粘合型光学薄膜的剥离方法

文档序号:2419021阅读:295来源:国知局
专利名称:粘合型光学薄膜的剥离方法
技术领域
本发明涉及一种从在玻璃基板等基板表面上粘附有粘合型光学薄膜的带光学薄膜的基板剥离粘合型光学薄膜的粘合型光学薄膜的剥离方法。作为上述的光学薄膜,可列举出偏振片、相位差板、光学补偿薄膜、亮度改善薄膜以及层叠这些而成的材料等。
背景技术
液晶显示器等中,由于其图像形成方式,在液晶单元的两侧配置偏振光元件是必不可少的,而通常粘贴的是偏振片。另外,为了改善显示器的显示质量,液晶面板上除了偏振片之外,还可以使用各种光学元件。例如,可使用用于防止着色的相位差板、用于改善液晶显示器的视角的视角扩展薄膜、以及用于提高显示器的对比度的亮度改善薄膜等。这些薄膜总称为光学薄膜。
在液晶单元上粘贴上述光学薄膜时,通常可以使用粘合剂。另外,在光学薄膜和液晶单元、还有光学薄膜之间的接合中,通常为了减少光损失而使用粘合剂密合各个材料。在这种情况下,由于具有在使光学薄膜固着时不需要经过干燥工序等优点,因此通常使用的是粘合剂作为粘合剂层预先被设置在光学薄膜的一侧上的粘合型光学薄膜。
一直以来,在把粘合型光学薄膜贴合在液晶单元的表面上时,因出现贴合位置的错位,或者当带入异物时液晶显示会出现问题,所以剥掉已贴合的粘合型光学薄膜,并再次把新的粘合型光学薄膜粘附在液晶单元的表面上。但是,随着液晶显示器的大型化和液晶单元的薄型化,粘合型光学薄膜的剥离也逐渐变得困难,特别是当粘合剂层的粘合力较强时,剥离中需要较大的力量,从而会导致操作性变差、液晶单元的单元间隙发生变化,造成显示质量的下降及液晶单元受损等。
作为解决上述问题的方法,提出了以下方法在液晶面板和光学薄膜之间插入已加热的电热丝或切片机(slicer),同时使粘合剂软化或熔融而剥离的方法(专利文献1、2);在液晶面板上的光学薄膜上形成切口来进行分割后,剥离该分割片的方法(专利文献3)。另外,还提出了把介由粘合剂而粘贴透明膜的显示材料浸渍在碱性溶液中之后,从该显示材料剥离透明膜和粘合剂的方法(专利文献4)。
但问题是,在上述方法中需要进行把剥离夹具插入到液晶面板和光学薄膜之间,或者只切断液晶面板上的光学薄膜等比较难的操作。另外,液晶面板上会产生大量的糊浆残留,或者会由碱性溶液损坏液晶面板等。
专利文献1特开平11-95210号公报;专利文献2特开2002-350837号公报;专利文献3特开2001-242448号公报;专利文献4特开2001-328849号公报。

发明内容
本发明的目的在于提供一种在不损伤基板的情况下能比较容易地从粘附有粘合型光学薄膜的基板剥离粘合型光学薄膜的方法。
本发明人等为解决上述课题而进行了钻心研究,结果发现可以用下述剥离方法达到上述目的,从而完成了本发明。
即,本发明涉及一种粘合型光学薄膜的剥离方法,是从基板表面上粘附有粘合型光学薄膜的带光学薄膜的基板剥离粘合型光学薄膜的粘合型光学薄膜的剥离方法,其特征是在粘合型光学薄膜的粘合剂层和基板间的剥离界面上存在液体的状态下进行剥离。
当如上所述地从带光学薄膜的基板上剥离粘合型光学薄膜时,通过使液体存在于粘合型光学薄膜的粘合剂层和基板间的剥离界面上,能在不损伤基板的情况下以良好的再作用性从基板上剥离粘合型光学薄膜。因此,如果采用本发明的剥离方法,即使是在液晶面板的尺寸较大或液晶单元较薄的情况下,再作用性也良好。能体现这种效果的理由尚不明确,但可推测如下通过使液体接触于粘合剂层,使粘合剂层发生溶胀或软化,或者使液体浸透在剥离界面上,减少粘接面积,从而充分降低了粘接力。
在本发明中,从光学各向同性和耐热性等观点来看,优选利用丙烯酸类粘合剂形成上述粘合剂层。
另外,在本发明中,上述液体优选为水和/或有机溶剂。通过使用这些液体能得到特别优良的剥离效果。


图1是粘合型光学薄膜的一例的截面图。
图2是液晶面板的一例的截面图。
