具有机械强度和隔音性能的层状玻璃板的制作方法

文档序号:2419026阅读:85来源:国知局
专利名称:具有机械强度和隔音性能的层状玻璃板的制作方法
技术领域
本发明涉及具有隔音和机械强度性能的层状玻璃板,其中包括两层玻璃和一层呈单层聚合物膜形式的厚度e的夹层。
背景技术
层状玻璃板一般用来装配车辆或建筑物,以便减小外部噪音对其内部的干扰。此外,层状玻璃板的一个主要优点在于它们的机械强度。事实上,在冲击时,在玻璃破碎之前,夹层可能有利地因粘性消耗而吸收部分能量。夹层的作用也是最重要的,因为当玻璃完全破碎时它保证结构大部分完整,这可能由于玻璃碎片与膜的粘着作用而避免玻璃碎片散落并伤害人们。
聚乙烯醇缩丁醛(PVB)由于其机械性能而被广泛应用;但是,它的声学特征不太好。这就是为什么为了使其声学性能更好有时取用特殊的树脂。
选择层状玻璃树脂的一个基本标准是玻璃板的隔音。使用测定层状玻璃的临界频率的方法并且将其与玻璃条的临界频率比较,可以确定这项选择。专利文献EP-B-0 100 701描述过这样一种方法;当9厘米长、3厘米宽的条是由层状玻璃构成,而该层状玻璃包括两层4毫米厚玻璃,它们用一层2毫米厚的所述树脂粘合在一起,该条的临界频率与具有相同长度、相同宽度和4毫米厚度的玻璃条的差最多35%,这样的树脂被认为是合适的。
但是,这些高声学性能的树脂并不总是具有在使用它们的条件下所必需的机械性能。
为了同时将声学性能和机械性能结合到一起,专利文献EP-B-0 763 420提出了一种聚乙烯醇缩丁醛膜与一种声学性能树脂膜的组合。
但是,这两种不同膜的组合导致产品成本过高,更重要地导致玻璃板的生产成本增高。事实上,夹层的几层材料组合不能从一般在生产线后剩余产品分别回收每种材料,而当夹层为单层时,为了使生产过程尽可能合算,可以很容易地实施回收操作。

发明内容
因此,本发明的目的是提供一种整体状玻璃板,也就是说其中夹层是单层的,通过适当选择夹层材料,使其具有符合从建筑物和车辆玻璃板安全角度期望的隔音性能和机械强度性能。
为了该目的,本发明根据第一个实施方案给出一种材料选择和夹层厚度标准的评价方法,其夹层必须具有保证足够机械强度的最小厚度。
根据本发明,层状玻璃板或用作层状玻璃板中夹层的聚合物膜,其特征在于所述夹层具有至少等于eref×Jref/Jc的厚度,其中-Jc是夹层材料特有的临界能量值,并且代表夹层中裂纹扩散所必需的能量;-Jref是参比临界能量值,其相应于聚乙烯醇缩丁醛(PVB)膜的临界能量值,并且在温度20℃和PVB膜的拉伸速度为100毫米/分钟的条件下等于35100J/m2;-eref是参比厚度,其相应于PVB膜厚度,并且等于0.38毫米。
根据一个特征,当玻璃板符合由下述事实确定的改进声学性质标准时,则该玻璃板在声学上是令人满意的由包括两层厚4毫米玻璃,其玻璃用2毫米厚所述夹层连接的层状玻璃构成的9厘米长、3厘米宽的条,其临界频率与具有相同长度、相同宽度和4毫米厚度玻璃条的临界频率差至多35%。
此外,本发明用于评价厚度e1的聚合物膜抗撕裂性的方法,该膜用于构成层状玻璃板的夹层,该方法的特征在于-测定夹层的临界能量Jc值,即代表夹层中裂纹扩散所必需的能量值;-计算通过关系式 确定的与厚度相关的临界能量 值; 与代表具有0.38毫米厚度和等于13.3J/m的PVB膜的参考值 相比较;-当 时,夹层符合抗撕裂性标准。
根据第二个实施方案,该方案不依赖膜的厚度,该膜具有足够的机械强度,单层夹层的特征在于其材料为一种复合材料,它特别地是由一种聚合物和包埋在该聚合物中的增强纤维构成。
通过阅读下面关于附图的说明,本发明的其它特征和优点就显而易见


-图1是具有单一夹层膜的简单层状玻璃板的截面图;
-图2说明用于评价该夹层抗撕裂性的实验装置;-图3表示裂纹根部,即在夹层中产生的裂纹的能量变化;-图4表示对夹层施加的拉伸力随该夹层拉伸距离的变化;-图5表示夹层势能随该夹层拉伸长度的变化;-图6说明撕裂试验的令人满意的重复性。
图1中表示的简单层状玻璃板1包括两层玻璃10和11,和夹层聚合物膜12,玻璃层的厚度例如分别是6和4mm,而夹层厚度e可以变化,并且根据对其选择的材料类型而定。
确定的夹层厚度e事实上取决于材料的抗撕裂性。抗撕裂性是各种材料固有的性质,并且用代表材料中裂纹扩散所必需能量的能量值来表征。称之临界能量Jc的这种能量对于各种类型的材料都是不同的,并且不依赖于膜的厚度;它以J/m2表示。
