比为I :100-100 :1 ;在下面的实施例中采用环孢素 A与G蛋白 的质量比为1:1、2:10、4:10、6:10、8:10的呼吸道合胞体病毒(RSV)疫苗进行试验。
[0101] 实施例2、呼吸道合胞体病毒(RSV)疫苗免疫小鼠后抗体水平检测
[0102] -、各组疫苗免疫小鼠
[0103] 实验材料:6_8周龄雌性BALB/c小鼠,购自复旦大学实验动物部,为清洁级,分9 组,每组5只。实验期间使用无菌水及食物喂养,光照周期为12小时。
[0104] 实验用疫苗分成实施例1的四制备的呼吸道合胞体病毒(RSV)疫苗组(G+CSA)、亚 单位疫苗组(G)、PBS组(阴性对照)、FI-RSV组(阳性对照)。呼吸道合胞体病毒(RSV)疫 苗组中根据CSA和G蛋白质量不同又分成(lug CSA+lug G蛋白)组、(2ug CSA+10ug G蛋 白)组、(4ug CSA+10ug G 蛋白)组、(6ug CSA+10ug G 蛋白)组、(8ug CSA+10ug G 蛋白) 组、(IOug CSA+10ug G蛋白)组,如表1所示。
[0105] 表1、各组疫苗中G蛋白与CSA的质量
[0107] 将上述各组疫苗分别于第0天、14天对6-8周龄雌性BALB/c小鼠进行背部皮 下免疫。PBS组中PBS溶液的剂量100 μ I、FI-RSV组中FI-RSV灭活疫苗的剂量50 μ 1 5 X IO7TCID 病毒量。
[0108] 二、各组疫苗免疫小鼠后抗体水平检测
[0109] 分别于免疫0、14、28天后采血检测血清中抗体水平。具体操作如下:
[0110] (1)血清分离
[0111] 将采集到的血液置于37°C温箱放置2小时,待凝集后,置于离心机中,3000rpm离 心10分钟,彻底分离血清后,将血清小心吸出,置于-80°C保存。
[0112] (2)病毒中和检测
[0113] A、将血清置于56°C水浴放置30分钟,使补体充分失活;用含2%的胎牛血清的 MEM培养基,按2倍梯度稀释血清,将稀释后的血清加入96孔细胞培养板,每孔75 μ 1。
[0114] Β、分别加入25 μ I 104TCID50的RSV病毒悬液,混合均匀,4°C孵育2小时;加入 100 μ 1含I. 5X IO4个细胞的!fep-2细胞悬液(MEM+5%胎牛血清),将细胞置于无菌培养箱 中,在37°C、5% CO2条件下培养72h。
[0115] C、将孔内的液体小心吸出,PBST洗板3次;加入80%丙酮-PBS溶液,置于4°C孵 育15min ;将孔内的液体吸出,室温干燥。
[0116] D、加入5%脱脂奶粉(PBST),37°C放置Ih,PBST洗板3次。
[0117] E、使用3 %脱脂奶粉(PBST),将山羊抗RSV多克隆抗血清稀释5000倍,加入96孔 细胞培养板,每孔100 μ 1,37°c放置1小时,PBST洗板3次。
[0118] F、每孔加入100μ1用3%脱脂奶粉(PBST)稀释2000倍的HRP牛抗山羊IgG,37°C 放置1小时,PBST洗板3次。
[0119] G、每孔加入100 μ 1的TMB显色液,于37°C避光显色15分钟。
[0120] H、每孔加入50 μ 1的0. 2mol/L硫酸终止反应。
[0121] I、测定出每孔的光密度值(0D450nm/620nm)。中和抗体滴度的判定以至少低于 50 %阳性对照的光密度值为依据。
[0122] 结果如图4所示:PBS组小鼠血清中的IgG水平最低,表明基本上不具备免疫效 果;FI-RSV组产生了较高的IgG水平;G组以及(IOug G蛋白+IOug CSA)组均产生一定水 平的IgG,并且不同比例的呼吸道合胞体病毒(RSV)疫苗产生的IgG水平具有一定差异性。 (l〇ug G蛋白+IOug CSA)组混合免疫小鼠可产生较为理想的高中和抗体滴度。
