复合材料制品的制作方法

文档序号:1841887阅读:398来源:国知局
专利名称:复合材料制品的制作方法
技术领域
本发明涉及复合材料制品,其具有低磨损并具有高热容量。具体地说,但非限制性地,本发明涉及例如用于飞行器制动器的碳摩擦盘。
背景技术
由于经济利益的原因,目前的飞行器计划越来越受到降低重量要求的推动。这种重量的降低允许增加运输的有效负载和/或降低飞行器飞行燃油的需要,对于获取利润率和加强环境意识这都是非常重要的考虑事项。
碳-碳复合材料(C-C)制动摩擦盘已经变为用于飞行器多盘制动系统的材料选择的基础,与金属替代物相比,其相对高的成本对于其相对低的重量来说还是合理的。碳的高比热可以使大量的能量在制动期间被低的制动器热填料量吸收。
早期C-C制动摩擦盘的研究表明,一些具有低磨损性质的材料缺乏制动中扭矩传递需要的结构强度。解决此问题的方法在US3,712,427和US 3,956,548中提出,其中低磨损的碳基承磨面通过机械方法附着到或连接到碳基核心材料上。
在C-C作为飞行器制动摩擦材料引进后,其高成本使得其适用于重新整修和重新使用而不需要完全更换的摩擦盘。US 3,800,392和US 5,558,186提出了承磨面可以在其使用寿命末期从制动摩擦盘移出并用新的材料更换的系统。US 4,982,818公开了一种系统,其中将磨损盘的核心分成两半,且每半都附着到新的核心以提供新的摩擦盘。
最小的制动器热填料量(制动器废弃量),即在该值时必须移出制动器热填料,通常通过在制动需求量最大的事件—中断起飞(RTO)期间吸收的能量确定。新热填料的需求量通过计算所需的废弃量加上磨损材料的许用量确定,该许用量是每次制动的磨损率与在制动器使用寿命期间需要完成的制动次数的函数。
虽然与金属替代物相比,C-C制动器热填料具有重量明显减少的特点,但C-C相对低的密度(通常在1.6-1.85gcm-3)意味着C-C制动器热填料占据了在环绕制动器底盘和轮子结构中必须提供的大量体积。
在过去,C-C制动摩擦盘一直用熔化的硅渗入并热处理,以便至少一些硅与基体的碳起反应,以形成改进所形成盘的摩擦性能的碳化硅。众所周知,此材料具有比‘基础’盘的C-C更高的密度,该硅化材料的密度通常在1.9-2.2gcm-3的范围。然而,此硅化制动摩擦盘的磨损率通常明显高于相应的C-C盘的磨损率,因此,需要更高密度的更长的热填料,由此增加了轮子和制动器的整个重量。
US 6042935公开了一种由核心体和与其连接的摩擦体(承磨面)形成的摩擦元件。摩擦体由碳纤维增强的多孔碳形成,孔至少部分用碳化硅或硅填充。核心体可以同样用硅浸渍,从而使摩擦体具有高于或等于核心体密度的密度。包含碳化硅的连接层可以用于将上述两者连接在一起。
US 2003/0057040 A1同样公开了一种摩擦层连接到支撑体上的元件,所形成的坯体被碳化并热裂解,然后用硅渗透以提供含超过65%的碳化硅的摩擦层,从而使摩擦层具有比核心层或支撑体更高的密度。
US 6221475公开了一种具有摩擦面的摩擦元件。至少在摩擦面的区域中该元件具有包括热解碳的第一相、第二难熔相以及碳化硅相,以提供具有高于核心的密度的摩擦面。

发明内容
本发明的目的之一在于提供一种复合材料制品,当其与本发明的另一复合材料制品或其他制品摩擦接合时,具有在使用中改进的能量吸收容量和/或低的磨损率。
本发明的特别的但不唯一的目的在于提供一种复合材料制品,其适合用作飞行器制动器中的摩擦盘,该盘具有改进的能量吸收容量和/或低的磨损率,以最小化热填料的重量,和/或减少所形成的热填料的长度。可以设想通过减少热填料的长度,也将减少环绕制动器底盘和其他轮子元件的长度,随之也减少了飞行器的重量。
本发明的第一方面提供了一种复合材料制品,例如,用于飞行器制动器热填料的制动摩擦盘,比如,盘包括具有面部分的核心层和附着到该面部分的承磨层,其中该承磨层具有低于核心层的密度。
