玻璃和玻璃-陶瓷上锗结构的制作方法

文档序号:2011672阅读:364来源:国知局

专利名称::玻璃和玻璃-陶瓷上锗结构的制作方法
技术领域
:本发明涉及绝缘体上的半导体(SOI)结构,如在玻璃或玻璃陶瓷上的半导体,以及涉及这种绝缘体上半导体结构的制造方法。具体地,本发明涉及玻璃或玻璃-陶瓷上锗结构(GeOG),更具体地是在膨胀匹配的玻璃或玻璃-陶瓷基材上的锗。迄今为止,最广泛用于绝缘体上半导体结构的半导体材料是硅。在文献中将这种结构称为"绝缘体上硅结构"(silicon-on-insulatorstructure),这种结构使用縮写"SOI"。绝缘体上硅的技术在以下应用中的重要性日益增加高性能光伏应用(如,太阳能电池),薄膜晶体管应用,以及有源矩阵显示器之类的显示器。己知的绝缘体上硅晶片包含在绝缘材料上的基本为单晶硅的薄层(厚度一般为0.l-0.3微米,但是,在某些情况厚度可达5微米)。为了便于陈述,下文的讨论将时常使用术语"绝缘体上硅结构"。通过借用这种特定种类的绝缘体上半导体结构来方便对本发明的解释,但绝不是、也不应理解为对本发明的范围构成任何限制。在本文中,縮写SOI—般地表示绝缘体上半导体结构,其包括但不限于绝缘体上硅和绝缘体上锗结构。类似地,縮写SOG用来一般地表示玻璃上半导体(semiconductor-on-glass)结构,其包括但不限于玻璃上硅(silicon-on-glass)(SiOG)和玻璃上锗(GeOG)结构。术语SOG还包括玻璃-陶瓷上半导体结构,其包括但不限于玻璃-陶瓷上硅结构。縮写SOI包括SOG结构。得到SOI结构的各种方法包括在晶格匹配的基材上外延生长Si。另一种方法包括将单晶硅晶片结合在另一硅晶片上,后者之上已生长有SK)2的氧化层,然后将顶部晶片抛光或蚀刻至例如0.1-0.3微米的单晶硅层。其他方法包括离子注入法,在此方法中,注入氢离子或氧离子,对于氧离子注入情况,在顶部具有Si的硅晶片中形成埋置的氧化物层,或者对于氢离子注入情况,使薄Si层分离(剥落),使另一Si晶片与氧化层结合。从成本和/或结合强度(bondstregth)以及耐久性方面考虑,前两种方法都不能得到满意的结构。后一种方法包括氢离子注入,这种方法已引起人们的注意,并被认为比前两种方法具有优势,因为这种方法所需的注入能量小于注入氧离子时的能量的50%,所需的注入剂量比前两种方法小两个数量级。通过氢离子注入的剥落方法通常由以下步骤组成。在单晶硅晶片上生长热氧化层。然后将氢离子注入该晶片中,产生表面下的裂纹。注入能量决定了产生裂纹的深度,注入剂量决定了裂纹密度。然后在室温下将该晶片与另一硅晶片(支承基片)相接触地放置,形成暂时性结合。然后将晶片加热处理至大约600°C,造成表面下的裂纹生长,使硅薄层从硅晶片上分离。然后将所得的组件加热至高于1,00(TC,使具有Si02下层的Si膜与支承基片(即未进行注入的Si晶片)充分结合。因此该方法形成了一种SOI结构,在此结构中,硅膜与另一硅晶片互相结合,其间具有氧化物绝缘体层。成本是SOI结构用于工业应用的一个重要问题。迄今为止,上述方法和结构的成本中的主要部分是硅晶片的成本,该硅晶片支承着所述顶部具有Si薄膜的氧化层,也就是说成本中的主要部分是支承基片的成本。尽管在各专利中已经提到了使用石英作为支承基片(参见美国专利第6,140,209号;第6,211,041号;第6,309,950号;第6,323,108号;第6,335,231号;以及第6,391,740号),但是石英本身是较为昂贵的材料。在讨论支承基片的时候,上述一些参考文献提到了石英玻璃、玻璃和玻璃-陶瓷。这些文献中所列的其它支承基材包括金刚石、蓝宝石、碳化硅、氮化硅、陶瓷、金属和塑料。美国专利第5,374,564号讨论的方法是采用热法来获得在基片上的单晶硅膜。