图中1-粘合型光学薄膜,2-光学薄膜,3-粘合剂层,4-液晶面板,5-透明基板,6-液晶,7-隔片。
具体实施例方式
如图1所示,粘合型光学薄膜1具有在光学薄膜2上设置粘合剂层3而成的结构。通常在粘附于基板之前的阶段内用脱模薄膜(未图示)保护粘合剂层3的表面,当粘附在基板上时,剥离脱模薄膜之后把粘合剂层3贴合到基板上。另外,如图2所示,液晶面板4中,介由隔片7将玻璃基板等2片透明基板5固定成相对向,并向其空隙部分注入液晶6后进行密封。然后,在透明基板5的两个表面上粘附有粘合型光学薄膜1。
对形成粘合型光学薄膜1的粘合剂层3的粘合剂不作特别限制,可使用橡胶类粘合剂、丙烯酸类粘合剂、硅酮类粘合剂等各种粘合剂,但优选无色透明且和液晶单元(玻璃基板)等的粘接性良好的丙烯酸类粘合剂。
丙烯酸类粘合剂是把主骨架为(甲基)丙烯酸烷基酯的单体单元的丙烯酸类聚合物作为基体聚合物。还有,(甲基)丙烯酸酯是指丙烯酸酯和/或甲基丙烯酸酯,与(甲基)表示相同的意思。构成丙烯酸类聚合物的主骨架的(甲基)丙烯酸烷基酯中的烷基的平均碳数为1-12,作为(甲基)丙烯酸烷基酯的具体例子,可以举例为(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸2-乙基己酯等,这些可以单独或者组合使用。在这些化合物中,优选烷基的碳数为1-7的(甲基)丙烯酸烷基酯。
对丙烯酸类聚合物的平均分子量没有特别限制,但是重均分子量(GPC)优选为约30万-250万左右。上述丙烯酸类聚合物的制造可以用各种公知的方法完成,例如,可以适当选择本体聚合法、溶液聚合法、悬浮聚合法等自由基聚合法。作为自由基聚合引发剂,可以使用偶氮类、过氧化物类等各种公知的物质,反应温度通常为约50-85℃左右,反应时间为约1-8小时。另外,在上述制造方法中,优选溶液聚合法,作为丙烯酸类聚合物的溶剂,通常使用醋酸乙酯、甲苯等极性溶剂。溶液浓度通常为约20-80重量%。
作为橡胶类粘合剂的基体聚合物,可以举例为,例如天然橡胶、异戊二烯类橡胶、苯乙烯-丁二烯类橡胶、再生橡胶、聚异丁烯类橡胶、以及苯乙烯-异戊二烯-苯乙烯类橡胶、以及苯乙烯-丁二烯-苯乙烯类橡胶等。
作为硅酮类粘合剂的基体聚合物,可以举例为,例如二甲基聚硅氧烷、二苯基聚硅氧烷以及甲基苯基聚硅氧烷等。
粘合剂层中3中也可以配合发泡剂。发泡剂可以利用通过加热处理引起的发泡剂的膨胀或发泡而降低粘合剂层3的粘接力。对发泡剂不作特别限制,能使用各种无机类或有机类的发泡剂。
另外,上述粘合剂优选为含有交联剂的粘合剂组合物。作为可以在粘合剂中配合使用的多官能性化合物,可以举例为有机类交联剂和多官能性金属螯合物。作为有机类交联剂,可以举例为环氧类交联剂、异氰酸酯类交联剂、亚胺类交联剂等。作为有机类交联剂,优选异氰酸酯类交联剂。多官能性金属螯合物是多价金属与有机化合物通过共价键或者配位键结合的化合物。作为多价金属原子,可以举例为Al、Cr、Zr、Co、Cu、Fe、Ni、V、Zn、In、Ca、Mg、Mn、Y、Ce、Sr、Ba、Mo、La、Sn、Ti等。作为形成有共价键或者配位键的有机化合物中的原子,可以举例为氧原子等,作为有机化合物,可以举例为烷基酯、醇化合物、羧酸化合物、醚化合物、酮化合物等。
对丙烯酸类聚合物等基体聚合物和交联剂的混合比例没有特别的限制,但是通常相对于100重量份基体聚合物(固体成分),交联剂(固体成分)优选为约0.01-6重量份,进一步优选为约0.1-3重量份。
另外,在上述粘合剂中,根据需要可以适当使用增粘剂、增塑剂、玻璃纤维、玻璃珠、金属粉末、由其它的无机粉末等组成的填充剂、颜料、着色剂、填充剂、抗氧化剂、紫外线吸收剂、硅烷偶合剂等各种添加剂。另外也可以含有球状、粒状等微粒而形成为显示光扩散性的粘合剂层等。
在光学薄膜2和粘合剂层3之间可以介入其他粘合剂层或增粘层,目的是强化两者的粘接等。