本发明的第二方面提供了一种复合材料制品,例如,用于飞行器制动器热填料的制动摩擦盘,该复合材料制品包括由用难熔的碳化物浸渍的C-C复合材料形成的核心层,该核心层具有附着有C-C承磨层的面部分。
还提供了一种复合材料制品例如用于飞行器制动器热填料的制动摩擦盘的制备方法,所述方法包括由相对较高密度的材料形成核心层,该核心层具有面部分,并由相对较低密度的材料形成承磨层,并将所述承磨层附着到所述核心层的面部分。
本发明的第四方面提供了一种复合材料制品例如用于飞行器制动器热填料的制动摩擦盘的制备方法,所述方法包括形成具有面部分的C-C核心层,通过液体浸渍增加该核心层的密度;形成C-C承磨层并将该承磨层附着到所述核心层的面部分。
优选承磨层具有1.55-1.85gcm-3的密度。优选核心层具有1.85-2.95gcm-3的密度,最优选密度范围为2.0-2.3gcm-3。
核心层可以用硅和/或硼浸渍增加密度,优选液体硅和/或硼,在最优选实施方式中,通过与组成至少部分所述核心层的碳基体反应形成难熔的碳化硅和/或碳化硼。
承磨层可以由低磨损的C-C形成,如公开在英国专利GB2,356,642B(本申请的申请人拥有)中的C-C,其中承磨层由碳纤维形成,所述碳纤维从承磨层的内周边径向朝向其外周边延伸或延伸到其外周边。
本发明的另一方面提供了一种飞行器轮子和制动器组件,其包括制动摩擦盘,一个或多个所述制动摩擦盘具有密度大于1.85gcm-3的核心层,以及附着到所述核心层上的密度为1.85gcm-3或更低的至少一个承磨层。
优选所述承磨层由低磨损的C-C形成。


为了更充分地理解本发明,下面将仅通过实施例并参照附图进行说明,其中图1是显示磨损碳的区域的现有技术的C-C制动摩擦盘的截面图;图2是显示附着到核心层的C-C承磨层的本发明的盘的截面图;图3是显示磨损到废弃厚度的C-C承磨层的本发明的盘的截面图。
具体实施例方式
参照图1,其显示了用于飞行器多盘制动器的现有技术的制动摩擦盘的剖视图。在此,显示了在其外周上具有用于接合飞行器轮子(未示出)的驱动键(未示出)的C-C转子制动摩擦盘11。制动摩擦盘11具有两个承磨面12,当安装在制动器组件中时,所述承磨面设置在盘11的每个主要面上以用于与设置在其任意一侧的盘摩擦接合。在使用期间盘11磨损时,承磨面12将磨掉基础材料13的厚度,直到达到位置14为止,在此盘11完全磨损并将被更换。
在本领域中熟知的制动器组件通常具有键合的C-C转子盘并与轮子旋转,并设置在C-C定子盘之间,该定子盘与固定到轴向环绕轴的起落装置的扭力管键合。定子和转子盘的组件称为“热填料”。当制动压力载荷通过制动器活塞腔中的致动器活塞施加时,盘的摩擦面变为摩擦接合。致动器活塞可以通过制动控制系统液压驱动或电驱动。当制动摩擦盘在摩擦接合面磨损时,热填料的厚度减少,厚度的减少通常通过磨损指示器机构显示。当热填料达到其完全磨损的厚度时,移出热填料并用新盘更换。在此完全磨损条件下的热填料的长度是废弃热填料的长度。
图2是本发明的制动摩擦盘21的剖视图。核心材料22的密度高于1.85gcm-3(即,通常认为在用于飞行器制动摩擦盘技术中的密度)。这可以通过形成压缩的C-C核心或通过形成通常的C-C核心,并通过将其用熔化的硅和/或硼浸渍实现。接下来或在浸渍期间,元素硅和/或硼与碳基体材料反应以形成硅和/或硼的碳化物。当在10-1mbar真空的条件下C-C核心脱气后,熔化的硅在惰性气体中在大约1420℃的温度渗透进C-C核心。然后,渗透进C-C核心的Si通过加热到大约1800℃的温度与C-C中的碳基体材料反应,全部或部分转化成为碳化硅(SiC)。此核心材料根据初始C-C的性质通常将具有2.0-2.3gcm-3范围内的密度。如果开始的C-C具有1.65gcm-3的密度以及20%的开孔率,则硅化后95%的Si转化为SiC,通常具有最小为2.1gcm-3的密度。
