一种耐高温型吸波材料的制备方法与流程

文档序号:14657674发布日期:2018-06-12 07:14阅读:554来源:国知局

本发明涉及吸波材料制备技术领域,具体涉及一种耐高温型吸波材料的制备方法。



背景技术:

近年来,随着现代科技的不断进步,大量的电子设备哦进入到日常生活中,电磁波辐射的影响日益增大,这种影响体现在各种生活环境中。恶化的电磁环境不仅会干扰电子仪器、设备的正常工作,还会影响人类的健康。

微波吸波材料又称为吸波材料,是指有效吸收入射的电磁波,将电磁能转化为热能而消耗,或使电磁波干涉相消,从而使目标的回波强度显著减弱的一类电磁功能材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、厚度薄、耐温、耐湿、抗腐蚀、物理力学性能好等优点。吸波材料的工作原理是:当电磁波垂直入射到吸波材料表面时,部分电磁波被反射回去;其余部分进入材料内部,并在电磁波传播过程中通过传导电流损耗、介电损耗和磁损耗等机制将电磁能转换成热能耗散或使电磁波因干涉而衰减;部分未被耗散或衰减的电磁波在自由空间与吸波涂层表面和涂层地面与金属板界面之间发生反射,来回反射直至被完全吸收。

目前类似传统的吸波体大都只考虑了垂直入射下的吸波性能,对于斜入射特别是单层结构的斜入射性能研究却很少。另外,目前制备吸波材料较为常见的方法是将吸波涂料喷涂或者浸涂到基材上,然后在高温高压条件下,使用胶膜或相应的粘合剂将单层的吸波基材粘合到一起最后制备得到结构型吸波材料,这种制备方法周期长,还会产生大量的VOC,对自然环境容易造成污染。最终制得的吸波材料耐高温性差且吸波效率低。

因此,研制出一种能够解决上述性能问题的吸波材料非常有必要。



技术实现要素:

本发明所要解决的技术问题:针对目前普通吸波材料在使用过程中,不耐高温以及吸波性能较差的缺陷,提供了一种耐高温型吸波材料的制备方法。

为解决上述技术问题,本发明采用如下所述的技术方案是:

一种耐高温型吸波材料的制备方法,其特征在于具体制备步骤为:

(1)将去离子水、正硅酸乙酯和无水乙醇混合置于烧杯中搅拌后,向烧杯中滴加正硅酸乙酯体积2%的盐酸,继续混合搅拌,得到混合溶液,继续将混合溶液放入超声振荡器中振荡,振荡后静置陈化,得到自制硅溶胶;

(2)量取聚酰亚胺树脂放入烧杯中搅拌,并加热升温,得到熔融液,再向熔融液中加入熔融液质量7%的花生油和熔融液质量0.7%的酸奶,装入发酵罐中,密封发酵,发酵结束后,得到发酵树脂;

(3)将六方氮化硼、氧化铝和碳化硅以及去离子水混合后置于的烧杯中,并放入水浴锅中混合搅拌,得到混合液,搅拌后再加入混合液体积3%的硅烷偶联剂KH-550,继续保温反应后,继续放入烘箱中烘干,研磨出料,得到自制改性粉末;

(4)按重量份数计,分别称取炭纤维、自制硅溶胶、发酵树脂和去离子水混合置于烧结炉中,在真空条件下密封烧结,再添加自制改性粉末、糊精和氮化硼,继续加热升温混合烧结,自然冷却至室温,出料,即可制得耐高温型吸波材料。

步骤(1)所述的去离子水、正硅酸乙酯和无水乙醇的体积比为2:5:3,搅拌时间为10~12min,盐酸的质量分数为15%,继续搅拌时间为20~30min,振荡时间为35~45min,陈化时间为1~2天。

步骤(2)所述的搅拌时间为6~8min,加热升温温度为280~300℃,发酵温度为45~55℃,发酵时间为9~11天。

步骤(3)所述的六方氮化硼、氧化铝和碳化硅以及去离子水的质量比为1:1:1:2,搅拌温度为55~75℃,搅拌时间为12~16min,继续保温反应时间为1~2h,烘干温度为100~110℃,烘干时间为10~12min。

