用于增强油回收的流体中使用的纳米原纤化纤维素的制作方法

文档序号:14030695阅读:402来源:国知局
用于增强油回收的流体中使用的纳米原纤化纤维素的制作方法

本发明涉及纳米原纤化纤维素(nfc)在用于增强油回收(eor)的流体中的用途。



背景技术:

大分子(聚合物材料),特别是水溶性的大分子,是从地下地层中提取碳氢化合物最常用的化学物质之一。无论提取是一级或三级提取,聚合物都用于各种功能。例如,在油气钻井中,聚合物用作粘度调节剂、分散剂或用于过滤控制目的。在通过酸化或水力压裂使井增产的情况下,聚合物也用作粘度调节剂和用作过滤控制添加剂。在被称为增强油回收(eor)的三次回收中,聚合物(主要是聚丙烯酰胺)用作渗透改性剂和增粘剂。因此,聚合物是广泛用于油田流体的添加剂,但应谨慎选择,以避免对油回收造成任何负面影响。聚合物如聚丙烯酰胺进一步对环境产生负面影响。

油提取中使用的聚合物是生物基材料或化石基材料。通常,生物聚合物在低至中等温度<150℃下使用。合成聚合物由于其高热稳定性而在更宽的温度范围内使用。

纳米原纤化纤维素(nfc)是一种由可再生资源产生的材料种类,且其具有作为油田应用的有用添加剂的潜力。使用可再生资源替代来自石油化学工业的化学品以减少碳足迹(carbonfootprint)受到很大关注。在wo2014148917中公开了nfc或微原纤化纤维素(mfc)作为油田流体的增粘剂的用途,所述油田流体例如为压裂、钻井流体,隔离流体和eor流体。用nfc增粘的流体显示优异的剪切变稀性质,且这是由于纳米原纤维的高长径比>100。原纤维的长径比是原纤维的长度除以直径(长度/直径)。另外,与天然聚合物如黄原胶和瓜尔胶、纤维素和淀粉衍生物等相比,nfc更加热稳定。此外,取决于其表面电荷,与市售生物聚合物或合成聚合物相比,其对盐具有高耐受性。

nfc可以通过各种方法由任何含纤维素或木质纤维素的原材料生产,且其特征可以定制。对nfc的大部分研究集中在漂白纸浆作为原料来制备nfc的用途。然而,使用木质纤维素生物质代替纯化的纸浆作为生产纳米原纤化木质纤维素(nflc)的原料在经济上是有利的。木质纤维素生物质的来源很多,如木材、秸秆、农业废弃物例如甘蔗渣和甜菜浆等。这仅可在最终应用耐受在最终产物中存在木质素的情况下适用。

植物细胞壁主要由木质纤维素生物质构成,所述木质纤维素生物质由纤维素、半纤维素和木质素组成。这三种主要组分的比率及其结构复杂程度因植物类型而显著变化。一般来说,纤维素是植物细胞壁中最大的组分,且其在干物质重量的35-50%范围内,半纤维素范围在15-30%,且木质素范围在10-30%。作为油田应用中使用的其他大分子,需要在使用后去除nflc。幸运的是,存在通过酶促或氧化降解来去除或降解nflc的两种可能的解决方案。深入研究木质纤维素生物质的酶促降解,因为它是由生物质生产生物燃料中的主要步骤。通过优化酶效率、找到对目标生物质的最佳酶组合、对生物质进行预处理使其可易于被酶接近以及找到最优降解条件,最近的发展实现了酶促降解总成本的显著降低。

可以通过选择原料,或通过调节生产参数,或通过对生产的原纤维进行后处理来生产具有各种物理化学性质的nfc或nflc。例如,nfc原纤维的尺寸可以变化以适合所提议的应用。通常,植物中的由原纤维束构成的纤维素纤维的直径在20-40μm范围内,长度在0.5-4mm范围内。可以通过纤维素纤维的完全去原纤化获得的单纤维素原纤维具有几纳米的直径约3nm且长度为1-100μm。取决于去原纤化的能量输入和去原纤化之前的预处理,纤维的直径可以减小到纳米数量级(5-500nm)。另外,可以将原纤维长度控制在一定程度以使其适合于所需的应用。而且,从文献中已知纤维素分子可以各种方式化学改性以获得期望的化学性质。nfc的表面化学可以按相同方式进行调整,以满足最终用途需求。通常,在表面上用羟基中和纤维素分子的表面电荷,但羟基可转化为阴离子或阳离子电荷。醚化和酯化是改变纤维素表面性质的最常用方法之一。

