具有显示悬浮的合成图像的微透镜薄片的制作方法

文档序号:2494286阅读:574来源:国知局
专利名称:具有显示悬浮的合成图像的微透镜薄片的制作方法
技术领域
本发明涉及能产生一个或多个合成图像的薄片,观察者可在相对于该薄片的空间看到悬浮的上述合成图像,该图像的视图随观察角的不同而变化。
背景技术
具有图形图像或其他标识的薄片材料应用广泛,特别是用作鉴别物品或文书真伪的标签。例如,在美国专利No.3,154,872、3,801,183、4,082,426和4,099,838提到的那些薄片已经用作车辆牌照的确认标签,并作为驾驶执照、官方文书、盒式磁带、扑克牌、饮料包装箱等的防伪膜使用。其他用途包括在广告和宣传展示中用于标识警车、消防车或其他应急车辆的图形,并可用作建立品牌知名度的独特标签。
在美国专利No.4,200,875(Galanos)中提出了另一种形式的成像薄片。Galanos提出使用特殊的“高增益的外露透镜型逆射薄片”,在该薄片中,图像是通过将激光穿过一掩模或图案辐射到薄片上形成的。上述薄片包括许多局部嵌入粘合剂层、局部暴露在粘合剂层上的许多透明玻璃微组成。在每个微球的嵌入表面上都涂有金属反射层。上述粘合剂层含有炭黑——据称在成像时能将射引薄片上的杂散光减至最少。通过嵌入粘合剂层的微透镜的聚焦效应,能进一步集中激光束的能量。
在Galanos的反光薄片中形成的图像,能而且只能从激光照射薄片的角度上观察薄片时才能看到。换句话说,只有在非常有限的观察角内才能看到图像。由于以上和其他原因,需要改进上述薄片的某些性能。
早在1908年,Gabriel Lippman发明出一种在具有一个或多个光敏层的双凸透镜介质中产生真实的三维景象图像的方法。该方法被称为整体摄影技术,在1984年圣地亚哥的SPIE会议录中,由De Montebello撰写的“三维数据的处理与显示II”文中也有记述。在Lippman的方法中,摄影底片通过在一个透镜阵列曝光,使其中每一个透镜都透射出重显景象的一个缩小图像,就像从该透镜占据在薄片上的一点透视到摄影底片上的光敏层上看到的一样。当摄影底片显影后,通过透镜阵列观看底片上的合成图像的观察者能看到拍摄到的景象的三维照片。该照片可以是黑白色或彩色的,取决于使用的光敏材料。
在底片曝光期间,因为通过透镜形成的每一个图像只进行了一次缩小图像的倒置,所以产生的三维画面是幻视像。即观察到的图像深度凹凸反置,使实物看起来像“里面翻到外面”。这是一个主要缺点,因为要校正图像,需要实现两次光学倒置。校正方法非常复杂,它涉及一个照相机的多次曝光,或使用多个照相机,或使用多个透镜的相机,以纪录同一个物体的许多视图,这多个视图必需极其准确地重合,从而得到一个三维图像。而且,使用传统相机的任何方法都需要实物出现在相机前。这进一步使上述方法不适用于摄制虚物(指在效果上存在,但实际上不存在的物体)的三维图像。整体摄影技术的另一个缺点是必须从观察的一侧对合成图像照明,才能形成可以观察到的实像。
发明概述本发明提供一种微透镜薄片,其合成图像显示悬浮在该薄片的上方或下方。为方便起见,这些悬浮的图像被称为浮像,它们可以位于薄片的上方或下方(可以两维也可以是三维图像),或可以在薄片的上方、下方和薄片平面上出现三维图像。这些图像是黑白色或彩色的,并能随观测者观察角的变化而移动。不象一些全息照相薄片,本发明的已成像薄片不能用来创建一个其自身的复制品。而且,观察者用肉眼就可看到悬浮的图像。
本发明的薄片具有上文所述的合成图像,并具有多种用途,例如在护照、身份证、钞票、游行许可证、信用卡、产品识别格式和广告宣传中用作确认其真实性的防伪安全图像;产生悬浮或沉陷或悬浮和沉陷的商标图像的品牌宣传图像;在诸如警车、消防车或其他应急车辆的徽章上作为图形使用的识别图形图像;在诸如公共电话亭、夜间牌示、车辆的仪表盘显示上作为图形使用的告知图形图像;服装和流行饰品上的装饰物;逆反射安全服和装备;在诸如名片、挂牌、艺术品、鞋子和瓶装产品上通过使用合成图像来提高装饰性。