作为光学薄膜2,可使用在液晶显示装置等图像显示装置的形成中使用的材料,对其种类没有特别的限制。例如,作为光学薄膜可以举例为偏振片。作为偏振片通常使用的是在偏振镜的一侧或者双侧具有透明保护膜的结构。
对偏振镜没有特别限制,可以使用各种偏振镜。作为偏振镜,可以举例为例如,在聚乙烯醇类薄膜、部分缩甲醛化的聚乙烯醇类薄膜、乙烯-醋酸乙烯酯共聚物类部分皂化薄膜等亲水性高分子薄膜上,吸附碘或二色性染料等二色性物质后单向拉伸的材料;聚乙烯醇的脱水处理物或聚氯乙烯的脱盐酸处理物等聚烯类取向薄膜等。其中,优选的是由聚乙烯醇类薄膜和碘等二色性物质组成的偏振镜。对这些偏振镜的厚度没有特别的限制,但是通常约为5至80μm。
用碘对聚乙烯醇类薄膜进行染色后经单向拉伸所得的偏振镜,例如可以通过将聚乙烯醇浸渍在碘的水溶液中进行染色后拉伸至原长的3~7倍的方法制成。根据需要,也可以浸渍于可含硼酸或硫酸锌、氯化锌等的碘化钾等的水溶液中。此外,根据需要,也可以在染色前将聚乙烯醇类薄膜浸渍于水中水洗。通过水洗聚乙烯醇类薄膜,除了可以洗去聚乙烯醇类薄膜表面上的污物和防粘连剂之外,还可通过使聚乙烯醇类薄膜溶胀,防止染色斑等不均匀现象。拉伸可以在用碘染色后进行,也可以边染色边拉伸,另外也可以在拉伸后进行碘染色。也可以在硼酸或碘化钾等的水溶液中或水浴中进行拉伸。
作为形成设置在上述偏振镜的一侧或双侧的透明保护膜的材料,优选具有优良的透明性、机械强度、热稳定性、水分屏蔽性、各向同性等的材料。例如,可以举例为聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯等聚酯类聚合物;二乙酸纤维素或三乙酸纤维素等纤维素类聚合物;聚甲基丙烯酸甲酯等丙烯酸类聚合物;聚苯乙烯或丙烯腈-苯乙烯共聚物(AS树脂)等苯乙烯类聚合物;聚碳酸酯类聚合物等。此外,作为形成上述透明保护膜的聚合物的例子还可以举例为,例如,如聚乙烯、聚丙烯、具有环状或降冰片烯结构的聚烯烃、乙烯-丙烯共聚物等聚烯烃类聚合物;氯乙烯类聚合物;尼龙或芳香族聚酰胺等酰胺类聚合物;酰亚胺类聚合物;砜类聚合物;聚醚砜类聚合物;聚醚-醚酮类聚合物;聚苯硫醚类聚合物;乙烯基醇类聚合物;偏氯乙烯类聚合物;聚乙烯醇缩丁醛类聚合物;芳基化物类聚合物;聚甲醛类聚合物;环氧类聚合物;或者上述聚合物的混合物。透明保护膜还可以形成为丙烯酸类、氨基甲酸酯类、丙烯酸氨基甲酸酯类、环氧类、硅酮类等热固化型、紫外线固化型树脂的固化层。
此外,可以举例为,在特开2001-343529号公报(WO01/37007)中记载的聚合物膜,例如包含(A)在侧链具有取代和/或未取代亚氨基的热塑性树脂、和(B)在侧链具有取代和/或未取代苯基和腈基的热塑性树脂的树脂组合物。作为具体实例,可以举例为含有由异丁烯和N-甲基马来酸酐缩亚胺组成的交替共聚物及丙烯腈-苯乙烯共聚物的树脂组合物的薄膜。作为薄膜可以使用由树脂组合物的混合挤出制品等构成的薄膜。
保护膜的厚度可以适当确定,但是从强度和处理性等操作性、薄层性等观点来看,一般约为1-500μm。特别优选为1-300μm,更优选5-200μm。
另外,保护膜最好不要着色。因此,优选使用用Rth=[(nx+ny)/2-nz]·d(其中,nx和ny是薄膜平面内的主折射率,nz是薄膜厚度方向的折射率,d是薄膜厚度)表示的薄膜厚度方向的相位差值为-90nm~+75nm的保护膜。通过使用该厚度方向的相位差值(Rth)为-90nm~+75nm的保护膜,可以大体上消除由保护膜引起的偏振片的着色(光学着色)。厚度方向相位差值(Rth)进一步优选为-80nm~+60nm,特别优选-70nm~+45nm。
作为保护膜,从偏振性能和耐久性等观点来看,优选三乙酸纤维素等纤维素类聚合物。特别优选三乙酸纤维素薄膜。此外,当在偏振镜的两侧设置保护膜时,既可以在其正反面使用由相同聚合物材料组成的保护膜,也可以使用由不同的聚合物材料等组成的保护膜。上述偏振镜和保护膜通常利用水性粘合剂等进行粘合。作为水性粘合剂,可以举例为异氰酸酯类粘合剂、聚乙烯醇类粘合剂、明胶类粘合剂、乙烯类胶乳、水性聚氨酯、水性聚酯等。
