触摸感测系统的制作方法

文档序号:18455104发布日期:2019-08-17 01:32阅读:172来源:国知局
触摸感测系统的制作方法
本申请根据35usc§119(e)要求于2016年10月3日提交的美国专利申请序列号62/496,072的优先权,其全部内容通过引用结合于此。
背景技术
:触屏技术通常在刚性衬底上制造。例如,像现代智能手机中使用的投射电容感测使用最常沉积在玻璃上的多层行列矩阵。这意味着大多数触控面板相对较小且平坦。在不规则形状或大面积被制成触摸敏感的情况下,价格标签通常很重要——高于75“的触摸屏通常需要花费数千美元,另外,具有触摸感测功能的复杂或灵活的物体大多是消费者无法获得的研究原型。尽管触摸是一种直观且流行的输入模式,但高成本和不灵活性限制了触摸交互被更广泛的日常物品所采用。研究人员已经开发出了无数种方法,可在特定物体和表面上实现类似触屏的交互,理想情况下对物体本身或环境最小限度使用仪器。实现这种保真度(大规模)的最普遍方式是通过计算机视觉。早期系统使用传统相机分段,例如肤色、运动或阴影。另一种选择是超大尺寸化触屏技术至房间规模;例如,具有ftir感测的增强地板。深度相机一直是一个值得注意的好处,缓解了以前从背景场景中分段用户输入的复杂任务。也可使用声学方法。主要基于到达时间差技术的多传感器方法可在大型表面上实现触摸感测,包括在窗户、墙壁和桌子上。还可使用被动声学来捕获和识别非空间手势。许多这些方法也可应用于离散物体。例如,发射器-接收器配置中的一对压电元件,实现了训练和识别专设物体上的离散触摸位置。电学方法是最不常见的。一种选择是通过在用户靠近噪声源(例如,墙后面的电源线)时被动地捕获耦合至用户的环境电磁噪声来检测环境中的触摸位置。主动方法也是可能的。例如,可使用贴附到物体上的电容性柔性触摸传感带。可使用支持触摸功能的特殊集成功能创建材料。这些本身不是特设物体,而是日常材料的增强版本。这些努力最常见的目标是纺织品。通过丝网印刷或编织导电材料,可能感测离散的触摸位置和多点触摸输入。大多数项目都使用电容式传感,但也采用了其他技术,如时域反射计。技术实现要素:本发明所述触摸感测系统的系统和方法提供了低成本,多功能的传感技术,该技术可在无论是大型还是不规则的任意表面上进行触摸输入。在一些实施方式中,这通过使用电场断层成像感测、与导电层一起使用来实现,所述导电层可容易地且廉价地添加到物体和表面。所述触摸感测系统可应用于具有规则和不规则几何形状的刚性和柔韧物体。所述触摸感测系统可与日常物体接合以使其成为可触摸的物体。例如,本发明所述的触摸感测系统可应用于汽车部件、3d打印物体、家具、地板、墙壁、天花板等。这些物体的触控界面可以很小,在约十几平方厘米数量级,或较大,在几平方米的数量级。可直接触摸这些物体的触控(touch-enabled)表面。所述触摸感测系统可隐藏在物体的外层下方,比如涂料涂层、织物片、纸片等,以保持触控物体的美学吸引力。所述触摸感测系统包括与所述导电衬底接触的电极,以注入小电流,所述导电衬底覆盖期望的交互区域。这使得在所述衬底内产生分布的电场。所述电极可附着在所述衬底上的任何位置。为了简化部署,我们的系统将电极附接至所述导电衬底的外围。当用户的手指触摸所需的交互区域时,其会将一小部分电流吸引至地面。这导致所述电场分布的失真,该失真可使用所述电极来感测。下面将描述该感测原理的更多细节。所述传感器的数据以无线方式传输,使得所述传感器和电路板完全包含在物体内,并不需要外部感测基础设施(例如,深度相机)。本发明所述的系统和方法涉及电阻抗断层成像(eit)。请注意,eit具有其他名称,比如电电阻断层成像(ert)或电电容断层成像(ect)。这里,术语eit用于表示利用电变化来通过从外表面非侵入地感测来重建物体的内部结构的图像的所有系统。eit应用包括呼吸监测、地下检测和生物检测。在人机交互领域,该技术可用于手势感测智能手表。在一些实施方式中,当手指施加压力时,eit可与改变其局部阻抗的材料结合使用,比如压电薄膜、多层网格和触觉传感器阵列。例如,eit可用于为机器人创建触敏皮肤。虽然没有先前的工作证明可扩展性超过大约0.5m2,但支持不规则的几何形状。尽管本发明所述系统和方法包括断层成像,但所述感测与标准eit非常不同,即所述方法和系统不感测材料衬底中的变化(在eit的情况下为阻抗),而是可基于用户的手指分流注入的电流,下面将进一步详细描述。该感测机制使得能够利用非常不同的材料用于所述导电域,这又导致由于困难和成本而在先前未预期的不同的制造方法和使用情况。本发明所述的系统和方法涉及电场(ef)感测。ef感测通常使用空气作为媒介、实现自由空间交互(比如手指跟踪、运动感知和活动识别)。简而言之,当用户(代表大电荷吸收器)进入感测区域时,ef电流分布受到干扰。所述系统通过使用来自电极(例如,外围电极)的测量来推断干扰的位置。系统通常通过回归而不是断层成像重建来执行定位。另外,在过去的十年中,数字增强的快速制造工具取得了巨大的发展,特别是对于人机交互用途,比如原型设计外壳、控制器和新的计算形式因素。然而,这些工具(如cnc铣床、激光切割机、真空成型机和3d打印机)的输出都是静态的,即输出体现了所需的3d形式,但很少体现与最终产品的交互性。理想情况下,设计师应能够在同一介质中进行原型设计两者。已经考虑了各种旨在减轻这种交互鸿沟的方法。例如,displayobjects通过使用外部摄像机阵列跟踪手指来检测被动原型设计的物体上的触摸输入。同样使用计算机视觉,makersmarks使用户可注释用贴纸创建的物体,这些贴纸表示所需功能的位置(例如,这里的操纵杆);在3d扫描和处理之后,最终的功能物体可由非专家来进行3d打印和组装。由于其非机械性质,电容式感测是用于原型设计或改装触摸输入的强大且流行的技术。