nfc的性质允许定制其物理化学性质以匹配在油田流体中的用途。原纤维形态和原纤维化学性质二者可以调整以适应应用要求。

具有高木质素含量的nflc的热稳定性不令人满意。然而,基于干物质含有高达25重量%木质素的nflc具有用于eor流体的可接受的热稳定性。

岩芯驱替(coreflooding)试验是研究流体流入多孔介质中的常用方法。该试验方法提供有关流体及其组分与代表目标储层的岩芯样品相互作用的有用信息。这种技术用于评估流体对油/气储层的地层损害潜力,以及如在eor应用情况下评估聚合物到储层中的渗透性。通常设定试验条件例如温度压力、流体成分、岩芯类型和流速,以模拟油田和应用条件。

本发明的一个目的是提供用于增强油回收的用作流体中的添加剂的纳米原纤化纤维素,其中所述nfc能够渗透到地层中。

发明概述

本发明涉及用于增强油回收的流体中使用的纳米原纤化纤维素(nfc),其中所述流体含有长径比小于1000的nfc,其中所述纳米原纤维的直径在5和50纳米之间且长度小于10μm。

根据一个优选的实施方案,nfc具有小于500的长径比,其中所述纳米原纤维的直径在5和30纳米之间且长度小于5μm。

根据另一个优选的实施方案,所述纳米原纤化纤维素是纳米原纤化的木质纤维素,基于干物质含有高达25重量%的木质素,且基于干物质优选高达10重量%的木质素。

根据另一个优选的实施方案,所述纳米原纤化纤维素具有0.1至1mmol/gnfc范围内的表面电荷(羧基)浓度,且优选小于0.5mmol/gnfc。

在增强油回收(三次回收)中,增强回收的常用技术之一称为聚合物驱替。通常使用高分子量部分水解的聚丙烯酰胺(phpa),其浓度范围为几百ppm,以增加水粘度以改善吹扫效率。用于eor聚合物驱替的典型储层渗透率>100md。标准nfc到高渗透性岩芯中的渗透并不高。原纤维的一部分在岩芯表面过滤出,且一些原纤维被包埋在岩芯基质中并堵塞岩芯中的孔隙。为了克服这个注入性问题,已经发现使用短长度的原纤维显著改善注入性。

原纤维的尺寸可以如下控制;1)通过增加所使用的去原纤化能量,并通过在去原纤化之前使用预处理步骤,直径变得越来越细,以促进去原纤化过程。最薄的原纤维直径只有几纳米。2)原纤维的长度很难控制;然而,强烈的化学或酶预处理导致原纤维长度显著缩短。在剧烈的化学氧化条件如高碘酸盐下,然后进行亚氯酸盐氧化,如wo2012119229中所述,原纤维长度可减小至仅100nm。根据wo2012119229,nfc的表面电荷(羧基)浓度可以在0.1至11mmol/gnfc范围内,并且可以获得在小于10至大于1,000范围内的长径比。

anikóvárnai在他2012年的博士论文“improvingenzymaticconversionoflignocellulosetoplatformsugars(改善木质纤维素向平台糖的酶促转化)”,universityofhelsinki,departmentoffoodandenvironmentalsciences,vtttechnicalresearchcentreoffinland,biotechnology中描述高固含量木质纤维素底物的酶促降解。这可能是产生用于eor应用的高浓度短nfc的有用方法。

化学方法降低原纤维长度,但同时由于葡萄糖单元的仲羟基和伯羟基的氧化而增加了原纤维的阴离子电荷密度。酶处理也减少了长度而对表面电荷没有显著的影响。通过酶预处理产生的nfc的羧酸根含量小于200μmol/gnfc。