在上述透明保护膜的没有粘接偏振镜的表面上,还可以进行硬涂层或防反射处理、防粘附处理、以扩散或防眩为目的的处理。
实施硬涂层处理的目的是防止偏振片的表面受损等,例如可以通过在透明保护膜的表面上附加由丙烯酸类及硅酮类等适当的紫外线固化型树脂构成的硬度、滑动特性等良好的固化被膜的方法等形成。实施防反射处理的目的是防止外来光在偏振片表面上的反射,可以通过形成以往的防反射薄膜等来完成。此外,实施防粘附处理的目的是防止与邻接层之间的粘附。
另外,实施防眩处理的目的是防止外来光在偏振片表面反射而干扰偏振片透过光的辨识性,例如,可以通过采用喷砂方式和压纹加工方式的粗面化方式以及配合透明微粒的方式等适当的方式,给透明保护膜表面赋予微细凹凸结构而形成。作为在上述表面微细凹凸结构的形成中含有的微粒,例如,可以使用平均粒径为0.5~50μm的由二氧化硅、氧化铝、氧化钛、氧化锆、氧化锡、氧化铟、氧化镉、氧化锑等组成的往往具有导电性的无机微粒、由交联或者未交联的聚合物等组成的有机微粒等透明微粒。当形成表面微细凹凸结构时,微粒的使用量相对于形成表面微细凹凸结构的透明树脂100重量份,通常为大约2~50重量份,优选5~25重量份。防眩层也可以兼做用于将偏振片透射光扩散而扩大视角等的扩散层(视角扩大功能等)。
还有,上述防反射层、防粘附层、扩散层和防眩层等除了可以设置在透明保护膜自身上以外,还可以作为与透明保护膜分开配置的其他光学层设置。
另外,作为本发明的光学薄膜,可以举例为,例如反射板或半透过板、相位差板(包括1/2和1/4等波长板)、视角补偿薄膜、亮度改善薄膜等在液晶显示装置等的形成中可以使用的成为光学层的薄膜。这些除了可以单独作为本发明的光学薄膜使用之外,还可以在实际使用时在上述偏振片上层叠一层或者两层以上使用。
特别优选的偏振片是在偏振片上进一步层叠反射板或半透过反射板而成的反射型偏振片或半透过型偏振片;在偏振片上进一步层叠相位差板而形成的椭圆偏振片或圆偏振片;在偏振片上进一步层叠视角补偿薄膜而形成的宽视角偏振片;或者在偏振片上进一步层叠亮度改善薄膜而形成的偏振片。
反射型偏振片是在偏振片上设置反射层而成的,可用于形成反射从辨识侧(显示侧)入射的入射光而进行显示的类型的液晶显示装置等,并且可以省略内置的背光灯等光源,从而具有易于使液晶显示装置薄型化等优点。形成反射型偏振片时,可以通过根据需要介由透明保护层等在偏振片的一面设置由金属等组成的反射层的方式等适当的方式进行。
作为反射型偏振片的具体例,可以举出根据需要在消光处理后的透明保护膜的单面上设置由铝等反射性金属构成的箔或蒸镀膜而形成反射层的反射型偏振片等。另外,还可以列举出通过使上述保护膜含有微粒而形成表面微细凹凸结构,并在其上具有微细凹凸结构的反射层的反射型偏振片等。上述的微细凹凸结构的反射层通过漫反射使入射光扩散,由此防止定向性和外观闪耀,具有可以抑制明暗不均的优点等。另外,含有微粒子的透明保护膜还具有当入射光及其反射光透过它时可以通过使光线扩散而进一步抑制明暗不均的优点等。反映透明保护膜的表面微细凹凸结构的微细凹凸结构的反射层的形成,例如可以通过用真空蒸镀方式、离子镀方式及喷溅方式等蒸镀方式或镀覆方式等适当的方式在透明保护层的表面上直接附设金属的方法等进行。
作为代替将反射板直接附设在上述偏振片的透明保护膜上的方法,还可以在以该透明薄膜为基准的适当的薄膜上设置反射层形成反射片等后使用。还有,由于反射层通常由金属组成,所以从防止由于氧化而造成的反射率的下降,进而长期保持初始反射率的观点和避免另设保护层的观点等来看,优选用透明保护膜或偏振片等覆盖其反射面的使用形式。