使具有平坦面的半导体材料晶片进行以下步骤(i)通过离子轰击晶片的一个面进行注入,产生气态微气泡层,该层限定了构成基片本体(mass)的下部区域和构成薄膜的上部区域;(ii)使晶片的平坦面与由至少一个刚性材料层构成的补强件(stiffener)接触;和(iii)在一定温度下对晶片和补强件的组件进行热处理的第三阶段,所述温度高于进行离子轰击时的温度,并足以在微气泡中产生压力效应以及在薄膜和基片本体之间产生分离。由于该高温步骤,这种方法不能用较低成本的玻璃或玻璃-陶瓷基片进行。美国专利申请第2004/0229444号揭示产生S0G结构的方法。这些步骤包括(i)将硅晶片表面与氢离子注入接触,产生结合表面;(ii)使晶片的结合表面与玻璃基片接触;(iii)在晶片和玻璃基片上施加压力、温度和电压,以促进它们之间的结合;和(iv)冷却该结构至常温,以促进玻璃基片和硅薄层从该硅晶片上分离。在美国专利申请第2004/0229444号中揭示的形成SOI的技术显示,产生了结合于玻璃基片的相对薄的半导体层(如,约l-5微米)。虽然这种半导体厚度即使不是对大多数应用、但对某些应用也是足够的,并且也是对厚度通常至少为200微米的块状半导体材料的改进,这些硅或基于硅的合金和/或氧化物玻璃或氧化物玻璃-陶瓷基的SOI结构不能为诸如MOS晶体管、光学检测器和其他光电器件以及高性能太阳能电池/光伏器件的其他应用提供满意的半导体层厚度。近年来,在美国专利申请第2005/0093100和2005/0042842号以及美国专利第6,759,712号中揭示了为达到更薄的半导体层SOI结构的各种结构,以及基于绝缘体上锗(也称为GOI)的器件的制造方法。在前述GOI申请中揭示的半导体导电膜的厚度一般小于200纳米(0.2微米)。如其中揭示的,与硅相比,锗具有较高的载流子(空穴和电子)迁移率和光吸收,因此锗能有效用于薄膜高性能/高量子效率的应用/器件。除了具有高电子和空穴迁移率外,锗的其他优点有,例如,所需的接触电阻和掺杂活化温度比硅低,因此促进形成浅结(shallowjunction)。虽然在这些研究的参考文献中所述的"绝缘体"一般是埋置在半导体材料(Ge,Si,GaAs,SiC...)内的氧化物或氮化物的绝缘层,但是揭示玻璃可作为可能的非半导体的材料、基片。与Ge结合时,与使用玻璃作为基片材料有关的一个问题是Ge膜与其结合的基片之间可能存在的热膨胀不匹配;在Ge膜位于二氧化硅玻璃上时,这种现象特别成为问题。明显的膨胀不匹配会导致高的膜应力和可能碎裂或分层。尽管薄膜GeOI器件具有上述的益处,但是在使用玻璃作为绝缘体/基片时仍普遍存在上述的不匹配问题,并且还未得到解决。因此,需要GeOI,特别是包含玻璃绝缘体/基片的GeOG器件,这种器件不存在上述的膨胀不匹配问题即,GeOG器件中,基片的热膨胀特性与Ge半导体膜的CTE特性相容。发明概述本发明的一个实施方式涉及一种绝缘体上的半导体结构,该结构包含第一层和第二层,第一层和第二层可以直接相互接合,或通过一个或多个中间层接合。第一层包含基本为单晶的锗半导体材料,而第二层包含玻璃或玻璃-陶瓷材料,这种材料的线性热膨胀系数(25-300°0在锗第一层的线性热膨胀系数的+/_20X10—7。C范围之内。在另一个实施方式中,第二层包含玻璃或玻璃-陶瓷材料,这种材料的线性热膨胀系数(25-300°0在锗第一层的线性热膨胀系数的+/-10X10—7'C范围之内。在下面的详述中将会列出本发明的其它特征和优点,根据本发明说明书和权利要求书以及附图的内容实施本发明之后,这些特征和优点中的部分对于本领域技术人员将是显而易见的。应当理解,上述一般说明和以下详细说明都仅仅是对本发明的示范,意图提供用于理解要求权利的本发明性质和特征的概况或框架。附图简述为说明本发明各方面的目的,以优选的附图形式示出,但是,应理解,本发明不限于所示的精确排列和手段。图1是说明按照本发明的一个或多个实施方式的GeOG器件结构的简图。图2是制造图1的GeOG结构的方法步骤的流程图。图3是说明采用图2的方法形成图1的GeOG结构的方法的简图。图4是说明将玻璃基片与图3的中间结构相结合的方法的简图。