发明进一步描述

以下实施例中使用的nfc材料在实验室中根据以下文献所述产生。

1)tempo介导的nfc(tempo-nfc)根据saito等人的出版物(saito,t.nishiyama,y.putaux,j.l.vignonm.和isogai.a.(2006).biomacromolecules,7(6):1687-1691)产生。tempo是2,2,6,6-四甲基哌啶-1-氧基自由基。通常,tempo-nfc的直径小于15nm,且电荷密度在0.2-5mmol/g范围内。

2)酶辅助的nfc(en-nfc)根据henriksson等人的出版物,europeanpolymerjournal(2007),43:3434-3441(anenvironmentallyfriendlymethodforenzyme-assistedpreparationofmicrofibrillatedcellulose(mfc)nanofibers(用于微原纤化纤维素(mfc)纳米纤维的酶辅助制备的环境友好型方法))和m.pääkkö等人的出版物,biomacromolecules,2007,8(6),第1934–1941页,enzymatichydrolysiscombinedwithmechanicalshearingandhigh-pressurehomogenizationfornanoscalecellulosefibrilsandstronggels(用于纳米级纤维素原纤维和强凝胶的与机械剪切和高压均质化结合的酶促水解)产生。me-nfc的直径小于50nm,且电荷密度<0.2mmol/g。

3)机械产生的mfc(ne-nfc)如由turbaka等人(1983)“microfibrillatedcellulose:anewcelluloseproduct:properties,uses,andcommercialpotential(微原纤化纤维素:一种新型纤维素产品:性质、用途和商业潜力)”.japplpolymsciapplpolymsymp37:815–827所述产生。me-mfc也可以通过以下方法之一制备:均质化、微流化、微研磨和低温压碎。有关这些方法的其它信息可以在spence等人在cellulose(2011)18:1097–1111中的论文“acomparativestudyofenergyconsumptionandphysicalpropertiesofmicrofibrillatedcelluloseproducedbydifferentprocessingmethods(通过不同加工方法生产的微原纤化纤维素的能量消耗和物理性质的对比研究)”中找到。me-nfc的直径小于约50nm,且电荷密度(羧酸根含量)<0.2mmol/g。

4)羧甲基化的nfc(cm-nfc)根据“thebuild-upofpolyelectrolytemultilayersofmicrofibrillatedcelluloseandcationicpolyelectrolytes(微原纤化纤维素和阳离子聚电解质的聚电解质多层的构建)”,wågbergl,decherg,norgenm,lindströmt,ankerforsm,axnäsklangmuir(2008)24(3),784-795中所述的方法产生。cm-nfc的直径小于30nm,且电荷密度在0.5-2.0mmol/g范围内。

用于测量生产的nfc的各种性质的设备包括物料天平、高达12000rpm的恒速混合器、ph计、fann35粘度计、physica流变仪mcr—antonpaar(具有couette几何结构cc27),和热老化烘箱(在100-1000psi的压力下高达260℃)和岩芯驱替系统。

附图简述

图1是显示在用溴酸钠降解后nfc的粘度作为剪切速率的函数的图,

图2是显示在用过硫酸钠降解后nfc的粘度作为剪切速率的函数的图,和,

图3是显示在用纤维素酶降解后nfc的粘度作为剪切速率的函数的图。

实施例1

nfc的化学和酶促降解的影响。

下面是如何通过化学和酶促手段降低nfc的原纤维长度的实施例。

a)用溴酸钠进行化学降解

将nfc浓缩物用5%kcl稀释以制备nfc浓度为0.48重量%的流体。加入溴酸钠以制成1重量%,并在300℉下处理16小时。如图2所示,8小时后粘度仍然很高。然而,在16小时后,粘度降低到非常低的值,这表明纤维在这样的条件下成功降解。延长加热时间超过16小时无助于进一步降低粘度。