[0123] 上述结果表明呼吸道合胞体病毒(RSV)疫苗组能够诱导机体产生很高的体液免 疫反应,并且提高哺乳动物的呼吸道合胞病毒特异性IgG抗体水平和哺乳动物的呼吸道合 胞病毒特异性中和抗体水平。
[0124] 实施例3、呼吸道合胞体病毒(RSV)疫苗免疫小鼠后T淋巴细胞扩增的检测
[0125] -、各组疫苗免疫小鼠
[0126] 实验材料:6_8周龄雌性BALB/c小鼠,购自复旦大学实验动物部,为清洁级,分9 组,每组5只。实验期间使用无菌水及食物喂养,光照周期为12小时。
[0127] 实验用疫苗分组及剂量同实施例2中的步骤一。
[0128] 将上述各组疫苗分别于第0天、14天对6-8周龄雌性BALB/c小鼠进行背部皮下免 疫。
[0129] 二、T淋巴细胞扩增的检测
[0130] 在上述步骤一末次免疫后的第7天处死小鼠,在无菌条件下,取小鼠脾脏,研碎, 用红细胞裂解液除去红细胞,并过尼龙柱除去B细胞制成单细胞悬液(T淋巴细胞),PBS液 洗3次,离心并进行细胞计数,用1640培养基调整细胞浓度到I X IO6个/ml,每组细胞悬液 分3份加入96孔培养板中,每孔细胞总数为4X IO5个。其中一份加实施例1制备的G抗原 (呼吸道合胞病毒表面糖蛋白G)至终浓度为5mg/ml (实验组),一份加终浓度为0. lmg/ml PMA (佛波酯)和lmg/ml Ion (离子霉素)(阳性对照),一份加 BSA至终浓度为2mg/ml (阴 性对照),培养48h后,每孔加入MTT (四甲基偶氮唑盐),培养4h后,2000rpm离心5分钟, 弃细胞上清,添加 IOOmL DMSO(二甲基亚砜),37°C温箱放置15min后,酶标仪读取490nm 处的OD值,计算刺激指数(stimulated index,SI),SI =(实验组OD-培养基0D) / (细胞 OD-培养基0D)。其中,实验组OD是指G抗原刺激的细胞读取的OD值;培养基OD是指培养 基读取的OD值;细胞OD是指未经G抗原刺激的细胞(阴性对照)读取的OD值。
[0131] 结果如图4所示:各组为5只实验组内小鼠的平均值土标准差;PBS组基本上 刺激T细胞的效应很低,表明如果不联合抗原,几乎不能对T细胞产生明显的刺激;G组和 FI-RSV组均产生高水平的刺激T细胞的效应,这表明没有CSA组分都具有较强的细胞免疫 效果。另外,呼吸道合胞体病毒(RSV)疫苗中不同比例的CSA和G蛋白具有不同的刺激T 细胞的效应作用:(6ug CSA+10ug G蛋白)组和(8ug CSA+10ug G蛋白)组刺激T细胞响应 最强,(lug CSA+lug G 蛋白)组、(2ug CSA+10ug G 蛋白)组、(4ug CSA+10ug G 蛋白)组 都表现出一定的刺激T细胞的效应,(IOug CSA+10ug G蛋白)组刺激T细胞的响应最弱, 说明这一配比抑制效应不完全。
[0132] 以上结果说明可以有效抑制抗原特异性的细胞免疫反应,且能达到中和抗体水平 较高的组是呼吸道合胞体病毒(RSV)疫苗中(IOug CSA+10ug G蛋白)组。(IOug CSA+10ug G蛋白)组疫苗可以抑制哺乳动物的呼吸道合胞病毒特异性T淋巴细胞增殖;可以抑制哺 乳动物的呼吸道合胞病毒表面糖蛋白G特异性T淋巴细胞增殖。
[0133] 实施例4、被RSV病毒攻击后的免疫小鼠的肺病毒载量检测
[0134] -、各组疫苗免疫小鼠
[0135] 实验材料:6_8周龄雌性BALB/c小鼠,购自复旦大学实验动物部,为清洁级,分9 组,每组5只。实验期间使用无菌水及食物喂养,光照周期为12小时。
[0136] 实验用疫苗分成呼吸道合胞体病毒(RSV)疫苗组(G+CSA)、CSA组、亚单位疫苗组 (G)、PBS组(阴性对照)、FI-RSV组(阳性对照)。呼吸道合胞体病毒(RSV)疫苗组中CSA 和G蛋白质量均为10ug,如表2所示,同时以未感染病毒的小鼠(Non-infection)作对照。 Γηη7? 圭9义々Η选常cb t=; rcA的话县