图5是按照本发明的另一个实施方式的GeOG结构的截面图。图6是按照本文所述的本发明制造的图4所示类型的GeOG结构的TOF-SIM深度分布图。发明详述参照附图,其中,相同的附图标记表示类似的元件,图l中示出按照本发明的一个或多个实施方式的GeOG结构100。该GeOG结构100优选包含第一层102和第二层104,该第一层102包含基本为单晶的含锗半导体材料,第二层104包含玻璃或玻璃-陶瓷,其线性热膨胀系数(25-30(TC)在锗第一层的线性热膨胀系数的+/-20乂10—7r范围之内。另一个实施方式中,GeOG结构IOO优选包含第一层102和第二层104,该第一层102包含基本为单晶的含锗半导体材料,第二层104包含玻璃或玻璃-陶瓷,其线性热膨胀系数(25-300°0在锗第一层的线性热膨胀系数的+/-10X1(T7'C范围之内。Ge0G结构100适合用于制造例如用于显示器应用的薄膜晶体管(TFT),包括有机发光二极管(OLED)显示器和液晶显示器(LCD),以及集成电路。这种薄Ge膜/玻璃GeOG结构特别适合用于高性能太阳能电池/光伏器件。层102的半导体材料优选基本为单晶锗材料形式。用"基本"这个词描述层102是考虑到半导体材料通常至少包含一些固有的或有意加入的内部缺陷或表面缺陷,例如晶格缺陷或一些晶粒边界。"基本"这个词还反映了某些掺杂剂会使整体半导体的晶体结构发生扭曲,或者产生别的影响。基本为单晶的锗材料包含至少90y。Ge,因此可包含最多10%的其他组分和/或掺杂剂,例如Si。首先,Ge半导体层102实际上可以具有任意合适的厚度,虽然通常小于约l微米,但对于电子应用,理想的厚度为约0.05-0.5微米,对光伏应用,理想厚度为1-IO微米。第一层的锗半导体材料的CTE(25-30(TC)通常约为61x10—7。C。玻璃或玻璃-陶瓷基片104优选由氧化物玻璃或氧化物玻璃-陶瓷形成。虽然没有要求,但是本文所述的实施方式优选包含应变点低于约l,OO(TC的氧化物玻璃或玻璃-陶瓷。如玻璃制造领域的常规,应变点是玻璃或玻璃-陶瓷的粘度为10146泊(10136Pa.s)时的温度。如在氧化物玻璃和氧化物玻璃-陶瓷之间,优选玻璃,因为玻璃制造通常比较简单,因此,使玻璃更广泛易得且费用较低。玻璃基片的厚度优选在约O.l-10毫米范围,最优选约0.5-l毫米。对某些GeOG,要求绝缘层厚度大于或等于约l微米,例如,以避免寄生电容效应,寄生电容效应在GeOG结构于高频操作时可能出现。过去,很难达到这样的厚度。根据本发明,绝缘层厚度大于约l微米的GeOG结构很容易通过简单地使用厚度大于或等于约1微米的玻璃基片来达到。一般而言,玻璃或玻璃-陶瓷基片104应具有足够的厚度,以便在本发明的工艺步骤以及随后对GeOG结构100进行的处理步骤中支承Ge半导体层102。尽管对玻璃基片104的厚度没有理论上限,但是通常不优选超过支承功能所需的厚度或者最终的GeOG结构IOO所需的厚度,这是由于玻璃基片104的厚度越大,越难以完成形成GeOG结构100的处理步骤中的至少部分步骤。氧化物玻璃或氧化物玻璃-陶瓷基片104优选是二氧化硅基的。因此,要求氧化物玻璃或氧化物玻璃-陶瓷中的Si02量大于30重量%,在一些实施方式中高达70重量%。非二氧化硅基的玻璃和玻璃-陶瓷可以用于实施本发明的一个或多个实施方式,但是,一般不太优选,因为非二氧化硅基的玻璃和玻璃-陶瓷的成本较高和/或内部性能特性较差。无论玻璃是二氧化硅基还是非二氧化硅基的,玻璃的重要特征是其线性热膨胀系数(25-30(TC)在锗的线性热膨胀系数的+/-20x10—7〃C范围之内,锗的线性热膨胀系数一般约为61X10—7°C。在一些实施方式中,玻璃基片的线性热膨胀系数(25-30(TC)应在50-70X10—7'C范围之内,在还有一些实施方式中,玻璃基片的线性热膨胀系数(25-300°C)应与锗的线性热膨胀系数相匹配,约为61X10—7'C。