还有,在上述中,半透过型偏振片可以通过做成用反射层反射光的同时使光透过的半透半反镜等半透过型的反射层而获得。半透过型偏振片通常被设于液晶单元的背面侧,可以形成如下类型的液晶显示装置等,即,在比较明亮的环境中使用液晶显示装置等时,反射来自于辨识侧(显示侧)的入射光而显示图像,在比较暗的环境中使用时,使用内置于半透过型偏振片的背面的背光灯等内置光源来显示图像的类型。即,半透过型偏振片在如下类型的液晶显示装置等的形成中十分有用,即,在明亮的环境下可以节约使用背光灯等光源的能量,在比较暗的环境下也可以用内置光源使用的类型的液晶显示装置的形成中非常有用。
下面对偏振片上进一步层叠相位差板而构成的椭圆偏振片或圆偏振片进行说明。在将直线偏振光改变为椭圆偏振光或圆偏振光,或者将椭圆偏振光或圆偏振光改变为直线偏振光,或者改变直线偏振光的偏振方向的情况下,可以使用相位差板等。特别是,作为将直线偏振光改变为圆偏振光或将圆偏振光改变为直线偏振光的相位差板,可使用所谓的1/4波长板(也称为λ/4板)。1/2波长板(也称为λ/2板)通常用于改变直线偏振光的偏振方向的情形。
椭圆偏振片可以有效地用于以下情形,即补偿(防止)超扭曲向列相(STN)型液晶显示装置因液晶层的双折射而产生的着色(蓝或黄),从而进行所述没有着色的白黑显示的情形等。另外,控制三维折射率的偏振片还可以补偿(防止)从斜向观察液晶显示装置的画面时产生的着色,因而优选。关于圆偏振片,例如可以在对图像变为彩色显示的反射型液晶显示装置的图像的色调进行调整时被有效地利用,而且还具有防反射功能。
作为相位差板,可以举出对高分子材料进行单向或双向拉伸处理而形成的双折射性薄膜、液晶聚合物的取向膜、用薄膜支撑液晶聚合物的取向层的材料等。对相位差板的厚度也没有特别限制,一般为20~150μm。
作为所述高分子材料,例如可以举出聚乙烯醇、聚乙烯醇缩丁醛、聚甲基乙烯醚、聚羟乙基丙烯酸酯、羟乙基纤维素、羟丙基纤维素、甲基纤维素、聚碳酸酯、聚芳酯、聚砜、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚醚砜、聚苯硫醚、聚苯醚、聚烯丙基砜、聚乙烯醇、聚酰胺、聚酰亚胺、聚烯烃、聚氯乙稀、纤维素类聚合物、降冰片烯类树脂、或它们的二元类、三元类各种共聚物、接枝共聚物、混合物等。这些高分子材料可通过拉伸等而成为取向物(拉伸薄膜)。
作为液晶性聚合物,例如可以举出在聚合物的主链或侧链上导入了赋予液晶取向性的共轭性直线状原子团(mesogene)的主链型或侧链型的各种聚合物。作为主链型液晶性聚合物的具体例,可以举出具有在赋予弯曲性的间隔部上结合了上述直线状原子团(mesogene)的构造的聚合物,例如向列取向性的聚酯类液晶性聚合物、圆盘状聚合物或胆甾醇型聚合物等。作为侧链型液晶性聚合物的具体例,可以举出如下的化合物等,即,将聚硅氧烷、聚丙烯酸酯、聚甲基丙烯酸酯或聚丙二酸酯为主链骨架,作为侧链隔着由共轭性原子团构成的间隔部而具有由赋予向列取向性的对位取代环状化合物单元构成的上述直线状原子团(mesogene)部的化合物。这些液晶性聚合物通过以下方法进行处理,即,在对于形成在玻璃板上的聚酰亚胺或聚乙烯醇等薄膜的表面进行摩擦处理后的材料、斜向蒸镀了氧化硅的材料等的取向处理面上,铺展液晶性聚合物的溶液后进行热处理。
相位差板可以是例如各种波长板或用于补偿由液晶层的双折射造成的着色或视角等的材料等具有对应于使用目的的适宜的相位差的材料,也可以是层叠2种以上的相位差板而控制了相位差等光学特性的材料。
另外上述椭圆偏振片或反射型椭圆偏振片是通过适当地组合并层叠偏振片或反射型偏振片和相位差板而成的。这类椭圆偏振片等也可以通过在液晶显示装置的制造过程中依次分别层叠(反射型)偏振片及相位差板来形成,以构成(反射型)偏振片及相位差板的组合,而如上所述,预先形成为椭圆偏振片等光学薄膜的情况下,由于在质量的稳定性和层叠操作性等方面出色,因此具有可以提高液晶显示装置等的制造效率的优点。