[0139] 将上述各组疫苗分别于第0天、14天对6-8周龄雌性BALB/c小鼠进行背部皮下 免疫。PBS组中PBS溶液的剂量为100 μ 1、FI-RSV组中FI-RSV灭活疫苗的剂量为50 μ 1 5 X IO7TCID 病毒量。
[0140] 二、被RSV病毒攻击后的免疫小鼠的肺病毒载量
[0141] 在上述步骤一末次免疫后第7天,通过滴鼻使小鼠感染RSV病毒,RSV病毒量按照 6 X 105TCID50/每只小鼠,5天之后将小鼠处死,取肺组织,匀浆后,使用TCID50滴定法检测 小鼠肺部病毒载量。
[0142] 具体操作如下:在离心管中将病毒液作连续10倍的稀释,从10 1到10 '将稀释 好的病毒接种到96孔微量培养板中,每一稀释度接种一纵排共8孔,每孔接种100 μ 1 ;在 每孔加入细胞悬液100 μ 1,使细胞量达到2 X IO5~3 X 10 5个/ml,设正常细胞对照,正常细 胞对照作两纵排,即100 μ 1生长液+100 μ 1细胞悬液。逐日观察并记录结果,一般需要观 察5-7天;按Karber法计算结果。
[0143] 小鼠肺部病毒载量如图5所不:PBS组和CSA组小鼠肺部病毒载量最尚,说明在没 有先前注射疫苗抗原的情况下,小鼠出现了比较严重的病毒感染;FI-RSV组和G组病毒载 量有所降低,说明起到了一定抑制病毒复制作用;(G+CSA)组病毒载量最低,与PBS组有显 著性差异。
[0144] 以上结果表明疫苗诱发机体产生的中和抗体水平的强弱直接与病毒感染后的病 毒清除相关,疫苗可以降低哺乳动物的呼吸道合胞病毒的病毒载量。
[0145] 实施例5、被RSV病毒攻击后的免疫小鼠的肺指数检测
[0146] 一、各组疫苗免疫小鼠
[0147] 实验材料:6-8周龄雌性BALB/c小鼠,购自复旦大学实验动物部,为清洁级,分9 组,每组5只。实验期间使用无菌水及食物喂养,光照周期为12小时。
[0148] 实验用疫苗分成呼吸道合胞体病毒(RSV)疫苗组(G+CSA)、CSA组、亚单位疫苗组 (G)、PBS组(阴性对照)、FI-RSV组(阳性对照)。呼吸道合胞体病毒(RSV)疫苗组中G蛋 白和CSA质量均为10ug,如表2所示,同时以未感染病毒的小鼠(Non-infection)作对照。
[0149] 将上述各组疫苗分别于第0天、14天对6-8周龄雌性BALB/c小鼠进行背部皮下 免疫。PBS组中PBS溶液的剂量为100 μ 1、FI-RSV组中FI-RSV灭活疫苗的剂量为50 μ 1 5 X IO7TCID 病毒量。
[0150] 二、被RSV病毒攻击后的免疫小鼠的肺指数检测
[0151] 在上述步骤一末次免疫后第7天,通过滴鼻使小鼠感染RSV病毒,RSV病毒量按照 6Χ 105TCID50/每只小鼠,5天之后将小鼠处死,称量小鼠体重,而后去肺组织称量重量。肺 指数计算公式=肺组织质量/小鼠体重。
[0152] 结果如图6所示:Non-inf ection组小鼠肺指数最低,说明肺部没有明显的 炎症反应;PBS组和FI-RSV组最高,CSA组和G组相对较低,(G+CSA)组小鼠肺指数与 Non-infection组相比没有显著差异,说明发明的RSV疫苗可以有效抑制免疫疫苗引起的 炎症相关反应的发生。
[0153] 三、RSV病毒攻击免疫后小鼠组织切片