对一些应用,如显示器和光伏应用,优选玻璃或玻璃-陶瓷104在可见、近紫外和/或红外波长范围内是透明的。例如,优选的是,玻璃或玻璃-陶瓷104在350纳米-2微米的波长范围内是透明的。虽然优选玻璃或玻璃-陶瓷基片104包含简单的玻璃或玻璃-陶瓷,需要时可以使用层压结构。使用层压结构时,层压物中最紧靠Ge半导体层102的层优选具有本文中对由简单的玻璃或玻璃-陶瓷构成的玻璃基片104所述的性质。相对远离Ge半导体层102的那些层优选也具有那些性质,但对这些性质的要求可以放宽,因为这些层没有与Ge半导体层102直接接触。在后一情况,当不再满足对玻璃基片104规定的性质时,可以认为玻璃或玻璃-陶瓷基片104的使用寿命结束。能用于本发明的理想的玻璃包括碱金属、碱土金属或者稀土的铝硅酸盐或硼铝硅酸盐玻璃,这些玻璃具有上述的线性热膨胀系数(25-30(TC)CTE特性,即在锗的线性热膨胀系数的+/-20乂10—7X:范围之内。此外,因为锗的熔点相对较低,约为973t:,因此,推荐的结合温度一般应低于锗的熔点。作为这种玻璃,可以使用应变点温度至少为500°C,最高至90(TC的基于玻璃的基片。应注意,通常采用的结合温度低于玻璃基基片的应变点,使用适当的结合温度,在基于玻璃的结构与锗材料之间形成必需且充分的结合,是本领域技术人员的常识。在第一实施方式中,用于本发明玻璃上锗结构的玻璃包含具有以下组成的玻璃,所述组成按照重量百分比并由氧化物基准的批料计算15-45%Si02,7.5-20%A1203,15-45%MgO+CaO+SrO+BaO以及最多55%RE203,RE选自以下的稀土元素Sc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,以及它们的混合物。在另一个实施方式中,用于本发明的玻璃上锗结构的玻璃包括具有以下组成的玻璃,所述组成按照重量百分比并由氧化物基准的批料计算55-65%Si02,8-20%A1203,0-8%8203,和12-30%MgO+CaO+SrO+BaO+ZnO+Ti02-Zr02。优选上述组成不包含任何碱金属组分(Na20,K20,Li20),但是,最多10%的碱金属是可以接受的。在另一个实施方式中,用于本发明的玻璃上锗结构的玻璃包括具有以下组成的玻璃,所述组成按照重量百分比并由氧化物基准的批料计算45-70%Si02,2.5—30%A1203,0—8%B203,2.5—30%MgO+CaO+SrO+BaO禾口1—20%La203+Y203。适合用于本发明的CTE匹配的玻璃组成的代表性例子示于下表I(以重量%表示);技术人员采用标准方法可以制备这些以及其他的合适玻璃组成。例如,下面列出的玻璃可以通过以下方式制备在球磨中将组分氧化物、卤化物(如A1C13)、硝酸盐和/或碳酸盐(CaC03)粉料混合1小时,制备l千克的批料。然后,将混合的批料放入Pt坩锅,并在1550-165(TC的碳化硅棒加热炉(globarfurnace)内熔化过夜,之后,将熔融的玻璃倒在钢板上,并在700-80(TC之间退火,以减小应力。技术人员通过改变组成,可以调整这些玻璃的性质。例如,通过提高Si02含量和AL03与RE203的比值(RE^稀土元素,包括Sc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu),以及通过改变RE203的特性,可以提高应变点。例如,用Y203替代La203会提高应变点并降低CTE。技术人员可以在下面列出的无碱金属和碱土金属的组成中加入少量(如,最多几个百分点)的碱金属或碱土金属离子,以获得更适合于下面所述的结合方法的玻璃。但是,已知钠离子对硅晶体管有害,并且推测对于锗也应避免钠。低扩散速率的较大的碱金属离子可能是可以接受的,特别是在峰值处理温度低于或等于65(TC时。因此,玻璃组成最优选是不含钠的。还优选低铁的组成。