补偿视角薄膜是从不垂直于画面的稍微倾斜的方向观察液晶显示装置的画面的情况下也使图像看起来比较清晰的、用于扩大视角的薄膜。作为此种视角补偿相位差板,例如由相位差板、液晶聚合物等的取向薄膜或透明基材上支撑了液晶聚合物等取向层的材料等构成。通常作为相位差板使用的是沿其面方向被单向拉伸并具有双折射的聚合物薄膜,与此相对,作为被用作视角补偿薄膜的相位差板,可以使用沿其面方向被双向拉伸并具有双折射的聚合物薄膜、沿其面方向被单向拉伸并沿其厚度方向也被拉伸了的可控制厚度方向折射率的具有双折射的聚合物或像倾斜取向膜等双向拉伸薄膜等。作为倾斜取向膜,例如可以举出在聚合物薄膜上粘接热收缩膜后在因加热而形成的收缩力的作用下,对聚合物薄膜进行了拉伸处理或/和收缩处理的材料、使液晶聚合物倾斜取向而成的材料等。作为相位差板的原材料聚合物可使用与上述的相位差板中说明的聚合物相同的聚合物,可以使用以防止基于由液晶单元造成的相位差而形成的辨识角的变化所引起的着色等或扩大辨识性良好的视角等为目的的适宜的聚合物。
另外,从实现辨识性良好的宽视角的观点出发,可以优选使用用三乙酸纤维素薄膜支撑由液晶聚合物的取向层、特别是圆盘状液晶聚合物的倾斜取向层构成的光学各向异性层的光学补偿相位差板。
将偏振片和亮度改善薄膜贴合在一起而成的偏振片通常被设于液晶单元的背面一侧。亮度改善薄膜是显示如下特性的薄膜,即,当因液晶显示装置等的背光灯或来自背面侧的反射等,有自然光入射时,反射特定偏光轴的直线偏振光或特定方向的圆偏振光,而使其他光透过,因此将亮度改善薄膜与偏振片层叠而成的偏振片可使来自背光灯等光源的光入射,而获得特定偏振光状态的透过光,同时,所述特定偏振光状态以外的光不能透过,被予以反射。借助设于其后侧的反射层等再次反转在该亮度改善薄膜面上反射的光,使之再次入射到亮度改善薄膜上,使其一部分或全部作为特定偏振光状态的光透过,从而增加透过亮度改善薄膜的光,同时向偏振镜提供难以吸收的偏振光,从而增大能够在液晶显示图像的显示等中利用的光量,并由此可以提高亮度。即,在不使用亮度改善薄膜而用背光灯等从液晶单元的背面侧穿过偏振镜而使光入射的情况下,具有与偏振镜的偏光轴不一致的偏振方向的光基本上被偏振镜所吸收,因而无法透过偏振镜。即,虽然会因所使用的偏振镜的特性而不同,但是大约50%的光会被偏振镜吸收掉,因此,液晶图像显示等中能够利用的光量将减少,导致图像变暗。由于亮度改善薄膜反复进行如下操作,即,使具有能够被偏振镜吸收的偏振方向的光不是入射到偏振镜上,而是使该类光在亮度改善薄膜上发生反射,进而借助设于其后侧的反射层等完成反转,使光再次入射到亮度改善薄膜上,这样,亮度改善薄膜只使在这两者间反射并反转的光中的、其偏振方向变为能通过偏振镜的偏振方向的偏振光透过,同时将其提供给偏振镜,因此可以在液晶显示装置的图像显示中有效地使用背光灯等的光,从而可以使画面明亮。
也可以在亮度改善薄膜和所述反射层等之间设置扩散板。由亮度改善薄膜反射的偏振光状态的光朝向所述反射层等,所设置的扩散板可将通过的光均匀地扩散,同时消除偏振光状态而成为非偏振光状态。即,扩散板使偏振光恢复到原来的自然光状态。反复进行如下的作业,即,将该非偏振光状态即自然光状态的光射向反射层等,介由反射层等而反射后,再次通过扩散板而又入射到亮度改善薄膜上。通过在亮度改善薄膜和所述反射层等之间设置使偏振光恢复到原来的自然光状态的扩散板,可以在维持显示画面的亮度的同时,减少显示画面的亮度的不均,从而可以提供均匀并且明亮的画面。通过设置该扩散板,可适当增加初次入射光的重复反射次数,并利用扩散板的扩散功能,可以提供均匀且明亮的显示画面。
作为所述亮度改善薄膜,例如可以使用电介质的多层薄膜或折射率各向异性不同的薄膜多层层叠体之类的显示出使特定偏光轴的直线偏振光透过而反射其他光的特性的薄膜、胆甾醇型液晶聚合物的取向膜或在薄膜基材上支撑了该取向液晶层的薄膜之类的显示出将左旋或右旋中的任一种圆偏振光反射而使其他光透过的特性的薄膜等适宜的薄膜。