具有用于摩擦接合的承磨面24的承磨层23通过在其间的界面25的接合装置附着到核心层22。承磨层23可以通过以下方法接合到核心层22通过机械装置如铆钉等、通过化学粘合剂如高温铜焊合金,例如Wall Colmonoy提供的Nicrobraz 30、通过扩散结合使C-C承磨层与高密度C-C核心或富含硅和/或硼的核心紧密接触,优选施加压力以保持紧密接触,并加热到超过1300℃的高温,以使C-C承磨层和核心之间连接,而不会使硅和/或硼污染承磨层。连接可以通过在核心和承磨层的界面处应用碳化物形成元素如硅或硼的层而实现,然后,核心和承磨层在控制气氛和/或真空中加热至碳化物形成元素足以熔化并与承磨层的表面和核心反应以形成碳化物层的温度期间保持紧密接触。此过程的温度在使用硅时超过1400℃,在使用硼时超过2200℃。或者,承磨层23和核心层22可以通过渗透可分解的含碳气体以及接下来的碳化而紧密接触并连接在一起。可分解的含碳气体可以为碳氢化合物气体如甲烷、丙烷、丁烷等,并可以在真空和/或惰性气氛条件下渗透进核心和承磨层之间的界面,碳氢化合物气体在本领域中熟知的温度和气氛条件下在界面分裂以沉积碳,通常在1000℃和1mbar真空的条件下。已经发现当有碳毡层插在承磨层和核心之间的界面处时,此连接过程更有效。
承磨层23具有磨损材料许用的厚度,其极限显示在位置26。制动摩擦盘21显示有两个承磨层23,然而,可以理解,一些制动摩擦盘可以只具有一个承磨层,特别是在热填料端部的那些定子。承磨层23可以为C-C材料(例如1.6-1.85gcm-3的密度),或具有适合用于飞行器制动摩擦盘的磨损率和摩擦性质的其他材料。
图3显示了如图2所示的本发明制动摩擦盘21的剖视图,其中承磨面24磨损到磨损极限位置26。
为了显示来自本发明制动摩擦盘的优点,参照以下实施例进行说明。在每种情况中,数据涉及具有包括设计为装入19″(482.6mm)轮子的9个盘(4个转子和5个定子)的制动器热填料的飞行器制动器,其要求在中断飞行(RTO)期间吸收63284.520KJ(46.67×106ft.lb)的能量。
实施例1 使用C-C的制动器(现有技术)每次着陆C-C承磨层的磨损率 2μm(0.00008″)在使用寿命期间要求的着陆次数 1500C-C的密度 1.85gcm-3新热填料的长度 287.376mm(11.314″)废弃热填料的长度 238.608mm(9.394″)热填料的重量 47.99kg(105.8lb)实施例2 本发明的制动器C-C承磨层的磨损率 2μm(0.00008″)在使用寿命期间要求的着陆次数 1500核心材料密度 2.10gcm-3承磨层的密度 1.85gcm-3新热填料的长度 275.641mm(10.852″)废弃热填料的长度 227.889mm(8.972″)热填料的重量 47.99kg(105.8lb)与用C-C材料的现有技术的制动器相比,为满足同样的制动性能规格,本实施例实现了热填料长度减少0.422″(10.719mm)。热填料长度的0.422″(10.719mm)的减少使得可以通过更短的制动扭力管和通过更短的制动长度来改进轮子的设计,由此使得轮子和制动器组件的重量减轻。
此外,使用不适合用作制动盘材料(因为其不满足用于在制动期间扭矩传递的强度要求)的较低磨损率的承磨层,会使此优点进一步改善。
实施例3 本发明的制动器每次着陆C-C的磨损率(低磨损率)1μm(0.00004″)在使用寿命期间要求的着陆次数 1500核心材料密度 2.10gcm-3承磨层的密度 1.85gcm-3新热填料的长度 243.967mm(9.605″)废弃热填料的长度 227.889mm(8.972″)新热填料的重量 44.21kg(97.46lb)与用C-C材料的现有技术制动器(实施例1)相比,为满足同样的制动性能规格,本实施例提供减少了43.409mm(1.709″)的热填料长度。热填料长度的减少要比实施例2提供的更多,结果进一步减轻了轮子和制动器组件的重量。