hudson和mankoff仅使用“纸板、图钉、锡箔和遮蔽胶带”展示了功能物理界面的快速构建。midas提供了一整套工作流程,用于创作和制作(使用cnc乙烯基切割机)复杂的电容布局,所述布局可粘贴至复杂的物体上。上述电容带也可用于原型设计环境。由于3d打印的多功能性,已经探索了各种不同的方法来实现交互式打印输出。例如,通过3d打印集成的腔、管、尖齿和其他机械结构,可使用主动和被动声学来数字化用户输入。sauron使用内部摄像头和计算机视觉以及辅助镜和标记,来捕获用户对3d打印物品的机械控制的输入。还可以是3d打印光管,该打印光管可将光学驱动的触摸输入路由至例如光电二极管。类似地,可以是3d打印导电材料,使电容感测电极直接集成到模型中。本发明所述系统和方法不仅应用于具有与所述相关技术不同的机制的激光切割和3d打印物体,还应用于由陶瓷、木材、塑料和其他常见非导电材料制成的原型。本发明所述系统和方法还使用低成本细丝来直接实现3d打印可触摸物体。本发明所述系统和方法可用于许多示例,这些示例包括具有大的和不规则形状的那些,其中包括柔性表面,传统上这些无法用当前的触摸感测系统来实现。本发明所述系统和方法可扩展到诸如墙壁和家具的大表面。另外,本发明所述系统和方法可为快速原型设计物体带来触摸交互性,从而实现形式和功能的快速迭代。本发明所述系统和方法在先前静态的各种物体和表面上实现新的交互机会。所述触摸感测系统包括:通过导电材料中的第一位置处的第一电极对在所述导电材料中产生电场;通过一个或多个第二电极对测量所述导电材料中的一个或多个第二位置处的所述导电材料中的所述电场来产生测量数据,其中所述一个或多个第二位置中的每个位置与所述第一位置不同;基于所述测量数据产生所述导电材料中的所述电场的近似值;以及基于所述近似值将所述界面的一个或多个区域分类为给定状态。前序的功能是阐述本发明的一般技术环境。所述触摸感测系统的方法包括:响应于产生所述测量数据,选择所述一个或多个第二电极对中的一个第二电极对用于在所述导电材料中产生另一个电场;使用所述第一电极对和未被选择的所述一个或多个第二电极对产生附加测量数据;以及将所述测量数据与所述附加测量数据组合以产生截面测量数据;其中所述电场的所述近似值是基于所述截面测量数据的。在一些实施方式中,所述产生测量数据包括整个所述触摸界面的所述电场的断层重建。在一些实施方式中,所述界面是被配置为接收触摸输入的触摸界面。在一些实施方式中,所述给定状态表示触摸状态或未触摸状态中的一个状态。在一些实施方式中,所述给定状态表示对连续触摸的跟踪。在一些实施方式中,所述分类包括将第一回归模型应用于所述界面的第一维度,并将第二回归模型应用于所述界面的第二维度。在一些实施方式中,所述将一个或多个区域分类包括确定所述界面的所述电场中的干扰的位置,所述干扰导致所述电场在所述干扰的位置处从所述界面的基线电场偏离。所述电场中的所述干扰是由所述干扰的位置处的分流电流引起的。在一些实施方式中,所述触摸感测系统的方法包括:通过在所述界面未被触摸时获得所述测量数据来确定所述界面的所述基线电场。在一些实施方式中,将一个或多个区域分类包括执行神经网络以进行操作,所述操作包括:接收包括所述测量数据的特征输入数据,其中所述特征输入中的每个特征输入包括所述测量数据的样本;基于所述导电材料的校准测量接收权重,所述权重中的每个权重表示在所述导电材料未被干扰时所述导电材料中的一个位置处的所述导电材料中的所述电场的值;在所述神经网络的每个阶段,将所述特征输入中的每个特征输入与所述权重中的一个或多个权重组合以产生输出数据;以及将分类器应用于所述输出数据。在一些实施方式中,所述将一个或多个区域分类包括执行支持向量机,其中所述支持向量机中的一个或多个特征包括所述测量数据。在一些实施方式中,所述导电材料包括电阻率在500ω和50mω之间的表面涂层材料。在一些实施方式中,所述导电材料包括载碳(carbon-loaded)热塑性聚合物、载碳硅树脂或载碳聚合物箔中的一种材料。在一些实施方式中,所述触摸感测系统的方法包括:在电流产生状态和电压测量状态之间复用所述第一电极对和所述一个或多个第二电极对。在一些实施方式中,所述动作包括:基于所述分类跟踪所述界面的间歇触摸以近似连续触摸。在一些实施方式中,所述动作包括:基于所述分类确定所述界面的两个或更多个区域同时处于触摸状态。在一些实施方式中,所述界面的至少一部分包括弯曲表面。在一些实施方式中,所述触摸感测系统包括:导电材料,所述导电材料形成触摸界面;多个电极,所述多个电极贴附于所述导电材料;多路复用装置,所述多路复用装置被配置为在电流投射功能状态和电压测量功能状态之间切换所述多个电极的状态;信号产生器;以及一个或多个数据处理装置,所述一个或多个数据处理装置被配置为进行操作,所述操作包括:使所述多路复用装置将所述多个电极中的一个电极对从所述电压测量功能状态切换至所述电流投射功能状态;控制所述信号产生器以通过所述电极对在所述导电材料中产生电场;通过在所述电压测量功能状态下的所述多个电极中的一个或多个电极对测量表示所述导电材料中的所述电场的一个或多个电压,以产生截面测量数据;基于所述截面测量数据重建所述导电材料中的所述电场的近似值;以及基于所述近似值将所述导电材料的所述触摸界面的一个或多个区域分类为触摸状态或未触摸状态中的一种状态。在一些实施方式中,所述导电材料包括电阻率在500ω和50mω之间的表面涂层材料。在一些实施方式中,所述导电材料包括载碳热塑性聚合物、载碳硅树脂或载碳聚合物箔中的一种材料。在一些实施方式中,所述导电材料包括电阻率在10kω和50mω之间的基体(bulk)材料。