<table>tableseeoriginaldocumentpage11</column></row><table><table>tableseeoriginaldocumentpage12</column></row><table>能用于本发明的理想的玻璃-陶瓷应具有与上述相同的线性热膨胀系数(25-300。C)的CTE特性,即,其线性热膨胀系数(25-300°C)在锗的线性热膨胀系数的+/-20乂10—7"C范围之内。特别是,可以配制在以下组成范围之内的尖晶石玻璃-陶瓷,以具有必需的+/-20X10—7。C的CTE性质。Si0230-55A120318-28ZnO8-20MgO0-6CsiO0-3SrO0-3BaO0-3K200-10Rb20+Cs200-15Ti020-10Zr020—10可用于本发明的玻璃上锗结构的代表性玻璃-陶瓷包括在下面表III中列出的那些玻璃-陶瓷。其中揭示的玻璃-陶瓷可以采用本领域技术人员已知的标准玻璃-陶瓷形成方法来形成。例如,下面揭示的玻璃-陶瓷可以在800-1000。C温度进行I一IO小时的陶瓷化;下面的两个实施例是在80(TC进行1小时陶瓷化,然后在90(TC进行2小时的处理。表III<table>tableseeoriginaldocumentpage13</column></row><table>下面参见图2和图3,图2和图3示出与制造图1的GeOG结构100相关的中间结构的工艺步骤。在步骤202,在半导体晶片120的表面上形成剥落层122(图3)。为进行讨论,半导体晶片120优选为基本单晶的Ge晶片。剥落层122优选是相对薄的锗层,可以与Ge半导体晶片120(将在下面讨论)分离。虽然本发明的实施方式不限于形成剥落层的任何特定方法,一种合适的方法包括使用离子注入,以在锗晶片120表面之下形成弱化的区域。例如,可以采用氢离子注入,不过也可以采用其他离子或者多种离子注入,如硼+氢,氦+氢,或有关剥落的文献中提到的其他离子。可以釆用适合于形成剥落层122的任何其他已知的技术或以后开发的技术,只要不偏离本发明的精神和范围即可。在一个实施方式中,采用只有氢注入的单一步骤,氢注入包括对Ge晶片施加lxlO"-lxlO"个离子/厘米2的H离子注入剂量。在另一个低剂量的实施方式中,Ge晶片进行低剂量的多个离子注入步骤。具体地,采用组合H和He的低剂量注入,该组合注入包括首先对Ge晶片施加lx1015-5xl016个离子/厘米2的H离子注入剂量,然后再施加lxl(V5-5xlO"个离子/厘米2的低氦注入剂量。无论采用何种技术来形成剥落层122,都优选对锗晶片120进行处理,以降低表面的离子(如,氢)浓度。例如,在步骤204,优选对半导体晶片120进行洗涤和清洁,优选对剥落层122进行温和的氧化。温和的氧化处理可包括在氧等离子体中进行的处理、臭氧处理、用过氧化氢的处理、用过氧化物和氨的处理、用过氧化氢和酸的处理,或这些方法的组合。预期在这些处理期间,氢封端的表面基团使羟基氧化,这样又使硅晶片表面成为亲水性。对氧等离子体处理,优选在室温进行,对氨或酸处理,优选在25-15(TC的温度进行。处理后,玻璃晶片用清洁剂清洗,然后用蒸馏水清洗,再用硝酸和蒸馏水清洗。应注意,这些处理应是适宜的。如果没有降低氢离子浓度,则在硅和玻璃晶片之间存在排斥力,需要在结合过程中施加较高压力来克服该排斥力。离子注入后,各结构宜采用电解法结合在一起。优选的电解结合法在美国专利申请No.2004/0229444中描述,该申请的全部内容通过参考结合于本文。下面讨论该方法的各部分。最初,宜进行适当的表面清洁。然后,使中间结构直接接触或间接接触,实现图4中示出的排列。在进行接触之前或之后,在差热梯度下对包含Ge半导体晶片120、剥落层122和玻璃基片104的结构进行加热。优选加热玻璃基片104至高于Ge半导体晶片120和剥离层122的温度。例如,在玻璃基片102和Ge半导体晶片120之间的温差至少为rC,尽管该温差可以高达约100-150。C。该温差对具有与锗匹配的热膨胀系数(CTE)的玻璃是理想的,因为该温差能促进以后剥落层122因热应力而从半导体晶片120分离。