本发明进一步提供一种能制成含有上述合成图像的成像薄片的新方法。在一个实施方案中,只形成一个合成图像。也有一些实施方案,其中形成两个或多个合成图像,且该合成图像出现在薄片的上方和下方。其他实施方案是由传统的印制图像和本发明所述的合成图像组合而成的。
附图简述在此参考一些附图来对本发明进行说明。其中

图1是“外露式透镜”微透镜薄片的放大截面图;图2是“嵌入式透镜”微透镜薄片的放大截面图;图3是包括平凸基片的微透镜薄片的放大截面图;图4是将发散能量投射到由微球构成的微透镜薄片的图示;图5是微透镜薄片一部分的平面图,该图显示在紧贴一个个微球的材料层中纪录的样品图像,并进一步显示所记录的从合成图像的完全复制到部分复制的图像系列;图6是使用由铝片制成的辐射敏感材料层的微透镜薄片的光学显微镜照片,依据本发明,其成像后会显示悬浮于薄片上方的合成图像;图7是使用由铝片制成的辐射敏感材料层的微透镜薄片的光学显微镜照片,依据本发明,其成像后会显示悬浮于薄片下方的合成图像;图8是显示悬浮于微透镜薄片上方的合成图像的形成几何光学示图;图9是当在反射光中观察薄片时,本发明所述的薄片上方显示悬浮的合成图像的薄片示意图;图10是当在透射光中观察薄片时,本发明所述的薄片上方显示悬浮的合成图像的薄片示意图;图11是当观察时,显示悬浮于微透镜薄片下方的合成图像的形成几何光学示图;图12是当在反射光中观察薄片时,本发明所述的薄片下方显示悬浮的合成图像的薄片示意图;图13是当在透射光中观察薄片时,本发明所述的薄片下方显示悬浮的合成图像的薄片示意图;图14是使用光学装置产生发散能量以形成本发明所述合成图像的图示;图15是使用第二种光学装置产生发散能量以形成本发明所述合成图像的图示;图16是使用第三种光学装置产生发散能量以形成本发明所述合成图像的图示。
较佳实施方案的说明本发明所述的微透镜薄片通过许多微透镜产生的单个图像而形成悬浮于该薄片的上方、薄片平面上、和/或下方的合成图像。
为了对本发明进行详细说明,将在下文第I部分中介绍微透镜薄片,接下来在第II部分中介绍这种薄片的一些材料层(较好是辐射敏感材料层),在第III部分中介绍辐射源,并在第IV部分中介绍成像过程。本说明书还提供了几个实施例,进一步解释本发明的多种实施方案。
I.微透镜薄片能形成本发明所述图像的微透镜薄片是由一层或多个单层的微透镜组成,在紧贴这层或多层微透镜的一面铺置一层材料(最好是辐射敏感材料或涂层如下文所述)。例如,图1为“外露式透镜”类型的微透镜薄片10,它含有局部嵌入粘合剂层14的一单层透明微球12,该粘合剂层14通常为聚合物材料。上述微球既能透过用来使材料层成像的波长的辐射光,又能透过观察合成图像波长的光线。在每个微球的背面都铺置一层材料层16,并在图示的实施方案中,材料层16通常只与每一个微球12的部分表面相接触。这种类型的薄片在美国专利No.2,326,634中有更详细的说明,目前可使用由3M公司制造的名为Scotchlite 8910系列的反光织物。图2为另一种合适的微透镜薄片类型。这种微透镜薄片20是“嵌入式透镜”类型的薄片,其中微球透镜22嵌入通常用聚合物材料制成的透明防护涂层24中。在微球后面透明间隔层28背面铺置一层材料层26,该间隔层26通常也是聚合物材料。这种类型的薄片在美国专利No.3,801,183中有更详细的说明,目前可使用由3M公司制造的名为Scotchlite 3290系列的工程级逆向反射薄片。另一种合适的微透镜薄片类型被称为包封式透镜薄片,在美国专利No.5,064,272中对此种类型的一个例子进行了说明,目前有3M公司制造的名为Scotchlite 3870系列的高强度级反光薄片。
图3显示了另一种合适的微透镜薄片类型。这种薄片包括透明的平凸或非球面基片20。该基片20具有第一和第二主面。第二主面32基本上是平的,第一主面上具有许多的半球面或半非球面微透镜34阵列。选取的微透镜形状和底部薄片厚度须使入射到微透镜阵列的准直光大致聚焦在第二主面上。这种类型的薄片例如在美国专利No.5,254,390中有记述,目前有3M公司生产的名No.2600系列的3M保密卡接受器。