实施例1中制动器热填料的盘利用GB2,012,671中所述类型的无纺增强织物制造,其包括连续的纤维以及编织到所述连续纤维中的人造短纤维层。从所述织物上切下在径向和切向具有连续纤维的扇形,并以螺旋形式环绕中心塞子设置。48°的扇形角用于避免各个扇形连接点的排列与相邻层交叉,且多个扇形在径向纤维方向和切向纤维方向之间交替。继续设置直到增加足够的扇形以使得当移出中心塞子且扇形组件在适合的固定装置中被压缩到预定的体积时,达到20%的纤维体积。然后,该组件在本技术领域熟知的条件下通过CVI用碳渗透,达到大约1.3gcm-3的密度,当热处理和机加工后,从压缩的固定装置中取出并进一步渗透到盘所需的1.85gcm-3的密度。然后,渗透的盘通过在惰性气体中热处理到2400℃而石墨化,然后加工到最终的尺寸。
上述用于实施例1的C-C制动摩擦盘的制作方法也用于实施例2的C-C承磨层。实施例3的C-C承磨层的不同之处在于根据GB2,356,642B发明的制动摩擦盘只使用径向纤维方向的扇形。
实施例2和实施例3的核心材料由具有GB2,012,671所述类型的无纺增强的C-C织物制造,其包括连续的纤维以及编织到所述连续纤维中的人造短纤维层。将所述织物切成扇形或环形,设置到需要的厚度和重量并压缩成样板或编织成预成品,使它们具有大约20%的纤维体积。然后,在样板或预成品中的纤维组件在本领域熟知的化学蒸汽渗透(CVI)过程中用碳渗透一个或多个循环,直到达到1.60-1.65gcm-3的密度。然后,将此碳材料用硅浸渍,所述的硅通过在本领域熟知的条件下与碳基体反应而转换成SiC。最终的渗硅的C-C核心具有低于5%未转换的硅以及2.10gcm-3的密度。
承磨层通过利用铜焊填充料合金Nicrobraz 30和利用CVI渗透的碳毡连接到实施例2和3中的核心上。
用Nicrobraz 30铜焊填充料合金连接到核心的承磨层具有施加在承磨层和核心之间的铜焊填充料合金层。盘在10-4mbar的真空加热至1180℃的温度期间通过施加10psi的压力保持紧密接触。
通过用CVI渗透的碳毡连接到核心的承磨层具有插在每个承磨层与核心层的界面的碳毡层。承磨层、碳毡和核心层在本领域熟知的条件下在CVI熔炉中加工之前,通过在固定装置中夹紧盘保持紧密接触,所述条件用于从主要包括甲烷的气体在碳上沉积。如果碳毡用可以加热处理以留下碳沉积的碳化树脂渗透,则通过此方法有助于连接。
承磨层厚度在实施例2中为10mm(0.240″),在实施例3中为5mm(0.120″)。所述承磨层的厚度在以已知磨损率着陆所要求的次数的条件下,允许不均匀磨损系数为2。
涉及节约的测量显示为热填料的长度与整个热填料重量的比
表1 实施例盘的比较

因此,可以看出,本发明的制动器热填料(实施例2和3)分别提供了比现有技术的制动器热填料减少了4%和9%的各自热填料的L/W比。
因此,本领域的熟练人员可以理解,通过利用包括本发明的制动器热填料的制动摩擦盘可以实现许多优点。例如,可以减少新的热填料的长度,从而使轮子和制动器重量随之减少。此外,具有低热导率的连接层的使用使在减少磨损和/或改进摩擦性能的温度下操作磨损表面成为可能,特别是当飞行器向外滑行时更有意义,因为已发现此时C-C制动摩擦盘的磨损对于涉及的制动能量不成比例的高。
在制动器热填料使用期间摩擦接合中运行的盘上的承磨层可以由普通C-C承磨层坯料制作,其可被切下以提供所需厚度的承磨层。这在摩擦层制动操作时特别有益。虽然制动器热填料的总磨损不受到影响,但发现具有不同密度的承磨层以不同的相对速度被磨损。在与两个C-C面联系的任何磨损中,发现具有更高密度的面以更高速度被磨损。因此,当承磨面厚度必须包括在使用期间在热填料承磨层中不均匀磨损因素时,使用高密度核心的一些优点就丧失了。通过由同样的坯料制备那些将处于摩擦接合的层而平衡承磨层的密度将有利于在使用期间向热填料提供均匀的磨损,并且减少使得承磨层的厚度造成不均匀磨损的任何因素。