当玻璃基片104与Ge半导体晶片120之间的温差稳定后,在该中间组件上施加机械压力。优选的压力范围为约1-50psi。施加较高压力如高于100psi,可能会引起玻璃晶片的碎裂。玻璃基片104和Ge半导体晶片120宜取在玻璃基片104的应变点的+/-150'C范围内的温度。接下来,在中间组件上施加电压,优选Ge半导体晶片120在正电极上,玻璃基片104在负电极上。施加电压电势引起玻璃基片104内的碱金属或碱土金属离子运动,自Ge半导体/玻璃界面运动至玻璃基片104。这可以达到以下两种功能(i)形成没有碱金属或碱土金属离子的界面;和(ii)玻璃基片104成为高反应性,并施加相对较低温度的热使玻璃基片104与Ge半导体层102牢固结合。在图2的步骤208,中间组件在这些条件下保持一定时间(如,约小于或等于1小时)后,去除电压,使中间组件冷却至室温。然后将Ge半导体晶片120与玻璃基片102分离,如果还没有完全分离,可以包括一些剥离的皮层,以获得结合有Ge半导体薄层102[]的玻璃基片104,如图1所示。该分离步骤优选通过剥落层122因热应力发生碎裂来实现。或者或另外,可以采用机械应力如水射流切割或化学蚀刻来实施分离。应注意,在结合(加热和施加电压)过程中的气氛可以是惰性气氛,如氮气和/或氩气,或者简单地是环境大气气氛。如图1所示,在分离后,产生的结构可包括玻璃基片104和与之结合的Ge半导体层102。通过磨光技术,如通过CMP或本领域已知的其他技术去除所有不需要的Ge半导体材料,获得在玻璃基片104上的单晶锗层102。注意到,Ge半导体晶片120可以重新使用,继续制备其他GeOG结构100。应注意,图5的截面示意图示出本发明的另一个实施方式。玻璃上半导体结构300包括第一层302和第二层304,基本如上所述。绝缘体上半导体结构300依次包括锗半导体材料(306);氧含量提高的锗半导体材料(308);线性热膨胀系数(25-300°0在锗的线性热膨胀系数的+/-20乂10—7〃C范围之内的玻璃或者玻璃-陶瓷,其对至少一种类型的正离子的正离子浓度降低(310);具有对至少一种类型的正离子的正离子浓度提高的玻璃或玻璃-陶瓷材料(312);以及玻璃或玻璃陶瓷(314)。实施例由以下非限制性实施例进一步说明本发明。实施例1将直径100毫米,厚500微米的锗晶片(〈100〉)进行氢离子注入法,该方法包括使用4xl0'6个离子/厘米2的剂量和100KeV的注入能量。然后,晶片在氧等离子体中以标准条件处理IO分钟,以使表面基团氧化。提供具有如下组成(重量%)的碱金属铝硼硅酸盐玻璃晶片64.1%Si02,8.4%B203,4.2A1203,6.4Na20,6.9K20,5.9ZnO4.0Ti02,0.1Sb203。该玻璃的直径为IOO毫米,具有与锗匹配的线性热CTE,应变点为529"C。该玻璃晶片用飞舒尔科学康翠特70(FischerscientificContrad70)清洁剂在超声浴中清洗15分钟,然后用蒸馏水在超声浴中清洗15分钟。然后,玻璃晶片用10%硝酸清洗,再用蒸馏水清洗。这些晶片最后都在无尘室内,在旋转清洗干燥器内用蒸馏水进行清洁。然后,使两个晶片相互接触,确保晶片间没有夹带空气,然后,将晶片引入SUSSMICROTEC结合器(bonder)。将玻璃晶片置于负电极上,硅晶片置于正电极上。将两个晶片分别加热至525t(锗晶片)和595t:(玻璃晶片)。在该晶片表面上施加1750伏电势。施加电压20分钟,在结束时使电压为零,冷却晶片至室温。然后,晶片轻易地分离,产生GeOG结构和Ge晶片,供以后再用。通过这种方法制备优良品质的GeOG样品。具体地,GeOG样品在玻璃表面上具有牢固粘合的无缺陷锗薄(0.5微米)膜。图6示出TOF-SiMs分析,表明在该方法中形成阻挡层。实施例2用碱土金属的铝硅酸盐玻璃(特别是铝硅酸钙玻璃,具有上述的实施例8的组成)晶片(组成中没有碱金属)重复上面的试验。