这样用临界能量Jc直接鉴定材料的抗撕裂性只有在评价了所述材料的声学性能之后评价。事实上,本发明优选地首先采取选择符合隔音标准的合适材料,然后试验该材料的抗撕裂性能,以得出符合机械强度标准所必需的厚度e。
为了符合声学性能标准,夹层必须满足专利文献EP-B-0 100 701中提到的临界频率条件。
测定夹层临界频率的原理是,分析两个受到撞击的条的振动频率,一个9厘米长、3厘米宽的玻璃条,另一个具有相同尺寸的层状玻璃条,该玻璃条包括两层厚度为4毫米的玻璃和厚度e1例如等于2毫米的夹层。观察标记两个条各自的共振频率位置,并对这两个共振频率彼此进行比较。当其共振频率与玻璃共振频率差小于35%时,构成夹层的材料是合适的。
作为一种改变的实施方案,专利申请EP 0 844 075提出了用于选择声学性能令人满意的夹层的另一种选择技术。该专利文献利用称之为粘度分析仪的仪器评价了材料的弹性分量(或剪切模量)G′和材料损耗角正切值(或损耗因数)tanδ。
粘度分析仪能够在精确的温度和频率条件下测试材料样品的形变应力,于是获得并处理表征材料的所有流变学量值。利用各种温度下作为频率函数的原始数据即测量的力、位移和相移能够计算剪切模量G’量值和损耗角正切值量值tanδ。已经证明,在10℃和60℃之间的温度范围内和在50和10000Hz之间频率范围内,良好声学夹层的损耗因数tanδ必须大于0.6,剪切模量G’为1×106-2×107N/m2。
一旦根据其声学性能选择了夹层材料,那么可以通过其撕裂行为确定其机械强度。为此目的,采纳厚度e1的夹层进行撕裂试验,下面我们将结合计算临界能量值Jc的方法解释该试验。
测定了所采用材料固有临界能量Jc值后,计算与夹层厚度e1相关的临界能量 它以J/m表示,是如 将该 值与参照值 相比较, 相应于参照厚度为eref时在安全方面完全符合机械强度标准的材料。该参照材料是参照厚度eref等于0.38mm的聚乙烯醇缩丁醛(PVB)。
如果比较的结果满足 规则,则选择的夹层厚度e1是合适的。
在相反的情况下,选择的夹层厚度给定为e,使得其至少等于eref×Jref/Jc,这样满足最小机械强度标准。
通过以Rice J积分为基础的能量方法可以给出抗撕裂性或临界能量Jc,Rice J积分定义为在破裂点位于使膜受到非常强应力的裂纹根部的能量。该能量可用简化的数学公式(1)表示J=-1e1(∂U∂a)]]>对于试验样品的给定拉伸长度δ,下文称之为位移δ,其中e1是样品的厚度,a是裂纹的尺寸,U是样品的势能。
下面公开的计算裂纹根部能量J的方法是Tielking研究出来的方法。
如图2中描述的实验装置如下对几个样品进行了使用张力-挤压试验机2的拉伸试验,例如使用四个样品Ex1至Ex4,它们是相同的材料并且具有相同的100mm2表面积(50mm长,20mm宽)。每个样品在其侧面垂直于拉伸力根据标号20切口,每个样品Ex1至Ex4的开裂长度不同,分别相应于5,8,12和15毫米。
以100毫米/分钟拉伸速度与给定拉伸长度或距离δ,垂直于裂纹20拉伸各样品Ex。
该方法能够建立裂纹根部能量J随样品受到位移δ的变化曲线C(图3),通过该曲线还能够测定样品开始破裂的临界能量Jc。
因此,正是该临界值Jc材料才被撕裂,结果材料机械上被损伤。
从下面解释的步骤获得曲线C。这些样品是具有0.38mm厚度的聚乙烯醇缩丁醛膜。
首先,对于每个样品Ex1至Ex4,绘出代表对所述样品施加拉伸力随所述样品所受到的拉伸距离δ,即从0至40毫米的距离变化的曲线C1(图4)。
接着,从样品的曲线C1,根据与其开始裂纹尺寸相比的裂纹变化的尺寸,可推导出相应于给定的位移δ的势能U。通过计算等效于图4上阴影表面积的部分A,对于相应于样品Ex4的阴影面积,即在0毫米至给定位移δ,这里为22毫米之间曲线C1下的表面积,可测量出势能U。
考虑自3mm至22mm8个位移δ。对于8个位移中每个位移,这时可以绘出图5中表示的曲线C2,该曲线表示势能U随裂口尺寸改变而变化。
代表势能U曲线C2是一条直线;因此式(1)中的能量J导数(U/a)事实上是直线C2的斜率,因此等于一个常数。该常数除以样品的厚度e1,可计算出J值。