因此,通过利用使上述特定偏光轴的直线偏振光透过的类型的亮度改善薄膜,使该透过光直接沿着与偏光轴一致的方向入射到偏振片上,可以在抑制由偏振片造成的吸收损失的同时,使光有效地透过。另一方面,利用胆甾醇型液晶层之类的使圆偏振光透过的类型的亮度改善薄膜,虽然可以直接使光入射到偏振镜上,但是,从抑制吸收损失这一点考虑,优选借助相位差板对该圆偏振光进行直线偏振光化,之后再入射到偏振片上。而且,通过作为该相位差板使用1/4波长板,可以将圆偏振光变换为直线偏振光。
在可见光区域等较宽波长范围中能起到1/4波长板作用的相位差板,例如可以利用以下方式获得,即,将相对于波长550nm的浅色光能起到1/4波长板作用的相位差层和显示其他相位差特性的相位差层例如能起到1/2波长板作用的相位差层重叠的方式等。所以,配置于偏振片和亮度改善薄膜之间的相位差板可以由1层或2层以上的相位差层构成。
还有,就胆甾醇型液晶层而言,也可以组合不同反射波长的材料,构成重叠2层或3层以上的配置构造,由此可获得在可见光区域等较宽的波长范围内反射圆偏振光的构件,从而可以基于此而获得较宽波长范围的透过圆偏振光。
另外,偏振片如同上述偏振光分离型偏振片,可以由层叠了偏振片和2层或3层以上的光学层的构件构成。所以,也可以是组合上述反射型偏振片或半透过型偏振片和相位差板而成的反射型椭圆偏振片或半透过型椭圆偏振片等。
在偏振片上层叠了上述光学层的光学薄膜可以利用在液晶显示装置等的制造过程中依次分别层叠的方式来形成,但是预先经层叠而成为光学膜的偏振片在质量的稳定性或组装操作等方面优良,因此具有可改善液晶显示装置等的制造工序的优点。在层叠中可以使用粘接剂层等适宜的粘接手段。在粘接所述偏振片和其他光学层时,它们的光学轴可以根据目标相位差特性等而采用适宜的配置角度。
对在上述光学薄膜2上形成粘合剂层3的方法没有特别的限制,可以举例为,涂敷粘合剂(溶液)并干燥的方法、利用设置有粘合剂层3的脱模片而转印的方法等。作为脱模片的构成材料,可以举例为纸、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯等合成树脂薄膜;橡胶片、纸、布、无纺布、网状物、泡沫片以及金属箔、它们的层叠体等适宜的薄片体等。在脱模片的表面上,为了提高从粘合剂层3上的剥离性,必要时也可以进行硅酮处理、长链烷基处理、氟处理等剥离处理。
对粘合剂层3(干燥膜厚)的厚度不作特别限定,但优选10~40μm左右。
此外,在粘合型光学薄膜的光学薄膜或粘合剂层等各层上,也可以利用例如用水杨酸酯类化合物或苯并苯酚类化合物、苯并三唑类化合物或氰基丙烯酸酯类化合物、镍络合盐类化合物等紫外线吸收剂进行处理的方式等方式,使之具有紫外线吸收能力等。
当把如上所述的粘合型光学薄膜贴合在液晶单元等的基板上时,如果出现贴合位置错位或者带入异物就会影响液晶显示等,因此需要剥离已贴合的粘合型光学薄膜,在液晶单元等的表面上再次粘贴新的粘合型光学薄膜。但是,当粘合剂层的粘合力较强时,剥离中需要较大的力量,所以操作性有可能变差,或者液晶单元的间隙会发生变化,导致显示质量下降或液晶单元受损等。
本发明的粘合型光学薄膜的剥离方法的特征是,在粘合型光学薄膜的粘合剂层和基板间的剥离界面上存在液体的状态下进行剥离,通过该剥离方法能使粘合剂层的粘合力降到足够低,所以能在不损坏基板的情况下较容易地剥离粘合型光学薄膜。另外,通过该剥离方法也能抑制糊浆在基板表面上的残留。
作为用于本发明的粘合型光学薄膜的剥离方法的液体,可列举出水或有机溶剂。作为有机溶剂,可列举出己烷、庚烷等脂肪族烃类溶剂,环己烷、环庚烷等脂环式烃类溶剂,甲苯、二甲苯等芳香族烃类溶剂,甲醇、乙醇、异丙醇等醇类溶剂,丙酮、甲乙酮等酮类溶剂,二甲醚、二乙醚等醚类溶剂,醋酸甲酯、醋酸乙酯等酯类溶剂等。有机溶剂可加快剥离速度,所以优选用于从大型基板上剥离粘合型光学薄膜的情形。