为生成图像,上述薄片的微透镜最好具有一成像折射表面,此成像折射表面通常是弯曲的。对于弯曲表面,微透镜最好具有均匀的折射率。使用其他具有梯度折射率(GRIN)的材料则无需采用弯曲表面来折射光线。本性上微透镜的表面最好呈球形,但非球形表面也可以使用。微透镜可以是对称的,如圆柱形或球形,只要通过折射表面可以形成实像。微透镜本身的形状可以是一个个分立的,如球形平凸镜头、球形双凸镜头、棒状、微球、珠状或圆柱形镜头。能用来制造微透镜的材料包括玻璃、聚合物、矿物、水晶、半导体和这些材料与其他材料的结合。也可以使用非分立折整体微透镜元件。因此,也可使用模制或压纹的方法(改变薄片表面的形状以得到重复的外形和成像特性)制造微透镜。
均匀的在可见光和红外波长范围内折射率为1.5-3.0的微透镜用途最广。合适的微透镜材料对可见光的吸收应尽量很小,在采用能量源使辐射敏感层成像的实施方案中,微透镜材料对能量的吸收也应尽量最小。不管微透镜是分立的还是复制的,也不管该微透镜是用什么材料制成的,微透镜的折射本领最好能使入射到折射表面的光线发生折射,并聚焦到微透镜的背面。具体的是,光线应聚焦到微透镜的背面或紧贴子微透镜的材料上。在材料层是辐射敏感的实施方案中,微透镜最好在该材料层的适当位置上形成缩小的实像。缩小大约100-800倍的图像特别适用于形成高分辨率的图像。在此节中先前引述的那些美国专利中,对具有必需聚焦条件的微透镜薄片结构进行了说明,该结构可使入射到微透镜薄片前表面的光能聚焦在最好是辐射敏感的材料层上。
最好使用直径在15到275微米之间的微球,但其他尺寸的微球也可以使用。通过使用在上述范围中较小直径的微球,可以获得高分辨率的合成图像,此时该合成图像显得与微球层间距较小;使用较大直径的微球也可获得高分辨率的合成图像,此时该合成图像显得与微球层间距较在。例如平凸形、圆柱形、球形或非球形的其他微透镜。若其镜头尺寸与所述微球的尺寸差不多,预计得到的光学效果也相似。
II.材料层如前文所述,有一材料层紧贴于所述许多微透镜。材料层可以具有高反射率——像在前文所述的某些微透镜薄片中使用的材料层一样,也可具有低反射率。当材料的反射率很高时,该薄片就具有如美国专利No.2,326,634中所述的逆反射特性。当观察者在反射光或透射光中观察时,在与许多微透镜相关连的上述材料中形成的一个个图像就会组成看起来悬浮在薄片上方、薄片平面上、和/或下方的合成图像。尽管可以使用其它方法,但形成上述图像的最佳办法是用辐射敏感材料作为此材料层,然后通过辐射来以所需方式改变该材料来形成图像。因而,尽管本发明没有限制,但紧贴在微透镜上的材料层的剩余问题将主要以辐射敏感材料层为例来进行讨论。
本发明中可使用的辐射敏感材料包括金属、聚合物、半导体材料和这些材料的混合物的涂层和薄膜。在本发明中,如果将材料暴露在一定强度的可见光或其他幅射的照射下,该材料的曝光表面与未暴露在辐射下的材料表面相比发生改变,具有对比,那么这种材料就是“辐射敏感”的。由此形成的图像可以是组成变化、材料去除或烧蚀、相变或辐射敏感涂层发生聚合的结果。辐射敏感金属薄膜材料的例子包括铝、银、铜、金、钛、锌、锡、铬、钒、钽和这些金属的合金。这些金属的天然颜色和经辐射暴光后改变的颜色之间的差异一般形成了对比。如前文所述,也可以采用烧蚀或辐射加热材料的方法,直到该材料的光学性质发生变化来产生图像。例如,美国专利4,743,526中记述了加热金属合金来产生颜色改变的方法。
除金属合金外,金属氧化物和金属低氧化物也可以用作辐射敏感介质。这类材料包括铝、铁、铜、锡和铬形成的氧化物。诸如硫化锌、硒化锌、二氧化硅、氧化铟锡、氧化锌、氟化镁和硅等非金属材料也可产生对本发明有用的颜色对比。