[0154] 在上述步骤一末次免疫后第7天,通过滴鼻使小鼠感染RSV病毒,RSV病毒量按 照6 X 105TCID50/每只小鼠,5天之后将小鼠处死,取肺组织切片,苏木精-伊红染色(H&E) 后,观察小鼠肺部组织的病变情况(同时以没有攻毒的naive小鼠作为对照)。具体操作如 下:将小鼠处死后,取肺组织,置于10%福尔马林中固定3-7天,经过脱水,石蜡包埋,切片, 苏木精-伊红染色,封片几步后,在显微镜下观察。另外,对小鼠肺部病理进行打分,打分 标准为:(1)细支气管周围和支气管浸润(2)细支气管和细支气管腔渗出液;(3)血管周围 浸润;(4)单核细胞数量;(5)薄壁组织肺炎。以上5种情况又各分为严重(4分),较重(3 分),一般(2 分),轻微(1 分),具体参见文献 "Respiratory Syncytial Virus Induces Pneumonia, Cytokine Response, Airway Obstruction, and Chronic Inflammatory Infiltrates Associated with Long-Term Airway Hyperresponsiveness in Mice"〇
[0155] 结果如图7所示:Non-inf ection组小鼠肺部在血管周围和支气管周围没有明显 的淋巴细胞浸润,支气管腔未见明显渗出液残留,未见薄壁组织肺炎,说明肺部没有病变的 发生;PBS组、FI-RSV组、CSA组和G组小鼠肺部均出现不同程度的病变。特别是FI-RSV组 和G组的病变情况最严重;说明注射这类疫苗后,当机体再次遇到病毒感染,肺部会出现较 严重的病理反应;与其他组相比,(G+CSA)组小鼠肺部没有出现明显的病理反应。
[0156] 以上结果说明呼吸道合胞体病毒(RSV)疫苗组对小鼠产生了较好的保护效果,可 以抑制哺乳动物的肺部炎性细胞的增殖和侵润,降低呼吸道合胞病毒对哺乳动物肺部组织 的损伤。
[0157] 实施例6、被RSV病毒攻击后的免疫小鼠的脾脏,淋巴结,肺部灌洗液中的iTreg百 分率检测
[0158] -、各组疫苗免疫小鼠
[0159] 实验材料:6_8周龄雌性BALB/c小鼠,购自复旦大学实验动物部,为清洁级,分9 组,每组5只。实验期间使用无菌水及食物喂养,光照周期为12小时。
[0160] 实验用疫苗分成呼吸道合胞体病毒(RSV)疫苗组(G+CSA)、CSA组、亚单位疫苗组 (G)、PBS组(阴性对照)、FI-RSV组(阳性对照)。呼吸道合胞体病毒(RSV)疫苗组中G蛋 白和CSA质量均为10ug,如表2所示,同时以未感染病毒的小鼠(Non-infection)作对照。
[0161] 将上述各组疫苗分别于第0天、14天对6-8周龄雌性BALB/c小鼠进行背部皮下 免疫。PBS组中PBS溶液的剂量为100 μ 1、FI-RSV组中FI-RSV灭活疫苗的剂量为50 μ 1 5 X IO7TCID 病毒量。
[0162] 二、脾脏、淋巴结及肺部灌洗液中的iTreg百分率的检测
[0163] 在上述步骤一末次免疫后第7天,通过滴鼻使小鼠感染RSV病毒,RSV病毒量按照 6 X 105TCID50/每只小鼠,对病毒感染4天后小鼠以60 μ g/kg的计量,腹腔注射1 %戊巴比 妥钠将小鼠麻醉。小心切开气管,用注射器将Iml含0. 2%胎牛血清的PBS溶液灌入肺内, 反复轻柔推送冲洗,离心收集细胞;分离小鼠肺门淋巴结与脾脏,研磨后制成单细胞悬液; 按照Foxp3/Transcription Factor Staining Buffer Set使用说明对单细胞悬液进行染 色,通过流式细胞仪检测。
[0164] 1、小鼠脾脏的结果如图8a所示:Non-infection组、PBS组、CSA组、G组以及 FI-RSV组的Treg百分率较低,而(G+CSA)组iTreg的百分率较高。说明呼吸道合胞体病毒 (RSV)疫苗组可以增加 Treg在脾脏中的比例。
[0165] 2、小鼠肺门淋巴结结果如图8b所示:Non-infection、PBS组、CSA组、G组、FI-RSV 组和(G+CSA)组均没有显著性差异。