在不损害本发明的效果的范围内,可以向上述液体中添加无机物或有机物的添加剂。其中,因有可能溶解玻璃等基板,所以不使用溶液呈碱性的添加剂。
作为使液体存在于粘合型光学薄膜的粘合剂层和基板的剥离界面上的方法,可举例为,把液体滴到剥离界面上的方法、喷淋、或喷涂等方法。另外,也可以在浸渍于液体中的状态下剥离,或在蒸气中进行剥离。
下面,通过实施例对本发明进行具体说明,但本发明并不限定在这些实施例。其中,各实施例中的份和%都是以重量为基准。
制造例(粘合型光学薄膜的制作)将厚80μm的聚乙烯醇薄膜在40℃的碘水溶液中拉伸5倍之后,在50℃使其干燥4分钟,从而获得偏振镜。在该偏振镜的两侧使用聚乙烯醇型粘接剂粘接三乙酸纤维素薄膜,从而获得偏振片。在该偏振片的一面上涂敷丙烯酸类粘合剂,经干燥形成粘合剂层(厚度25μm),从而制成粘合型偏振片。
实施例1(粘合力实验)将制成的粘合型偏振片切成25mm宽的大小。然后,在无碱玻璃板(コ一ニング社製,コ一ニング1737,厚度0.4mm)表面上贴合该粘合型偏振片的粘合剂层,在高压釜(50℃,0.5MPa)中保持15分钟。然后,使用拉伸试验机在拉伸速度为300mm/min、拉伸角度为90°的条件下,一边向粘合剂层和无碱玻璃板的剥离界面上喷约为25℃的水,一边剥离粘合型偏振片。剥离时的粘合力(N/25mm)如表1所示。
(剥离操作实验)
将制成的粘合型偏振片切成15英寸的大小。然后,在具有相同尺寸的玻璃制液晶单元表面上贴合该粘合型偏振片的粘合剂层,在高压釜(50℃,0.5MPa)中保持15分钟。然后,一边向粘合剂层和液晶单元的剥离界面上喷约为25℃的水,一边从角部剥离粘合型偏振片。进行该实验10次,计数液晶元件有裂纹或单元间隙异常等不良情形出现的次数。另外,确认剥离后液晶单元表面是否有糊浆残留,并根据下述的标准进行评价。其结果如表1所示。
○无糊浆残留。
△有部分糊浆残留。
×有较多糊浆残留。
实施例2除了使用甲苯(约25℃)代替水之外,用和实施例1相同的方法进行粘合力实验和剥离操作实验。其结果如表1所示。
比较例1除了剥离时不喷水之外,用和实施例1相同的方法进行粘合力实验和剥离操作实验。其结果如表1所示。
表1

由表1可知,当从液晶单元上剥离粘合型光学薄膜时,通过在使液体存在于粘合型光学薄膜的粘合剂层和液晶单元的剥离界面的状态下进行剥离,能把粘合剂层的粘合力降到足够低。为此,剥离不会引发液晶单元出现不良情形,并能容易地剥离粘合型光学薄膜。另外,也能改善剥离操作的效率,所以非常有助于提高液晶显示器的生产效率。
权利要求
1.一种粘合型光学薄膜的剥离方法,是从在基板表面粘附有粘合型光学薄膜的带光学薄膜的基板上剥离粘合型光学薄膜的粘合型光学薄膜的剥离方法,其特征在于,在粘合型光学薄膜的粘合剂层和基板的剥离界面上存在液体的状态下进行剥离。
2.根据权利要求1所述的粘合型光学薄膜的剥离方法,其特征在于,所述粘合剂层是由丙烯酸类粘合剂形成的。
3.根据权利要求1或者2所述的粘合型光学薄膜的剥离方法,其特征在于,所述液体是水和/或有机溶剂。
全文摘要
本发明提供一种在不损坏基板的情况下容易地从粘附有粘合型光学薄膜的基板上剥离粘合型光学薄膜的方法。在把粘合型光学薄膜从基板表面粘附有粘合型光学薄膜的带光学薄膜的基板上剥离下来的粘合型光学薄膜的剥离方法中,其特征是一种在使液体存在于粘合型光学薄膜的粘合剂层和基板的剥离界面的状态下进行剥离的粘合型光学薄膜的剥离方法。
文档编号B32B27/00GK1618602SQ200410090109
公开日2005年5月25日 申请日期2004年11月2日 优先权日2003年11月19日
发明者白藤文明, 佐竹正之, 小笠原晶子, 外山雄祐 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1