在一些实施方式中,所述动作包括:获取衬底;将导电层应用于所述衬底;将多个电极贴附至所述导电层;以及通过进行操作校准与所述多个电极通信的处理装置,所述操作包括:当所述导电材料和所述衬底处于未触摸状态时,通过所述多个电极中的一个电极对在所述导电材料中产生电场;通过所述多个电极中的一个或多个附加电极对测量所述导电材料中的所述电场,以产生截面测量数据;基于所述截面测量数据产生所述导电材料的所述触摸界面的基线电场的近似值;以及将所述基线电场的所述近似值存储在所述处理装置的存储器中。在一些实施方式中,所述获取衬底包括通过一种或多种增材(additive)制造工艺形成所述衬底。在一些实施方式中,所述将导电层应用于所述衬底包括将所述导电层喷涂在所述衬底上。在一些实施方式中,所述将导电层应用于所述衬底包括将所述导电层粉末涂覆在所述衬底上。在一些实施方式中,所述将导电层应用于所述衬底包括在所述衬底上真空形成所述导电层。在一些实施方式中,所述校准与多个电极通信的处理装置包括执行机器学习过程,其中所述产生基线电场的近似值包括用表示基线电场的训练数据训练所述机器学习过程。在一些实施方式中,所述触摸感测系统包括:与多个电极通信的一个或多个处理装置,所述一个或多个处理装置被配置为进行操作,所述操作包括:通过导电材料中的第一位置处的第一电极对在所述导电材料中产生电场;通过一个或多个第二电极对测量所述导电材料中的一个或多个第二位置处的所述导电材料中的所述电场来产生测量数据,其中所述一个或多个第二位置中的每个位置与所述第一位置不同;基于所述测量数据产生所述导电材料中的所述电场的近似值;以及基于所述近似值将所述界面的一个或多个区域分类为给定状态。在一些实施方式中,所述触摸感测系统包括:一种存储指令的非暂时性计算机可读介质,所述指令被配置为使计算系统进行操作,所述操作包括:通过导电材料中的第一位置处的第一电极对在所述导电材料中产生电场;通过一个或多个第二电极对测量所述导电材料中的一个或多个第二位置处的所述导电材料中的所述电场来产生测量数据,其中所述一个或多个第二位置中的每个位置与所述第一位置不同;基于所述测量数据产生所述导电材料中的所述电场的近似值;以及基于所述近似值将所述界面的一个或多个区域分类为给定状态。附图说明图1示出了触摸感测系统的示意图。图2示出了示例性感测电路板。图3示出了通过触摸感测系统来感测触摸的过程。图4示出了真空形成的示例性材料。图5示出了用于3d打印玩具的示例性材料。图6示出了使用碳喷雾的触摸感测系统的示例。图7示出了有限元模型和重建的触摸图像。图8示出了评估模板(左)和用于电极数实验的测试板(右)。图9示出了电极数实验的评估结果。图10示出了测试面板和材料实验的评估结果。图11示出了测试面板和表面尺寸实验的评估结果。图12示出了测试面板和几何形状实验的评估结果。图13示出了测试面板和涂层实验的评估结果。图14示出了用于材料和几何形状实验的用户内准确度和跨用户准确度的评估结果。图15示出了使用桌子的示例性应用。图16示出了使用墙壁的示例性应用。图17示出了将玩具转换为交互式玩具的系统的示例性用途。图18示出了通过其在3d打印的支架中的用途来增强游戏的系统的示例性用途。图19示出了应用于不规则表面的系统的另一个示例性用途:3d打印的地图。图20示出了具有柔性表面的系统的示例性用途。图21示出了应用于沙发的系统的示例性用途。图22示出了具有动态可配置控件的吉他的示例。图23示出了系统使能的游戏控制器的示例。图24示出了应用于可穿戴的触敏原型设计的系统的示例。图25示出了应用于包括明胶的模塑物体的系统的实例。图26示出了应用于包括面团的模塑物体的系统的实例。图27示出了应用于包括abs塑料或载碳硅树脂中的每个的模塑物体的系统的示例。图28-30示出了触控使能物体的示例。具体实施方式图1示出了触摸感测装置100的示意图。所示触摸感测装置100具有八个电极102,但是可使用其他数量的电极,例如四个、六个、十个、十二个、十四个、十六个、三十二个等等。电极102贴附到导电材料104。电极102与数据处理系统106(例如,感测电路板)通信。图1中所示的触摸感测系统100是用于说明目的的代表性系统,但是如下文所述,该触摸感测系统可包括由若干材料中的一种或多种制成的不规则几何形状的导电材料。例如,触摸感测系统100可包括以非均匀方式放置在导电材料104上的电极102。在一些实施方式中,作为导电材料104的一部分的、触摸感测系统100的触摸界面可位于导电材料104的任何部分上,并不需要如图1所示被外围的电极102围绕。触摸感测系统100的界面包括被配置为与触摸感测系统的用户交互的任何表面。触摸感测系统的界面包括单片(monolithic)和连续界面,而不是图案。例如,图案包括在图案化系统的界面中的触敏节点阵列或其他离散感测装置,例如微电子装置。如下所述,各种方法被用于确定单片界面上的触摸输入或若干同时触摸输入的位置,例如断层成像。在示意图中示出了数据处理系统106的示例。数据处理系统106可包括微控制器110、波形发生器112(例如,信号产生装置)、以及与电极102通信的一个或多个多路复用器114。例如,数据处理装置106可围绕以96mhz运行的cortexm4微控制器200(mk20dx256vlh7)来构建,该微控制器由teensy3.2固件供电,如图2所示。数据处理系统106包括压控电流源116(vccs)、直接数字合成(dds)集成电路和adc前置放大器118。一个或多个多路复用器114实现截面测量。在一些实施方式中,数据处理系统106可包括蓝牙模块以发送数据。图2示出了感测电路板的示例200。其示出了带有微处理器的主板以及带有多路复用器单元的两个子板。ad5930dds和基于ad8220的压控电流源(vccs)可用于产生电场。在一些实施方式中,dds被配置为输出200khz正弦波。然后将信号送入vccs以输出恒定的ac电流。传感器可驱动高达6vpp的电压,以保持恒定的ac电流激励,这具体取决于负载阻抗。一对32对1多路复用器将vccs端子连接到两个电极,形成电流投射(projecting)电极对。