图1显示用溴酸钠作为氧化剂处理的nfc分散体的粘度随时间的下降。图1中的结果表明,用1%溴化钠处理16小时将原纤维的长径比降低到远低于1000。

b)用过硫酸钠进行化学降解

浓度为0.48重量%的nfc用0.5重量%的过硫酸钠处理24小时,并用1重量%的过硫酸钠分别处理24小时和48小时。

图2说明用过硫酸钠作为氧化剂处理的nfc分散体的粘度随时间的下降。图1中的结果表明用0.5和1重量%过硫酸钠二者处理24小时得到非常好的结果。图2进一步显示,将处理时间增加至48小时不会导致粘度进一步降低。用过硫酸钠处理因此将原纤维的长径比降低到远低于1000。

c)酶促降解

在这个实施例中,使用纤维素酶在50℃下缩短原纤维长度24小时。制备在蒸馏水中的0.6重量%nfc分散体。加入来自novozymes的纤维素酶celluclast®1.5l以降解原纤维。随时间监测原纤维分散体的粘度。当在剪切速率1/s下粘度达到20mpa.s的值时,通过在120℃的高温下酶变性使反应停止。降解时间取决于酶/纤维比率。比率越高,降解时间将越短。

使用粘度测量间接监测尺寸减小。如图3所示,粘度随时间而下降,表明原纤维长度降低和长径比同时降低。使用光散射法和扫描电镜观察降解对纤维形态的影响。存在缩短纤维长度的明确迹象。

实施例2

岩芯驱替试验

在不同条件(如各种nfc浓度、各种类型的nfc)下,在各种温度、流速和不同压力下,使用不同类型的岩芯(砂岩和石灰石二者)进行关于nfc流体的岩芯驱替试验。

用于岩芯驱替试验的程序如下:

1.岩芯在250℉下干燥4小时,且称重以获得其干重。然后在真空下用盐水溶液(5重量%kcl,在去离子水中)浸渍岩芯6小时,且测量其湿重。使用这些测量和盐水溶液的密度(70℉下的密度=1.03g/cm3)计算孔体积(pv)。

2.岩芯放置在岩芯夹持器内。盐水(5重量%kcl)以生产方向通过岩芯泵送。如果需要升高温度,则在试验期间将温度升高到目标值(250℉)并保持恒定。监测和记录横过岩芯的压降直到其稳定。计算初始渗透率。

3.通过用5重量%的kcl盐水将1.0重量%的nfc分散体稀释至0.1重量%的nfc浓度(1000ppm)来制备处理流体。将100gnfc溶液混合到600gkcl盐水(5重量%)中以制成0.0.1重量%的nfc作为处理流体。

4.含有nfc和/或其他化学品的处理流体在1100psi的背压下沿注射方向(与生产方向相反)泵送。随着注入纤维流体,横过岩芯的压降增加。注射2pv时停止注射。记录横过岩芯的压降。

5.然后将流动方向逆转到生产方向,并将盐水(5重量%kcl)注入到岩芯中,直到横过岩芯的压降稳定。计算流体处理后的渗透率恢复值。

将实施例1中产生的酶促降解的nfc注入到400md碳酸盐岩芯中。为了比较,将未处理的nfc注入到另一个400md的碳酸盐岩芯中。

如表1所示,酶处理后的渗透率恢复值从66%增加到93%。岩芯表面是干净的,并且在注射阶段在岩芯表面上没有滤出原纤维。具有长度大于10μm的长原纤维的nfc不渗透岩芯样品。这表明通过缩短原纤维长度,nfc原纤维进入多孔介质中的注入性得到改善,且短长度nfc可以用作水驱替的粘度调节剂。此外,观察到具有低表面电荷的短原纤维如me-nfc或en-nfc比具有高表面电荷的短原纤维如tempo-nfc和cm-nfc更好地渗透。

表1:在250℉的温度下使用400md碳酸盐岩芯酶促降解之前和之后的nfc岩芯驱替。

将实施例1中用硼酸钠处理产生的化学降解的nfc注入到400md碳酸盐岩芯中。为了比较,将未处理的nfc注入到另一个400md碳酸盐岩芯中。

如表2所示,在化学处理后的渗透率恢复值从18%增加到93%。岩芯表面是干净的,并且在注射阶段在岩芯表面上没有滤出原纤维。这表明,通过缩短原纤维长度,nfc原纤维进入多孔介质岩芯的注入性得到改善,短长度nfc可以用作水驱替的增粘剂。

表2:在250℉的温度下使用400md碳酸盐岩芯化学降解之前和之后的cm-nfc岩芯驱替。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1