除此之外,可以认为,承磨层的使用允许盘通过去除完全磨损的承磨层并在核心上连接新的承磨层而容易地更新。此更新性能对于复合制动摩擦盘的操作具有相当的经济效益。
可以设想,承磨层可以附着到具有平面的核心盘,或承磨层可以附着到核心中的凹进区域。
虽然本发明描述了关于飞行器的制动摩擦盘,其也可以用于例如需要节约重量和/或尺寸的离合器盘和其他摩擦盘等。在上述确定的应用中,盘为具有内部孔隙率的固体,即,没有空气流过的通孔。在一些情况下,也可以存在此类孔。在提及核心材料的密度的各种情况下,其为实际核心材料的密度,而不是提到的整个核心材料体积(即,包括孔)的体积密度。
权利要求
1.用于飞行器制动器热填料的复合材料制品(21),该制品(21)包括具有面部分的核心层(22),以及附着到该面部分的承磨层(23),其中承磨层(23)具有低于核心层的密度。
2.根据权利要求1所述的复合材料制品(21),其中所述的承磨层(23)由C-C复合材料形成。
3.根据权利要求1或2所述的复合材料制品(21),其中所述的核心层(22)为浸渍有难熔碳化物的C-C复合材料制品。
4.用于飞行器制动器热填料的复合材料制品(21),该制品(21)包括由浸渍有难熔碳化物的C-C复合材料形成的具有面部分的核心层(22),以及附着到该面部分的C-C承磨层(23)。
5.根据权利要求3或4所述的复合材料制品(21),其中所述的难熔碳化物为碳化硅或碳化硼。
6.根据前述任何一项权利要求所述的复合材料制品(21),其中所述的核心层(22)的密度超过1.85gcm-3。
7.根据权利要求6所述的复合材料制品(21),其中所述的核心层(22)的密度在大于1.85gcm-3到2.95gcm-3的范围内。
8.用于飞行器制动器热填料的复合材料制品的制备方法,该方法包括由相对较高密度的材料形成核心层,该核心层具有面部分,以及由相对较低密度的材料形成承磨层,并将该承磨层附着到所述核心层的面部分。
9.用于飞行器制动器热填料的复合材料制品的制备方法,该方法包括形成具有面部分的C-C核心层,通过液体浸渍增加所述核心层的密度;形成C-C承磨层,并将该承磨层附着到所述核心层的面部分。
10.根据权利要求9所述的方法,包括通过用硅和/或硼浸渍来增加所述核心层的密度。
11.根据权利要求10所述的方法,还包括通过与C-C基体反应将所述硅和/或硼转换为它们各自的难熔碳化物。
12.根据权利要求8到11任何一项所述的方法,还包括由碳纤维形成所述承磨层,所述碳纤维从所述承磨层的内周边径向朝向其外周边延伸或延伸到其外周边。
13.飞行器轮子和制动器组件,包括制动摩擦盘(21),一个或多个所述的制动摩擦盘(21)具有密度大于1.85gcm-3的核心层(22),以及附着到核心层(22)的密度为1.85gcm-3或更低的至少一个承磨层(23)。
全文摘要
一种用于飞行器制动器热填料的复合材料制品(21),该制品包括具有面部分的核心层(22)和附着到该面部分的承磨层(23),其中承磨层(23)具有低于核心层(22)的密度。核心层(22)可以由压缩的C-C或由浸渍硼和/或硅的C-C制备。承磨层(23)可以由C-C制备。
文档编号C04B35/83GK1823234SQ200480020292
公开日2006年8月23日 申请日期2004年7月8日 优先权日2003年7月15日
发明者戴维·卡勒姆·约翰逊 申请人:都恩罗普空间技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1