另一对多路复用器将两个其他电极(即电压测量对)连接至前置放大器缓冲器端子。这种电极选择灵活性还使我们能够灵活地改变所用电极的数量(主要地,8、16或32)。可使用前置放大器放大测量的信号,以最大化adc的动态范围。在一些实施方式中,其中包括高通滤波器,具有79.6khz截止频率,以抑制环境em噪声,比如,荧光灯镇流器(即50khz)和电源线噪声(即60hz)。然后,输入信号由avdd/2(1.65v)偏置,并由微控制器的adc以4mhz的12位分辨率进行采样。处于交错dma模式的两个adc通过数据处理系统106实现这种高采样率。数据处理系统106被配置为由多路复用器选择电流投射电极对一个或多个电压测量电极对。数据处理系统106被配置为对ac耦合电容器上的dc偏置暂停100μs以稳定。然后,数据处理系统106收集200个样本(大约200khz激励信号的10个周期)以进行均方根(rms)计算。在一些实施方式中,这些前述步骤构成单个电压测量(耗费总共约137μs)。然后,数据处理系统106选择下一个电压测量电极对,相应地重新配置多路复用器。在数据处理系统106收集电流投射配置中的所有测量值之后,数据处理系统106选择下一个电流投射对并重复上述过程。一旦数据处理系统完成一帧测量,交叉(cross)通过蓝牙将值发送到笔记本电脑以进行进一步处理。表1记录了当使用不同电极数时使用的示例性测量数量,这也定义了系统帧速率。每帧可使用其他测量数,并可使用不同的帧速率。表1电极数81632每帧请求测量数40208928感测帧率(hz)181358图3示出了用于感测与包括导电材料104的触摸界面的触摸交互的示例性过程300。从一对电极插入电流并从其它对的电极测量电压。获取截面测量的网格。创建重建的2d触摸感测图像,其中示出了低电流密度和高电流密度。低电流密度是较暗的区域,其可被分类为“触摸”区域。较轻的区域表示较高的电流密度,其可以被分类为导电材料的“未触摸”区域。导电材料104增加有放置在导电材料上的电极102(例如,围绕期望的交互区域的周边放置)。利用这种配置,触摸感测系统执行与四极eit系统中使用的类似的基本感测操作。在一对相邻电极(发射器对)之间通过小的ac电流,以在导电材料中产生电场,如图302所示。然后在所有其他相邻电极对(例如,电压-测量对、接收器对等)处测量电压差。对于发射器和接收器对的所有组合重复该过程,产生截面测量的网格(例如,测量数据),如图304所示。在传统的eit系统中,该数据将用于估计物体内部的2d阻抗分布,以揭示具有更高或更低阻抗的区域。然而,由于触摸感测系统中使用的涂层是均匀的,因此eit不适用。相反,该方法依赖于以下事实:接地物体(例如用户的手指)在(通过电容耦合)遇到电场时将一些电流分流到地面。电荷吸收器(sink)的引入使电场失真,特征性地改变了在接收器对处测量的电压。然后,测量数据用于重建电场分布,该电场分布可恢复手指接触的位置,如图306所示。由于系统依赖于电容耦合,因此不需要用户手指和导电衬底之间的直接接触。这使得可将薄的非导电面涂层(topcoat)施加在衬底上以用于保护或美学目的。选择正确的表面电阻率是系统运行的关键因素。如果电阻率太高,电场将非常弱,使得难以感测场信号。然而,如果表面电阻率太低,则手指分流的电流(相当高阻抗的通路)将可忽略不计,使得难以检测到变化。在一些实施方式中,表面电阻率约为每平方500ω至50mω。在一些实施方式中,材料类别包括片材/薄膜、可挤压塑料和涂料中的一种或多种。因此,该材料可包括一种或多种基体材料和薄膜。在一些实施方式中,基体材料形成物体的一部分(至少部分由导电材料构成的物体,与涂覆在导电材料中相反)。该材料类别可用于一个或多个制造和精加工过程,包括激光切割、冲压/压制、3d打印、真空成型、铸造、吹塑、注塑、粉末涂敷和喷涂。在一些实施方式中,选择用于导电材料的材料是低成本材料,其包括四个关键特性:1)兼容的电阻率、2)无毒、3)无需外来设备或设施来应用、4)耐用。在一些实施方式中,导电材料包括热塑性聚合物。图4a-4d示出了包括velostat的示例性导电材料,velostat是一种载碳聚烯烃(polyolefin)片/膜。其主要用于包装电子部件以减轻静电累积。velostat的体积电阻率约为500ω·cm。4密耳厚的3’×150’卷(roll)具有72kω/sq的电阻率并可廉价地获得。可容易地(使用例如,剪刀、激光切割机、乙烯基切割机)将velostat切割成不同的形状并用粘合剂贴附到表面上。velostat具有高度的柔韧性,有些可拉伸,使其可适应各种物体的几何形状。当粘合至可热成形的衬底(比如聚乙烯片)上时,其可真空成形为刚性3d形状(图4b-d)。虽然velostat是示例性材料,但导电材料可包括载碳硅树脂(silicone)、载碳聚合物箔(polymericfoil)等中的一种或多种。触摸感测装置100可包括可挤压塑料,比如静电消散abs细丝。例如,abs细丝的电阻率约为45mω/sq。在一些实施方式中,可(使用标准abs设置)将细丝印刷到衬底上。虽然abs是用于注塑的最常用材料,但这些技术适用于批量生产注塑和吹塑技术。同样,减法方法(例如,铣削)应该是兼容的。在一些实施方式中,导电材料可包括涂料或喷涂涂层。涂料和喷涂涂层特别通用,因为它们可作为后期制作步骤添加到几乎任何物体,无论该物体是小的还是大的、平的或不规则的,无论该物体是如何制造的(例如真空成型、3d打印、铣削、注塑等)。选择物体的总涂料覆盖范围以获得最大的灵活性,但也可使用模板印刷、丝网印刷和其他掩膜方法来限定交互区域。在一些实施方式中,导电材料包括碳导电涂料,如图6所示,比如设计用于静电放电和rf屏蔽目的的涂料。均匀喷涂的碳涂层表面具有1kω/sq的电阻率,并干燥至持久的哑光黑色饰面(finish)。