玻璃的应变点为735°C,也具有与Ge晶片匹配的CTE。这种情况下,也获得转移到玻璃的优良无缺陷的Ge薄(0.5微米)膜,证明以下事实,玻璃组成中存在碱金属离子不是必要的。本领域技术人员可以显而易见地看出,可以对本发明进行各种改变和修改而不会背离本发明的精神和范围。因此,本发明包括本发明的变化和修改,只要它们包括在所附权利要求书和等价内容的范围内即可。权利要求1.一种绝缘体上半导体结构,该结构包括第一层和第二层,第一层和第二层可以直接相互接合,或通过一个或多个中间层接合,其中第一层包含基本为单晶的含锗半导体材料;第二层包含玻璃或玻璃-陶瓷,该玻璃或玻璃-陶瓷在25-300℃的线性热膨胀系数在锗第一层的线性热膨胀系数的+/-20×10-7/℃范围之内。2.如权利要求1所述的绝缘体上半导体结构,其特征在于,所述玻璃或玻璃-陶瓷在25-30(TC的线性热膨胀系数在50-70X1(T7。C范围。3.如权利要求l所述的绝缘体上半导体结构,其特征在于,所述玻璃或玻璃-陶瓷在25-300'C的线性热膨胀系数为61X10—7°C。4.如权利要求l所述的绝缘体上半导体结构,其特征在于,所述玻璃或玻璃-陶瓷的应变点大于或等于700°C。5.如权利要求l所述的绝缘体上半导体结构,其特征在于,所述玻璃具有包含以下组分的组成,所述组成按照重量百分比并由氧化物基准的批料计算15-45%Si02,7.5-15%A1203,15-45%MgO+CaO+SrO+BaO以及最多55%RE203,所述RE选自以下的稀土元素Sc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,以及它们的混合物。6.如权利要求1所述的绝缘体上半导体结构,其特征在于,所述玻璃具有包含以下组分的组成,所述组成按照重量百分比并由氧化物基准的批料计算45-70%Si02,2.5-30%A1203,0-8%B203,2.5-30%MgO+CaO+SrO+BaO禾n1-20%La203+Y203。7.如权利要求l所述的绝缘体上半导体结构,其特征在于,所述玻璃具有包含以下组分的组成,所述组成按照重量百分比并由氧化物基准的批料计算55-65%Si02,10-20%众1203和15-30%MgO+CaO+SrO+BaO。8.如权利要求l所述的绝缘体上半导体结构,其特征在于,所述玻璃-陶瓷具有包含以下组分的组成,所述组成按照重量百分比并由氧化物基准的批料计算30-55%Si02,18-28%A1203,8-20%ZnO,0-6%ZnO,0-6%MgO,0-3%CaO,0-3%SrO,0-3%BaO,0-3%K20,0-15%Rb20+Cs20,0-10%Ti。2和0-10%Zr02。9.如权利要求1所述的绝缘体上半导体结构,其特征在于,第一层和第二层之间的结合强度至少为8J/m2。10.如权利要求l所述的绝缘体上半导体结构,其特征在于,该结构的至少一部分按顺序包含以下材料锗半导体材料;氧含量提高的锗半导体材料;对至少一种类型的正离子的正离子浓度降低的玻璃或玻璃陶瓷材料;对至少一种类型的正离子的正离子浓度提高的玻璃或玻璃陶瓷材料;和玻璃或玻璃陶瓷。全文摘要一种绝缘体上的半导体结构,该结构包括第一层和第二层,第一层和第二层可以直接相互接合,或通过一个或多个中间层接合。第一层包含基本为单晶的锗半导体材料;第二层包含玻璃或玻璃-陶瓷材料,该玻璃或玻璃-陶瓷材料在25-300℃的线性热膨胀系数在锗第一层的线性热膨胀系数的+/-20×10<sup>-7</sup>/℃范围之内。文档编号C03C3/04GK101371348SQ200680052647公开日2009年2月18日申请日期2006年12月22日优先权日2006年1月3日发明者J·C·拉普,K·P·加德卡里,L·R·平克尼,M·J·德内卡,P·S·丹尼尔森申请人:康宁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1