[0166] 3、肺部灌洗液中的结果如图9所示:Non-infection组、PBS组、CSA组、G组以及 FI-RSV组Treg百分率较低,而(G+CSA)组iTreg的百分率较高。此结果与脾脏结果一致, 说明呼吸道合胞体病毒(RSV)疫苗组可以增加 Treg在肺部灌洗液中的比例。
[0167] 实施例7、被RSV病毒攻击后的免疫小鼠的脾脏和肺门淋巴结Treg细胞分泌 IL-10、IL-21以及CD40L情况的检测
[0168] 一、各组疫苗免疫小鼠
[0169] 实验材料:6_8周龄雌性BALB/c小鼠,购自复旦大学实验动物部,为清洁级,分9 组,每组5只。实验期间使用无菌水及食物喂养,光照周期为12小时。
[0170] 实验用疫苗分成呼吸道合胞体病毒(RSV)疫苗组(G+CSA)、CSA组、亚单位疫苗组 (G)、PBS组(阴性对照)、FI-RSV组(阳性对照)。呼吸道合胞体病毒(RSV)疫苗组中G蛋 白和CSA质量均为10ug,如表2所示,同时以未感染病毒的小鼠(Non-infection)作对照。
[0171] 将上述各组疫苗分别于第0天、14天对6-8周龄雌性BALB/c小鼠进行背部皮下 免疫。PBS组中PBS溶液的剂量为100 μ 1、FI-RSV组中FI-RSV灭活疫苗的剂量为50 μ 1 5 X IO7TCID 病毒量。
[0172] 二、流式检测免疫攻毒小鼠后脾脏和肺门淋巴结Treg细胞分泌IL-10、IL_21以及 CD40L
[0173] 在上述步骤一末次免疫后第7天,通过滴鼻使小鼠感染RSV病毒,RSV病毒量按照 6 X 105TCID50/每只小鼠,对病毒感染4天后小鼠以60 μ g/kg的计量,腹腔注射1 %戊巴比 妥钠将小鼠麻醉。小心切开气管,用注射器将Iml含0. 2%胎牛血清的PBS溶液灌入肺内, 反复轻柔推送冲洗,离心收集细胞;分离小鼠肺门淋巴结与脾脏,研磨后制成单细胞悬液; 按照Foxp3/Transcription Factor Staining Buffer Set使用说明对单细胞悬液进行染 色,流式细胞仪检测。
[0174] 在脾脏中iTreg细胞分泌IL-10, IL-21,CD40L的结果如图10所示: Non-infection 组、PBS 组、CSA 组、G 组以及 FI-RSV 组 Treg 分泌 IL-10 较少,而仅有(G+CSA) 组Treg的较多。此外(G+CSA)组Treg细胞分泌IL-21,CD40L均比其他组高,并且具有显 著性差异。
[0175] 在肺门淋巴结中Treg细胞分泌IL-10,Q)40L的结果如图11所示:Non-infection 组、PBS组、CSA组、G组Treg分泌IL-10较少,FI-RSV组分泌较多IL-10,(G+CSA)组分泌 IL-10最多。CD40L与IL-10结果一致。
[0176] 以上结果说明呼吸道合胞体病毒(RSV)疫苗组能够分泌更多负调控因子抑制攻 毒后的细胞因子风暴。诱导哺乳动物的呼吸道合胞病毒特异性调节性T细胞的产生;诱导 哺乳动物的呼吸道合胞病毒表面糖蛋白G特异性调节性T细胞的产生。
[0177] 实施例8、呼吸道合胞体病毒(RSV)疫苗在中型动物中免疫效果评价
[0178] -、呼吸道合胞体病毒(RSV)疫苗免疫兔子实验
[0179] 实验材料:3_4kg兔子,购自复旦大学实验动物部,为清洁级,分9组,每组5只。实 验期间使用无菌水及食物喂养,光照周期为12小时。
[0180] 免疫用疫苗及对照如下表所示,分别在第0天和第14天皮下免疫,在第28天通过 耳缘静脉采血。免疫分组及剂量见表3,其中PBS组中PBS溶液的剂量为100 μ UFI-RSV组 中FI-RSV灭活疫苗的剂量为50 μ I 5Χ IO7TCID病毒量。
[0181] 表3、RSV疫苗在中型动物中免疫效果评价动物免疫分组
[0183] 二、ELISA检测抗体水平
[0184] 方法同实施例2的二。