通过电容耦合发生用户手指的分流效应;不需要直接欧姆触摸。这使得可使用可选的(薄的)顶涂层,该涂层可用于为物体添加颜色或更耐用的饰面。可以使用喷涂涂料(例如,如图15、16、19和21所示)和丙烯酸涂料(例如,如图17所示)。图6示出了涂绘玩具600,以作为将触摸感测系统应用于不规则几何形状的另一个示例。添加导电涂层(a)以增加现成玩具(b、c)的触摸交互性,然后重新涂绘(d)。图5示出了与触摸感测系统100交互的3d印刷衬底的示例性实施方式。载碳abs细丝(a)用于3d打印邦高鼓(bongo)游戏(d)的定制电话配件(b、c)。当用户轻敲3d打印的邦高鼓时,(例如,使用与电话的数据处理装置通信的电极)检测电场中的干扰,并登记该触摸。在该示例中,将电极放置在包括导电材料的3d打印衬底的底部。在一些实施方式中,将电极放置在邦高鼓的触摸板周围。其他类似的3d打印应用也是可能的。在一些实施方式中,选择柔软且柔韧的导电材料。例如,导电材料可包括明胶(例如,jell-o),其具有大约12kω/sq的表面电阻率,如图25的图像2500所示,下面将进一步详细描述。可模塑材料也可用于导电材料。例如,可使用触摸感测系统使面团(dough)材料(例如,play-doh)成为交互式的。可雕刻的触摸感测系统的用户可雕刻图形或物体,然后在功能上将交互式绑定到不同的触摸位置。为了实现这一点,将雕刻物体放置在8电极基座上,其中小销钉穿透导电材料(例如,面团)。图26的图像2600示出了雪人示例,其中当用户触摸雕刻雪人的鼻子或腹部时,相关装置说出不同的短语。在该示例中,面团包括约为23kω/sq的表面电阻率。对于这种可雕刻材料,用户可塑造物体并可使物体对触摸敏感。另一种柔韧材料是硅树脂,其广泛用于商业模塑/铸造应用中。例如,可通过将基体碳纤维与标准硅树脂(1:18重量比)混合来获得导电硅树脂。所得物具有的表面电阻率约为16mω/sq。通过这种材料,可使用触摸感测系统制作触控装置。例如,图27的图像2700示出了可变的、交互式的yoda玩具和由导电abs构成的僵尸玩具。在该示例中,可铸造导电abs(a)和硅树脂(b)。触摸这些玩具的不同区域会触发不同的声音和效果。触摸感测系统包括硬件和特殊信号处理流水线。一旦衬底(例如,物体)已被形成或涂覆有兼容的导电材料,衬底就装上电极,例如围绕预期的交互区域的周边。在一个示例性实施例中,使用铜带并将其连接至数据处理系统106。还可颠倒这些制造步骤,即首先连接电极,然后用例如3d打印材料或涂料来覆盖电极。手指跟踪流水线最初是使用完全实现的断层成像重建来开发的,其中应用了标准计算机视觉“团块(blob)”跟踪技术,如图7中的图像700、702和704。在一个示例中,使用最大后验估计器通过单步高斯-牛顿方法来产生断层成像重建(由eidorseit工具包提供)。触摸感测系统能够进行高精度和多点触摸分段,如图7的图像706和708所示。在一些实施方式中,在使用之前为每个物体构造有限元模型700(fem)可用于校准触摸感测系统。对于圆形或方形平坦平面,这是相对简单的。该方法对小型制造差异敏感,例如电极粘附和涂层厚度。在一些实施方式中,作为替代方案,机器学习可用于校准。机器学习可大大减轻fem的这种可变性和复杂性。例如,触摸感测系统100可对物体本身执行简单的一次性校准,而不是对物体的几何形状进行建模,从该校准可初始化机器学习模型。除了实现任意的几何形状之外,该过程还固有地捕获并解释构造中的差异。对于输入特征,触摸感测系统100使用原始截面测量而没有额外的特征,因为该数据固有地编码空间输入。因此,特征集的长度可在表1中找到(“每帧的测量数”行)。以下是两种示例性分类方法。为了感测离散触摸位置(例如,虚拟按钮),触摸感测系统100使用分类模型(使用具有γ=0.07的weka、smo、rbf内核构建)。相同的参数用于区分触摸和非触摸状态的模型,以及区分不同的触摸位置的模型。为了支持连续2d触摸跟踪,触摸感测系统100使用并行操作的两个独立的回归模型(smoreg,具有γ=0.01的rbf内核)——一个用于x位置而另一个用于y位置。触摸感测系统100的多功能性意味着存在触摸感测系统的各种组合:不同的电极数(8、16、32)、示例性材料(velostat、碳喷涂料、碳abs)、表面尺寸(15×15、30×30、60×60cm)、表面几何形状(平面、弯曲、角度),以及涂层(裸露、纸张、喷涂涂料)。图8示出了示例性触摸感测系统设备800,该设备用于捕获触摸感测系统的性能而非用户的不准确性,采用模板来引导用户触摸。这是一块15×15cm的激光切割的(非导电)丙烯酸片材,其具有1.5cm孔洞的4×4网格,如图8所示。将其覆盖在实验表面上。为了测试触摸感测系统,给测试设备选择了各种参数。对于控制内的因素,选择具有中间性能的变量,例如,所有实验使用16电极感测(电极数实验除外)。为了确保足够的电极空间,使用增加了32个电极的30×30cmvelostat板,如图8右侧所示。数据处理系统106在软件中被配置为8、16或32个电极模式。由于3d打印机的底床尺寸有限,所以材料条件尺寸为15×15厘米。碳喷涂和velostat被应用到1/8”厚的丙烯酸板上,而碳abs被单片地印刷为具有1mm的厚度,如图10所示。所有触摸板都是平坦的,附有16个电极。测试三种尺寸:15×15、30×30和60×60cm,如图11所示。这些都是平坦的、增加了16个电极的涂覆了velostat的丙烯酸板。触摸模板位置在每个用户的30×30和60×60cm触摸板上进行随机化。为了改变表面几何形状,3d打印三个15×15cm的面板(使用传统的细丝):平坦的、弯曲的和有角的,如图12所示。为了最好地符合不规则表面,使用了碳喷涂。触摸点标有涂白色圆圈。所有条件使用16个电极。测试条件是裸露的(即未经修饰的)、纸张涂覆的和喷涂涂料的。