步骤(4)所述的按重量份数计,分别称取20~30份炭纤维、12~16份自制硅溶胶、8~10份发酵树脂和10~12份去离子水以及6~8份自制改性粉末、3~5份糊精和2~4份氮化硼,烧结温度为100~120℃,烧结时间为20~30min,升温速率为5℃/min,继续烧结时间为1~2h,加热升温温度为500~700℃。

本发明与其他方法相比,有益技术效果是:

本发明以炭纤维为基体,聚酰亚胺树脂和碳化硅等作为补强剂,以硅溶胶和糊精作为改性剂制备得到耐高温、吸波性能优异的吸波材料,本发明首先利用正硅酸乙酯水解法制备硅溶胶,由于硅溶胶中含有二氧化硅,它能有效隔离空气中氧气与炭纤维的接触,有利于炭纤维耐高温性能的提高,而二氧化硅可以作为介电涂层包覆在炭纤维表面,能够调节和改善吸波材料的介电性能,获得优异的吸波性能,改性后的炭纤维可实现对电磁波的吸收,增强其微波吸收,同时显著提高材料的耐高温性能,再次提高吸波材料的耐高温性和吸波性能,接着通过聚酰亚胺树脂和植物油以及酸奶共混发酵,利用酸奶中微生物将植物油分解产生亲油性酯基,并在微生物的自交联作用下使得酯基接枝到树脂表面,从而提高树脂和炭纤维的相容性,它的芳香型聚酰亚胺分子链的分子间具有较强的作用力,并且作为刚性基团,使得它的玻璃化转变温度在很高的温度下进行,并吸附在炭纤维表面,有利于炭纤维的耐高温性得到提高,继续加入具有耐高温性和较好吸波性的碳化硅和六方氮化硼,具有粘性的糊精和耐高温性的氧化铝,由于在炭纤维表面沉积一层碳化硅/氧化铝薄膜,可以改善炭纤维的微波介电性能,提高其吸波性能,以及六方氮化硼具有优良的耐高温性,它可显著改善吸波材料的阻抗匹配,提高其吸波性能,进一步提高吸波材料的耐高温性和吸波性能,具有广泛的应用的前景。

具体实施方式

将去离子水、正硅酸乙酯和无水乙醇按体积比为2:5:3混合置于烧杯中搅拌10~12min后,向烧杯中滴加正硅酸乙酯体积2%的质量分数为15%的盐酸,继续混合搅拌20~30min,得到混合溶液,继续将混合溶液放入超声振荡器中振荡35~45min,振荡后静置陈化1~2天,得到自制硅溶胶,量取聚酰亚胺树脂放入烧杯中搅拌6~8min,并加热升温至280~300℃,得到熔融液,再向熔融液中加入熔融液质量7%的花生油和熔融液质量0.7%的酸奶,装入发酵罐中,在温度为45~55℃的条件下密封发酵9~11天,发酵结束后,得到发酵树脂,按质量比为1:1:1:2将六方氮化硼、氧化铝和碳化硅以及去离子水混合后置于烧杯中,并放入水浴锅中,在温度为55~75℃下混合搅拌12~16min,得到混合液,搅拌后再加入混合液体积3%的硅烷偶联剂KH-550,继续保温反应1~2h后,继续放入烘箱中,在100~110℃下烘干10~12min,研磨出料,得到自制改性粉末,按重量份数计,分别称取20~30份炭纤维、12~16份自制硅溶胶、8~10份发酵树脂和10~12份去离子水混合置于100~120℃的烧结炉中,在真空条件下密封烧结20~30min,再添加6~8份自制改性粉末、3~5份糊精和2~4份氮化硼,继续以5℃/min升温速率加热升温至500~700℃,混合烧结1~2h,自然冷却至室温,出料,即可制得耐高温型吸波材料。