[0185] 抗体结果如图12a所示:在第28天亚单位疫苗组,(G+CSA)组和(G+CSA) 10Χ组抗 体水平均有升高;在第64天(G+CSA)组IgG抗体滴度比其他对照组明显升高;在第110天 各组均回到较低抗体滴度值,经过攻毒后仅有(G+CSA)组和(G+CSA) 10X组抗体水平有所回 升,其他组没有回升情况。
[0186] 三、T细胞增殖实验检测T细胞增殖情况。
[0187] 方法同实施例3的二。
[0188] T细胞增殖情况如图12b所示:CSA组和(G+CSA)组T细胞增殖比例最低,PBS组、 FI-RSV组和(G+CSA) IOx组增殖比例相对增高,G组增殖比例最显著。FI-RSV组和(G+CSA) 组间有显著性差异。
[0189] 以上结果证明呼吸道合胞体病毒(RSV)疫苗组是抗体水平相对较高,T细胞增殖 比例最低的一组,是最佳疫苗选择。同时也说明呼吸道合胞体病毒(RSV)疫苗组可以提高 哺乳动物的呼吸道合胞病毒特异性IgG抗体水平;抑制哺乳动物的呼吸道合胞病毒特异性 T淋巴细胞增殖。
[0190] 实施例9、呼吸道合胞体病毒(RSV)疫苗在灵长动物中免疫效果评价
[0191] -、呼吸道合胞体病毒(RSV)疫苗免疫恒河猴实验
[0192] 实验材料:成年恒河猴,用无菌水及食物喂养,光照周期为12小时。
[0193] 免疫用疫苗如下表4所示,分别在第0天和第14天皮下免疫,在第28天通过静脉 采血。免疫分组见表。FI-RSV组中FI-RSV灭活疫苗的剂量为50 μ I 5X IO7TCID病毒量。
[0194] 表4、RSV疫苗在灵长动物中免疫效果评价动物免疫分组
[0196] 二、T细胞增殖实验检测T细胞增殖情况
[0197] 方法同实施例3的二。
[0198] T细胞增殖情况如图13所示:(G+CSA)组T细胞增殖水平相比较于G组与FI-RSV 组明显较低。说明(G+CSA)组是T细胞增殖比例最低的一组,是最佳疫苗。
[0199] 实施例10、不同种疫苗间相互干扰模拟实验
[0200] -、呼吸道合胞体病毒(RSV)疫苗免疫小鼠的实验
[0201] 实验材料:6_8周龄雌性BALB/c小鼠,购自复旦大学实验动物部,为清洁级,分9 组,每组5只。实验期间使用无菌水及食物喂养,光照周期为12小时。
[0202] 免疫用疫苗及对照:PBS组、HBV疫苗(HBV)、呼吸道合胞体病毒(RSV)疫苗和 HBV疫苗同时免疫组(HBV+RSV)、呼吸道合胞体病毒(RSV)疫苗和HBV疫苗分别免疫组 (HBV(-7)+RSV)。实验分组及各组的免疫情况如图14a所示。PBS组中PBS溶液的剂量为 100 μ I ;HBV疫苗的剂量为Iug ;呼吸道合胞体病毒(RSV)疫苗组中G蛋白和CSA质量均为 IOug0
[0203] 二、通过ELISA方法检测两种疫苗间的相互干扰作用
[0204] 将混合有经高温灭活处理的RSV的抗原或G蛋白(2ug/ml)包被液,按照每孔 100 μ 1加入96孔ELISA板,置于37°C温箱中放置2小时。PBST洗板3次。加入5%脱脂奶 粉(PBST),37°C放置1小时,PBST洗板3次。使用2%脱脂奶粉(PBST),将免疫后小鼠或兔 血清按2倍梯度稀释,加入96孔ELISA板,每孔100 μ 1,37°C放置1小时,PBST洗板3次。 每孔加入100 μ 1用2%脱脂奶粉(PBST)稀释3000倍的HRP标记山羊抗小鼠 IgG,37°C放 置1小时,PBST洗板3次。每孔加入100 μ I TMB显色液,于37°C避光显色10分钟。每孔 加入50μ1 0.2mol/L硫酸终止反应。于0D450nm/620nm测定出每孔的光密度值。抗体滴 度的判定以至少大于2倍阴性血清的光密度值为依据。