将这些涂层应用到尺寸为15×15cm的平坦的碳喷涂的丙烯酸板上,该板配有16个电极。对所有五个实验使用相同程序,其顺序是随机的。当首次出现表面条件时,要求参与者将手指保持在离表面约5厘米处。在大约一秒钟的时间内,记录了30个数据点并标记为“无触摸”。然后指示参与者触摸由触摸模板指示的16个点中的每个点。按照笔记本电脑屏幕上的简单可视化要求,按随机顺序一次一个地完成这些。每次用户触摸一个点时,记录30个数据点。当用户可进入下一个点时,笔记本电脑发出一声蜂鸣声。这结束了一轮数据收集。然后,该数据用于训练两个触摸感测机器学习模型。对于离散触摸位置感测,所有数据用于训练触摸/非触摸分类器和单独的16类分类器,该16类分类器对每个触摸位置具有一个类。但是,对于基于回归的、连续触摸跟踪模型,仅使用来自四个角的数据。这减轻了过度拟合,并提供了更真实的准确性评估。在一些实施方式中,分类器可以是触摸感测界面的神经网络的一部分。神经网络接收表示导电界面的基线电场的数据或接收其他校准值作为神经网络的突触的权重。神经网络将电场的原始测量值(例如,来自各种电极对的电压测量值)作为特征应用至神经网络中。神经网络输出数据,该数据包括确定触摸感测系统的界面中的一个或多个区域是否正被触摸或未触摸。在一些实施方式中,分类器可包括支持向量机(svm)。svm的特征输入包括由电压测量电极对获取的电场的原始测量值。svm输出数据,包括确定界面的区域是否正被触摸或未触摸。然后实时测试触摸感测系统的准确度(即,没有事后校准、算法调整、数据清理等)。遵循与上述相同的过程,用户以随机顺序依次移动通过所有触摸点。这次,系统的实时分类结果与请求的触摸位置一起被记录,用于稍后的分类-准确度分析。在连续触摸跟踪的情况下,记录真实世界坐标(例如,请求的x、y:30.0,60.0mm;感测的x、y:31.2,59.4mm)。这些坐标后来用于计算欧几里德距离误差。该测试程序再重复两次,共计三轮。对于所有五个实验中的每个条件,重复这个四轮、训练然后测试程序。总的来说,这项研究大约需要70分钟。呈现结果,以及一项跨用户调查感测稳定性的事后研究。所有结果数字都使用标准误差作为误差条。在所有条件和因素下,触摸/未触摸分类准确度平均为99.5%(sd=0.5)。该平均值的一个显著异常值(p<0.05)是纸张涂层条件,其触摸分段准确度为93.2%。三种电极数条件下的触摸跟踪准确度如图9中的数据900所示。离散触摸位置分类器的准确度达到90.7%(sd=12.0%),而连续跟踪的平均距离误差为9.1mm(sd=4.7)。双尾配对t检验显示,在离散跟踪的情况下,32电极条件明显差于8个电极(p<0.05)。作为另外的可视化,绘制了来自所有参与者的绘图触摸试验,以及按比例绘制的2σ椭圆。准确度的降低主要是由于发射电极对之间的距离减小。更短的电极间隔意味着电场没有投射到远至导电介质中,这降低了信噪比(snr)。此外,感测电极对之间的距离减小类似地降低了终端电阻,导致更小的电压测量,再次降低了snr。该结果表明应根据表面尺寸来调整电极数;例如,对于较小的交互区域,较低的电极数可能更好地工作。在图10的数据10000中可看出,材料结果表明平均离散触摸准确度为91.4%(sd=9.6)、平均距离误差为14.4mm(sd=3.8)。对于连续跟踪,配对t检验显示velostat与其他两种材料之间存在显著差异(p<0.05)。这可能是velostat(与其他两个条件相比)优异的均匀性的结果,因为它是一种工业制造的材料。这使得电场投射更加线性。碳喷涂和碳abs条件中的小的非线性意味着跟踪回归不能精确地内插内部触摸。朝向角落的位置准确度提高。这表明更密集的校准图案(对照稀疏、四角图案)可克服这种材料差异。图11示出了表面尺寸实验的结果。离散触摸位置的平均分类准确度为93.0%(sd=14.3),平均连续手指跟踪距离误差为7.9mm(sd=5.6)。虽然三个条件之间没有显著差异,但较大的表面倾向于具有更多的线性回归结果。这可能与尺寸本身没有直接关系,而是与早期关于电极分离的观察有关(即,随着表面尺寸增加,电极分离增加,提高了准确度)。三个表面几何形状测试条件的准确度在图12的数据1200中示出,其表明平均离散触摸准确度为92.9%(sd=9.8),连续触摸跟踪距离误差为15.7mm(sd=3.5)。多个条件之间没有显著差异。图13示出了涂层实验的结果1300。喷涂涂料和裸露表现同样出色,表明一些涂层可立即与触摸感测系统兼容,打开了一系列饰面和颜色选项。然而,纸张覆盖产生比其他两个方法显著更差的性能(p<0.05)。在主要评估中采用了训练测试实验程序,以便对系统进行实时测试,其对现实世界的准确性进行诚实的评估。为了探索系统感测是否依赖于用户,或触摸感测是否在用户之间是通用的,运行了留下一个用户(leave-one-user-out)的交叉折叠(crossfold)验证实验。在每次折叠中,使系统训练13个用户的数据,然后测试来自第14个用户的数据。对所有用户组合重复此操作。这有效地模拟了“向上走(walkup)”的准确性,其中系统以前从未见过用户。材料和几何形状研究的事后测试;结果1400在图14中示出。总体而言,离散触摸位置分类准确度平均降低3.3%,而连续触摸跟踪提高2.5mm。这些适度的波动(两者都不具有统计显著性)表明系统可在一小部分用户上进行训练(例如,工厂校准),然后为所有用户工作。本节中的各种示例都说明了系统的表现力。这些示例包括使用大型表面、不规则几何形状和快速原型设计物体的系统。将桌子进行碳喷涂,然后在桌面的侧面上附加十六个电极,如图15的图像1500所示,且桌面也涂覆有白色饰面颜色。在该示例中,用户可将应用程序注册到桌面上任何位置的物理贴纸。在贴纸注册后,用户可点击它以快速启动应用程序。