实例1

将去离子水、正硅酸乙酯和无水乙醇按体积比为2:5:3混合置于烧杯中搅拌10min后,向烧杯中滴加正硅酸乙酯体积2%的质量分数为15%的盐酸,继续混合搅拌20min,得到混合溶液,继续将混合溶液放入超声振荡器中振荡35min,振荡后静置陈化1天,得到自制硅溶胶,量取聚酰亚胺树脂放入烧杯中搅拌6min,并加热升温至280℃,得到熔融液,再向熔融液中加入熔融液质量7%的花生油和熔融液质量0.7%的酸奶,装入发酵罐中,在温度为45℃的条件下密封发酵9天,发酵结束后,得到发酵树脂,按质量比为1:1:1:2将六方氮化硼、氧化铝和碳化硅以及去离子水混合后置于烧杯中,并放入水浴锅中,在温度为55℃下混合搅拌12min,得到混合液,搅拌后再加入混合液体积3%的硅烷偶联剂KH-550,继续保温反应1h后,继续放入烘箱中,在100℃下烘干10min,研磨出料,得到自制改性粉末,按重量份数计,分别称取20份炭纤维、12份自制硅溶胶、8份发酵树脂和10份去离子水混合置于100℃的烧结炉中,在真空条件下密封烧结20min,再添加6份自制改性粉末、3份糊精和2份氮化硼,继续以5℃/min升温速率加热升温至500℃,混合烧结1h,自然冷却至室温,出料,即可制得耐高温型吸波材料。

实例2

将去离子水、正硅酸乙酯和无水乙醇按体积比为2:5:3混合置于烧杯中搅拌11min后,向烧杯中滴加正硅酸乙酯体积2%的质量分数为15%的盐酸,继续混合搅拌25min,得到混合溶液,继续将混合溶液放入超声振荡器中振荡40min,振荡后静置陈化1.5天,得到自制硅溶胶,量取聚酰亚胺树脂放入烧杯中搅拌7min,并加热升温至290℃,得到熔融液,再向熔融液中加入熔融液质量7%的花生油和熔融液质量0.7%的酸奶,装入发酵罐中,在温度为50℃的条件下密封发酵10天,发酵结束后,得到发酵树脂,按质量比为1:1:1:2将六方氮化硼、氧化铝和碳化硅以及去离子水混合后置于烧杯中,并放入水浴锅中,在温度为65℃下混合搅拌14min,得到混合液,搅拌后再加入混合液体积3%的硅烷偶联剂KH-550,继续保温反应1.5h后,继续放入烘箱中,在105℃下烘干11min,研磨出料,得到自制改性粉末,按重量份数计,分别称取25份炭纤维、14份自制硅溶胶、9份发酵树脂和11份去离子水混合置于110℃的烧结炉中,在真空条件下密封烧结25min,再添加7份自制改性粉末、4份糊精和3份氮化硼,继续以5℃/min升温速率加热升温至600℃,混合烧结1.5h,自然冷却至室温,出料,即可制得耐高温型吸波材料。

实例3

将去离子水、正硅酸乙酯和无水乙醇按体积比为2:5:3混合置于烧杯中搅拌12min后,向烧杯中滴加正硅酸乙酯体积2%的质量分数为15%的盐酸,继续混合搅拌30min,得到混合溶液,继续将混合溶液放入超声振荡器中振荡45min,振荡后静置陈化2天,得到自制硅溶胶,量取聚酰亚胺树脂放入烧杯中搅拌8min,并加热升温至300℃,得到熔融液,再向熔融液中加入熔融液质量7%的花生油和熔融液质量0.7%的酸奶,装入发酵罐中,在温度为55℃的条件下密封发酵11天,发酵结束后,得到发酵树脂,按质量比为1:1:1:2将六方氮化硼、氧化铝和碳化硅以及去离子水混合后置于烧杯中,并放入水浴锅中,在温度为75℃下混合搅拌16min,得到混合液,搅拌后再加入混合液体积3%的硅烷偶联剂KH-550,继续保温反应2h后,继续放入烘箱中,在110℃下烘干12min,研磨出料,得到自制改性粉末,按重量份数计,分别称取30份炭纤维、16份自制硅溶胶、10份发酵树脂和12份去离子水混合置于120℃的烧结炉中,在真空条件下密封烧结30min,再添加8份自制改性粉末、5份糊精和4份氮化硼,继续以5℃/min升温速率加热升温至700℃,混合烧结2h,自然冷却至室温,出料,即可制得耐高温型吸波材料。

对比例 以佛山市某公司生产的吸波材料作为对比例 对本发明制得的耐高温型吸波材料和对比例中的吸波材料进行检测,检测结果如表1所示: 1、测试方法

采用矢量网络分析仪对本发明制得的实例1~3和对比例样品在电磁波正入射温度为1100℃条件下进行吸波性能测试。

表1

根据表1中数据可知,本发明制得的耐高温型吸波材料在高温条件下,频率在6~18GHz范围内反射率均小于-8dB,具有较好的宽频吸波性能。因此,具有广阔的使用前景。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1