[0205] 结果如图14b所示:PBS组抗HBsAg IgG抗体水平几乎为零,因为没有免疫疫苗 所以不产生抗体,此组作为阴性对照;HBV组、(HBV+RSV)组及(HBV(-7)+RSV)组都具有抗 HBsAg IgG抗体,特别是(HBV+RSV)组抗体水平相对较高,但是这三组之间没有显著性差 异。
[0206] 以上结果说明RSV疫苗对HBV疫苗产生抗体没有负影响。
【主权项】
1. 一种呼吸道合胞病毒疫苗,其活性成分为呼吸道合胞病毒G蛋白和免疫抑制剂; 所述呼吸道合胞病毒G蛋白的氨基酸序列如序列表中序列2所示。2. 根据权利要求1所述的呼吸道合胞病毒疫苗,其特征在于:所述免疫抑制剂为环孢 菌素 A、地塞米松、雷帕霉素或环磷酰胺;所述免疫抑制剂具体为环孢菌素 A ; 所述呼吸道合胞病毒G蛋白和所述环孢菌素 A的质量比为1:100-100:1。3. 根据权利要求1或2所述的呼吸道合胞病毒疫苗,其特征在于:所述呼吸道合胞病 毒G蛋白和所述环孢菌素 A的质量比为1:1、2:10、4:10、6:10、8:10。4. 根据权利要求1-3中任一所述的呼吸道合胞病毒疫苗,其特征在于:所述呼吸道合 胞病毒G蛋白和所述环孢菌素 A的质量比进一步具体为1: 1。5. -种制备呼吸道合胞病毒疫苗的方法,包括如下步骤: 将环孢素 A溶液与呼吸道合胞病毒G蛋白混匀,得到呼吸道合胞病毒疫苗; 所述呼吸道合胞病毒G蛋白的氨基酸序列如序列表中序列2所示。6. 根据权利要求5所述的方法,其特征在于:所述环孢素 A溶液中的环孢素 A与所述 呼吸道合胞病毒G蛋白质量比为1:100-100:1。7. 根据权利要求5或6所述的方法,其特征在于:所述环孢素 A溶液中的环孢素 A与 呼吸道合胞病毒G蛋白的质量比具体为1: 1、2:10、4:10、6:10、8:10。8. 根据权利要求5-7中任一所述方法,其特征在于:所述环孢素 A溶液的制备方法:将 环孢素 A溶于丙二醇中,得到混合液;将所述混合液与PBS溶液等体积混匀,得到所述环孢 素 A溶液; 所述环孢素 A溶液中环孢素 A的浓度为0. 2mg/ml。9. 呼吸道合胞病毒G蛋白在制备呼吸道合胞病毒的疫苗中的应用; 或呼吸道合胞病毒G蛋白和免疫抑制剂在制备呼吸道合胞病毒的疫苗中的应用; 所述呼吸道合胞病毒G蛋白的氨基酸序列如序列表中序列2所示; 所述免疫抑制剂为环孢菌素 A。10. 权利要求1-4中任一所述的呼吸道合胞体病毒疫苗在如下(1)-(12)中至少一种中 的应用: (1) 制备提高哺乳动物的呼吸道合胞病毒特异性IgG抗体水平的产品; (2) 制备提高哺乳动物的呼吸道合胞病毒特异性中和抗体水的产品; (3) 制备抑制哺乳动物的呼吸道合胞病毒特异性T淋巴细胞增殖的产品; (4) 制备抑制哺乳动物的呼吸道合胞病毒表面糖蛋白G特异性T淋巴细胞增殖的产 品; (5) 制备诱导哺乳动物的呼吸道合胞病毒特异性调节性T细胞的产生的产品; (6) 制备诱导哺乳动物的呼吸道合胞病毒表面糖蛋白G特异性调节性T细胞的产生的 产品; (7) 制备促进哺乳动物的呼吸道合胞病毒特异性调节性T细胞分泌IL10、IL21和/或 ⑶40L的产品; (8) 制备促进哺乳动物的呼吸道合胞病毒表面糖蛋白G特异性调节性T细胞分泌 IL10、IL21 和 / 或 CD40L 的产品; (9) 制备降低哺乳动物的呼吸道合胞病毒的病毒载量的产品; (10) 制备抑制哺乳动物的肺部炎性细胞的增殖的产品; (11) 制备降低呼吸道合胞病毒对哺乳动物肺部组织的损伤的产品; (12) 制备抑制哺乳动物的炎症反应的产品。
【文档编号】A61P31/14GK105983095SQ201510082407
【公开日】2016年10月5日
【申请日】2015年2月15日
【发明人】俞庆龄, 钟维, 钟一维, 何忠淮, 王宾, 李超凡, 周娴
【申请人】北京艾棣维欣生物技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1