例如,桌面被碳涂绘,并且八个电极贴附到桌面侧面,使整个表面变得对触摸敏感。作为示例性应用,用户可将纸质贴纸放置在桌子上的任何地方,将它们注册到应用程序(例如,浏览器)或功能(例如,静音),之后可按下贴纸以快速启动项目。4×8英尺块的干墙与触摸感测系统100一起使用,如图16中的图像1600所示。例如,使用16个电极,在墙壁上创建了107”对角线触摸表面。在导电材料顶上施加灰白色乳胶墙涂料。普遍的触摸感测墙可实现无数的应用。例如,触摸感测系统可包括光控应用。在该示例中,在光源附近的任何地方敲击墙壁可切换灯的打开/关闭,向上或向下拖动可让用户控制亮度。玩具可很容易地实现互动。将玩具狗碳喷涂并刷绘上不同颜色,如图17中的图像1700所示。然后,具有触摸感测系统的玩具可检测交互式应用的不同触摸位置。使用触摸感测系统,3d打印可以是触敏的。在该示例中,用户使用碳abs打印带有电话支架的邦高鼓游戏,如图18中的图像1800所示。然后,用户通过将八个电极贴附至外围来实现触摸感测。这个之前的静态打印然后变为交互式并使用户可在电话上玩邦高鼓游戏。在一些实施方式中,将美国地形图采用3d打印、涂有碳喷涂并整饰有绿色涂料,如图19中的图像1900所示。基于触摸位置检索信息。触摸感测系统100与诸如织物和纸之类的柔性表面兼容。例如,可将velostat背衬层压到一张纸上,如图20中的图像2000所示。可将纸放在导电材料上。纸张顶部的磁体确保了velostat与下方电极之间的良好接触。当用户使用木炭棒绘制时,系统会跟踪绘图并自动保存。由于交互式纸张的成本非常低,因此用户可在使用后将其丢弃。在一些实施方式中,触摸感测系统与系统使能的(system-enabled)沙发相结合。在该示例中,用户可向上和向下滑动以浏览应用列表,然后通过向右滑动进行确认,如图21中的图像2100所示。利用触摸感测系统100的方法可实现触敏装置的快速原型设计(prototyping)。例如,用户可通过将控件放在虚拟吉他上来自定义控件的位置(例如过滤器、音量等),如图22中的图像2200所示。然后可使用吉他,就像控件在物理上位于具有系统使能的表面涂层的位置上一样。一旦表面变得对触敏,用户就可使用模板配置界面布局以对不同的交互进行原型设计。在该示例中,用户打印出具有系统使能的顶面的游戏控制器。例如,用户设计了三种不同的模板,具有不同的交互方式,如图23中的图像2300所示。在一些实施方式中,用户可真空成型物体。用户不仅可快速地对形状进行原型设计,还可快速地对物体的交互进行原型设计。例如,用户制作触敏腕带,该腕带可检测一维滑动和手势,如图24中的图像2400所示。物理道具通常用于学习视觉空间主题。例如,可创建使用明胶的大脑模型来模拟有机体感觉。将该模型置于8电极丙烯酸基座中。用户触摸模型大脑的不同区域以召唤信息,如图25中的图像2500所示。这样的基座可重复用于任何数量的低成本教学物体。例如,将地形图涂有碳喷涂、装有八个电极并用喷涂涂料的绿色顶面层覆盖,如图28中的图像2800所示。对于该应用,在用户触摸时检索关于不同地理区域的信息。在一个示例中,可使用触摸感测系统使手机外壳具有触控功能。真空成型的手机壳包括用于motoe智能手机的后盖,如图29中的图像2900所示。当使用触摸感测系统进行触控功能时,这样的手机壳提供保护并还可用于检测各种抓握方式。这种输入可用于各种目的,例如快速启动应用程序或硬件,比如相机或消息收发应用程序。在一个示例中,触摸感测系统可应用于方向盘,使方向盘能够对触摸敏感,如图30中的图像3000所示。在该示例中,方向盘代表一个大而不规则的物体,尽管其为用户输入提供了一个立即有用的表面,但其尚未配备丰富的触摸功能。例如,在一种情况下,将8个电极添加到碳喷涂的雪佛兰aveo方向盘上。触摸感测系统跟踪驾驶员双手的位置,以及检测手势,比如滑动。评估的重点是单点触摸准确度。在对该技术的探索中,发现通过基于重建的跟踪可能跟踪多个触摸点。例如,当用户每只手的一个手指触摸到触摸板上时,可看到断层成像重建上的两个蓝色团块,如图7中的图像708所示。诸如荧光灯和射频收音机等环境噪声是另一个问题。由于导电层材料具有高电阻,所以导电材料不会吸收空气噪声。然而,人体是许多类型的环境电磁噪声的良好天线。在典型办公环境中发现的所有噪音中,例如电源线噪音、无线电辐射、电器的电磁干扰(emi)等,只有来自荧光灯(50khz和更高谐波)的噪声才会影响触摸感测系统的测量信号。当光源在用户的1.5米范围内时,通常会发生干扰。在评估过程中,荧光灯亮起,比用户头部高出约1.3米。因此,即使存在噪声源,触摸感测系统也可成功地对触摸输入进行分段。另一个限制来自用户的接地条件。如果用户与强电接地(例如连接到ac电源的笔记本电脑、大型金属物体或金属栏杆)接触,则可比正常情况分流更多的电流。由此产生的改变的测量会影响机器学习方法报告的触摸点。为了缓解这个问题,在训练全局机器学习模型时使用了不同的接地条件。数据处理系统106在正常操作期间消耗120ma(其包括用于蓝牙模块的10ma)。在一些实施方式中,通过减少感测的占空比可降低功耗。例如,传感器可进入省电模式(不经常检测且分辨率较低)以检测手指是否在表面上触摸。一旦检测到手指,则触摸感测系统100然后接通用于触摸跟踪的完整截面测量。本说明书中描述的主题和功能操作的实现可在数字电子电路中、在有形地体现的计算机软件或固件中、在计算机硬件(包括本说明书公开的结构及它们结构的等同物)中、或在它们中的一个或多个的组合中实现。本说明书中描述的主题的实施方式可实现为一个或多个计算机程序,例如,在有形程序载体上编码的一个或多个计算机程序指令模块,用于由处理装置执行或控制处理装置的操作。替代地或另外,程序指令可在作为人工生成的信号的传播信号上编码,例如机器生成的电、光或电磁信号,这些信号被生成以对信息进行编码,以便传输到合适的接收器装置以供处理装置执行。