也可采用多层薄膜材料来制得特殊的辐射敏感材料。这些多层材料的结构可以因出现或去除一种颜色或因对比剂而产生对比的改变。具有代表性的结构包括能在特定波长光线的照射下成像(例如通过颜色的改变)的光学组合件和调谐空腔。其中一个具体的例子是美国专利No.3,801,183中提出的使用冰晶石/硫化锌(Na3AlF6/ZnS)作为介质镜。另一个例子是采用由铬/聚合物(如等离子聚合丁二烯)/二氧化硅/铝组成的光学组合件,铬层的厚度在4nm左右,聚合物层的厚度在20-60nm之间,二氧化硅层的厚度在20-60nm之间,铝层的厚度在80-100nm之间,且选取的各层厚度要使特定的颜色反射率落在可见光谱内。薄片调谐空腔可使用前文所述的任何单层薄膜。例如,对于由大约4nm厚的铬层和厚度大约在100nm-300nm之间的二氧化硅层构成的调谐空腔,需调节二氧化硅层的厚度,使得在特定波长光线的辐照下产生有色图像。
本发明适用的辐射敏感材料也包括热致变色材料。“热致变色”是指当材料经受发生温度变化时,其颜色发生变化。可在本发明中使用的热致变色材料的例子在美国专利No.4,424,990中有记述,它们包括碳酸铜、混有硫脲的硝酸铜、含硫化合物诸如硫醇、硫醚、亚砜和砜与碳酸铜的混合物。其他适合用作热致变色化合物的例子在美国专利No.4,121,011中有记述,其中包括硼、铝和铋的水合硫酸盐与氮化物,硼、铁和磷的氧化物与水合氧化物。
当然,如果材料层不准备使用辐射源下来成像的话,那么该材料层可以是,但并不需要是辐射敏感材料。最好能采用简单的方法制造出辐射敏感材料,然而,也要使用合适的辐射源。
III.辐射源如前文所述,在紧贴微透镜的那个材料层上产生图像图案的最好方式是采用辐射源使辐射敏感材料成像。本发明方法可使用任何能产生所需强度和波长幅射的能源,尤其需要使用能产生波长在200nm至11μm之间的辐射的设备。本发明可使用的高功率峰值的辐射源包括受激准分子阀光灯,无源Q开关微芯片激光器,和Q开关掺钕钇铝石榴石(缩写为Nd:YAG)、掺钕氟化钇锂(缩写为Nd:YLF)和掺钛蓝宝石(缩写为Ti蓝宝石)激光器。这些高功率峰值辐射源大多用于通过烧蚀——材料的去除或在多光子吸收过程中成像的辐射敏感材料。还可使用提供低功率峰值的设备作辐射源,包括激光器二极管、离子激光器、非Q开关固态激光器、金属蒸汽激光器、气体激光器、弧光灯和高功率白炽光源。当辐射敏感介质采用非烧蚀方法成像时,这些辐射源尤其有用。
对于所有适用的辐射源,其辐射的能量都指向微透镜薄片材料,并控制形成高度发散的辐射束。对于电磁波频谱的紫外、可见和红外区的能源,如图14、15和16所示的例子,可通过适当的光学元件控制光线,下文对此有更详细的说明。在一个实施方案中,需要对一些光学元件进行排列——通常称为光学组合件,采用此光学组合件将适当发散或分散的光线导向薄片材料,对微透镜进行照射,进而以所需的角度照射到材料层上。要得到本发明所述的合成图像,最好采用大于等于0.3数值孔径(定义为最大发散射线的半角的正弦)的光线发散装置。具有较大数值孔径的光线发散装置产生的合成图像有较大的观察角,图像的表观移动范围也更大。
IV.成像过程依照本发明,典型的成像过程包括将本身激光器通过透镜的准直光光射向微透镜薄片。为了使薄片产生悬浮图像,如下文进一步所述,需使该光线透过具有高数值孔径(NA)的发散透镜,以产生高度发散的锥形光束。高数值孔径透镜是数值孔径等于大于0.3的透镜。将微球的辐射敏感涂层置于远离该透镜的地方,使锥形光束的轴线(光轴)垂直于微透镜薄片的几何平面。
因为相对于光轴,各个微透镜占据一个特定的位置,所以入射到每一个微透镜上的光线相对于入射到其他微透镜上的光线,具有物定的入射角。这样,上述光线会透过每一个微透镜,到达材料层上一个特定的位置,并产生特定的图像。更精确地说,单个光脉冲在材料层上只产生一个成像点,因此为了在紧贴每一个微透镜处产生图像,需要使用多脉冲光线由多个成像点形成图像。对于每一个脉冲,其光轴相对于上一个脉冲期间的光轴位置在一个新的位置。光轴位置相对于微透镜的这些连续变化引起光线在每一个微透镜上的入射角的相对变化,相应地,由该脉冲在材料层上形成的成像点的位置也发生变化。结果,聚焦在微球后方的入射光在辐射敏感材料层上产生一个所选图案的像。因为相对于每一个光轴,每个微球的位置是特定的,所以每个微球在辐射敏感材料上形成的像与其他每个微球形成的像是不同的。