计算相应于8个位移的各个斜率后,确立代表作为位移δ的函数的能量J的曲线C(图3)。
使用可观察裂纹20扩散的录相机,检测什么位移δc时样品开始破裂。利用曲线C,从该位移δc推导出相应的临界能量Jc值。
作为例子,这种方法应用于机械学上令人满意的PVB膜,该膜构成0.38mm厚度参照膜。位移δc为12mm时开始破裂,从这里可以得出结论,在温度是20℃与拉伸速度100毫米/分钟的实验条件下,临界能量Jc值等于35100J/m2。
PVB的这个临界值Jc 35100J/m2构成了能量参照值Jref,根据上述方法算的其他材料高于该值的所有能量值都被认为是合理的,这样该材料因符合机械强度标准是适合的。
选择声学上令人满意的材料要进行上述同样的抗撕裂性试验,以计算其固有的临界能量Jc值。然后,如上文已经解释的,计算出与其厚度相关的临界能量 以便与PVB参照物临界能量,即 相比,并且从中推导出当厚度e1不足时的合适厚度e。
我们指出,Tielking方法优于其它方法,例如Hashemi方法,因为其方法易于实施。此外,该方法是可靠的,因为它具有再现性,并且能量J随位移总变化的平均偏差为8%。图6说明了一组三次试验,这些试验类似于上面关于能量J随位移δ变化所进行的试验。
根据第二种实施方案,在该方案中不必依赖于为机械抗压模应该具有的厚度,声学上非常合理的单层夹层由于其材料组成而抗撕裂,该材料是复合材料,并且特别由一种聚合物和包埋在该聚合物中的增强纤维(例如玻璃纤维)组成。
权利要求
1.满足隔音条件的、含有在合适材料中的两层玻璃(10,11)和单层夹层(12)的层状玻璃板,其特征在于所述夹层的合适的厚度d因应不足厚度d1而增加,以满足最小机械强度的标准。
2.权利要求1的层状玻璃板,其特征在于所述夹层的厚度d至少等于drefJref/Jc,其中-Jc是所述夹层材料特有的临界能量值,并且代表传延夹层中开始的破裂所必需的能量;-Jref和dref是各自是一种完全满足所述机械强度条件的材料的相应于所述临界能量值的参比临界能量值和参比厚度。
3.权利要求2所述的层状玻璃板,其特征在于所述参比材料是聚乙烯醇缩丁醛。
4.根据权利要求1或2所述的层状玻璃板,其特征在于所述夹层满足改进的声学性能标准,该标准定义为,由包括两层厚4毫米玻璃,形成2毫米厚的所述夹层的层状玻璃构成的9厘米长、3厘米宽的棒,其临界频率与具有相同长度、相同宽度和4毫米厚度玻璃棒的临界频率差至多35%。
5.根据权利要求1或2所述的层状玻璃板,其特征在于在10℃至60℃的温度范围内和在50至10000Hz的频率范围内,所述夹层的损耗因数tanδ大于0.6,剪切模量G’为1×106至2×107N/m2。
6.以合适的材料做成、能满足声音阻隔标准并作为层状玻璃板夹层中间层的聚合物膜,其特征在于所述夹层的合适厚度是d,因应不足厚度的d1而增加,以满足最低机械强度的标准。
7.权利要求6的聚合物膜,其特征在于所述厚度d至少等于drefJref/Jc,其中-Jc是所述夹层材料特有的临界能量值,并且代表传延夹层中开始的破裂所必需的能量;-Jref和dref各自为一种完全满足机械强度标准的材料的参比临界能量值和参比厚度。
8.权利要求7的聚合物膜,其特征是所述参比材料是聚乙烯醇缩丁醛。
9.权利要求6或7的聚合物膜,其特征在于所述膜满足改进的声学性能标准,该标准定义为,由包括两层厚4毫米玻璃,形成2毫米厚的所述夹层的层状玻璃构成的9厘米长、3厘米宽的棒,其临界频率与具有相同长度、相同宽度和4毫米厚度玻璃棒的临界频率差至多35%。
10.权利要求6或7的聚合物膜,其特征在于所述膜在10℃至60℃的温度范围内和在50至10000Hz的频率范围内,夹层的损耗因数tanδ大于0.6,剪切模量G’为1×106至2×107N/m2。
全文摘要
具有隔音和机械强度性能的层状玻璃板,包括两层玻璃(10,11)和聚合物膜形式的厚度e的单层夹层(12),根据材料特有的参数J
文档编号B32B17/10GK1616370SQ2004100905
公开日2005年5月18日 申请日期2001年5月2日 优先权日2000年5月3日
发明者M·雷菲尔德, B·维达尔 申请人:法国圣戈班玻璃厂
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1