机器可读介质可以是机器可读存储装置、机器可读存储衬底、随机或串行存取存储器装置或这些中的一个或多个的组合。术语“处理装置”包括用于处理信息的设备、装置和机器,包括例如可编程处理器、计算机或多个处理器或计算机。该设备可包括专用逻辑电路,例如fpga(现场可编程门阵列)或asic(专用集成电路)或risc(精简指令集电路)。除了硬件,该设备还可包括为所讨论的计算机程序创建执行环境的代码,例如,构成处理器固件、协议栈、信息库管理系统、操作系统或这些中的一个或多个的组合的代码。计算机程序(其也可称为程序、软件、软件应用程序、脚本或代码)可用任何形式的编程语言编写,包括编译或解释语言或声明或程序语言,且其可通过任何形式进行部署,包括作为独立程序或作为适用于计算环境的模块、组件、子例程或其他单元。计算机程序可以但不必对应于文件系统中的文件。程序可存储在保存其他程序或信息的文件的一部分中(例如,存储在标记语言文档中的一个或多个脚本)、或存储在专门用于所讨论程序的文件中、或存储在多个协调文件中(例如,存储一个或多个模块、子程序或代码部分的文件)。可部署计算机程序以在一个计算机上、或在位于一个站点上或分布在多个站点上并通过通信网络互连的多个计算机上执行。本说明书中描述的过程和逻辑流程可由执行一个或多个计算机程序的一个或多个可编程计算机执行,以通过对输入信息进行操作并生成输出来执行功能。过程和逻辑流程也可由专用逻辑电路执行,且设备也可实现为专用逻辑电路,例如fpga(现场可编程门阵列)或asic(专用集成电路)或risc。适于执行计算机程序的计算机包括,例如,通用或专用微处理器或两者,或任何其他种类的中央处理单元。通常,中央处理单元将从只读存储器或随机存取存储器或两者接收指令和信息。计算机的基本元件是用于运行或执行指令的中央处理单元和用于存储指令和信息的一个或多个存储器装置。通常,计算机还将包括或可操作地耦合以从用于存储信息的一个或多个大容量存储装置接收信息或将信息传送到用于存储信息的一个或多个大容量存储装置或两个操作皆有,例如磁盘、磁光盘或光盘。但是,计算机不需具有这样的装置。而且,计算机可嵌入另一个装置中,例如,移动电话、智能手机或平板电脑、触屏装置或表面、个人数字助理(pda)、移动音频或视频播放器、游戏控制台、全球定位系统(gps)接收器或便携式存储装置(例如,通用串行总线(usb)闪存驱动器),仅举几例。适于存储计算机程序指令和信息的计算机可读介质包括所有形式的非易失性存储器、介质和存储器装置,包括例如半导体存储器件,例如,eprom、eeprom和闪存器件;磁盘,例如,内部硬盘或可移动磁盘;磁光盘;以及cdrom和(蓝光)dvd-rom光盘。处理器和存储器可由专用逻辑电路补充或并入专用逻辑电路中。为了提供与用户的互动,可在具有显示装置的计算机上实现本说明书中描述的主题的实施方式,例如,crt(阴极射线管)或lcd(液晶显示器)显示器,用于向用户显示信息,以及用户可向计算机提供输入的键盘和指点装置,例如鼠标或轨迹球。其他类型的装置也可用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的感官反馈,例如视觉反馈、听觉反馈或触觉反馈;以及可以任何形式接收来自用户的输入,包括声学、语音或触觉输入。另外,计算机可通过向用户使用的装置发送文档和从用户使用的装置接收文档来与用户交互;例如,通过将网页发送到用户客户端装置上的web浏览器以响应从web浏览器接收的请求。本说明书中描述的主题的实施方式可在包括后端组件的计算系统(例如,作为信息服务器)或包括中间件组件的计算系统(例如应用服务器),或包括前端部件的计算系统(例如,具有图像用户界面或网页浏览器的客户端计算机,用户可通过该图形用户界面或web浏览器与本说明书中描述的主题的实施方式进行交互)或一个或多个这样的后端、中间件或前端组件的任何组合中实现。系统的部件可通过任何形式或介质的数字信息通信互连,例如通信网络。通信网络的示例包括局域网(“lan”)和广域网(“wan”),例如因特网。计算系统可包括客户端和服务器。客户端和服务器通常彼此远离,并通常通过通信网络进行交互。客户端和服务器的关系借助于在各个计算机上运行并彼此具有客户端-服务器关系的计算机程序而产生。在另一个示例中,服务器可通过云计算服务在云中。虽然本说明书包括许多具体实施方式的细节,但是这些不应被解释为对可以要求保护的任何内容的范围的限制,而是作为可以特定于特定实现的特征的描述。在单独实施方式的说明书上下文中中描述的某些特征也可在单个实施方式中以组合方式实现。相反,在单个实施方式的上下文中描述的各种特征也可单独地或以任何合适的子组合在多个实施方式中实现。此外,尽管上面的特征可以描述为以某些组合起作用,甚至最初如此要求保护,但在一些情况下,来自所要求保护的组合的一个或多个特征可以从组合中切除,并且所要求保护的组合可以针对子组合或子组合的变体。类似地,虽然在附图中以特定顺序描绘了操作,但是这不应该被理解为要求以所示的特定顺序或按顺序执行这些操作,或者执行所有示出的操作,以实现期望的结果。在某些情况下,多任务处理和并行处理可能是有利的。此外,上述实施方式中的各种系统组件的分离不应被理解为在所有实施方式中都需要这种分离,应该理解,所描述的程序部件和系统通常可以一起集成在单个软件产品中或打包成多个软件产品。已经描述了主题的特定实施方式。其他实施方式在以下权利要求的范围内。例如,权利要求中记载的动作可以不同的顺序执行并且仍然实现期望的结果。作为一个示例,附图中描绘的过程不一定需要所示的特定顺序或连续顺序来实现期望的结果。在某些实施方式下,多任务处理和并行处理可能是有利的。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1