形成悬浮的合成图像的另一种方法是使用透镜阵列来产生高度发散的光线,从而使微透镜材料成像。所述透镜阵列是由许多高数值孔径的微小透镜排列成平面几何图形组成的。当用光源照明此透镜阵列时,该阵列会产生许多高度发散的锥形光束,每一个单独的锥形光束汇集在透镜阵列中相应的透镜上。选用的透镜阵列的实际尺寸要能容纳合成图像的最大横向尺寸。依靠阵列的尺寸,通过透镜形成的一个个锥形光能会使微透镜材料曝光,就象一个个透镜依次置于阵列的所有点上来接收光脉冲一样。通过使用反射性掩模来选择接收入射光的透镜。这个掩模上具有对应于要进行曝光的合成图像的部分的透明区域;而在相应于不欲曝光的部分为反射区域。由于透镜阵列具有横向宽度,因此无需使用多重光脉冲来成像。
通过用入射光能对掩模完全照明,掩模上允许光能透过的部分会形成许多单个的高度发散的锥形光束,从而形成悬浮图像的轮廓,就好像该图像是由一个单独的透镜成像一样。结果,只需一个光脉冲就可在微透镜薄片上形成整个合成图像。或者不使用反射性掩模,可使用光束位置调节系统(如电流XY扫描器)来局部照明透镜阵列,并在该阵列上描绘出合成图像。因为在此技术中的光能是空间局域化的,所以在任何给定时间,透镜阵列中只有一些透镜被照明。那些被照明的透镜会产生高度发散的锥形光束,使微透镜材料曝光,从而在薄片中形成合成图像。
透镜阵列本身可以由许多个分立的微透镜制成,或采用腐蚀工艺制成整体透镜阵列。适合制作透镜的材料是那些对入射波长的光能不吸收的材料。在透镜阵列中的一个个透镜最好具有大于0.3的数值孔径,以及大于30微米且小于10毫米的直径。上述阵列可以有抗反射涂层,用以减少会对透镜材料产生内部损伤的背反射效应。此外,也可以使用具有有效负焦距和与该透镜阵列相当尺寸的许多单个透镜来增强离开阵列的光的发散性。在整体阵列中,选用的单个微透镜的形状需具有高数值孔径和约大于60%的高填充因子。
图4是入射到微透镜薄片的发散能量示意图。对于各个微透镜,在其上或其中形成图像I的材料层的各个部分不同,因为各个微透镜从不同的观察角“看到”入射的光线。这样,通过每一个微透镜在材料层上形成一个特定的图像。
成像以后,根据三维实物的尺寸情况,会在每一个微透镜后面的辐射敏感材料上出现该实物的完整或局部图像。实际物体在微透镜后面所形成的图像的范围取决于入射到该微透镜上的光能强度。三维实物的有些部分可能距离微透镜区相当远,致使入射到那些微透镜上的光能的强度低于使材料发生改变所需的辐射强度。而且,对于间阀上的立体图像,当采用数值孔径固定不变的透镜成像时,对三维实物的所有部分,并不是薄片的所有部分都暴露于入射光线的照射。结果,相对于实物那些部分的辐射敏感介质不发生改变,在微透镜后面只出现该实物的部分图像。图5是微透镜薄片一部分的透视图,该图显示在紧贴一个个微透镜的辐射敏感层上形成的样品图像,并进一步显示所记录的从合成图像的完全复制到部分复制的图像。图6和图7是本发明的成了像的微透镜薄片的光学显微微照片,该薄片中的辐射敏感层是铝层。如图所示,一些图像是完整的,其他则是局部的。
这些合成图像也可以认为是许多局部和完整的图像——即实物的所有的不同透视图叠加在一起的结果。这许多特定的图像是通过微透镜的阵列形成的,所有的这些微透镜从不同的有利位置“看到”该实物或图像。在每一个微透镜后面的材料层上形成的图像透视图取决于图像的形状和材料层接收到的成像光线的辐射方向。然而,并不是透镜看到的任何东西都能记录在辐射敏感材料上。只有被透镜看到并有足够能量改变辐射敏感材料的图形或实物部分才能被记录下来。
在强光源的辐射下,将“实物”的轮廓映射下来或通过使用掩模来使“实物”成像。为使这样记录下来的图像具有合成示像,从实物上射出的光线需具有宽范围的发射角。当从实物上发射的光线是从实物的单个点上射出,并具有宽范围的发射角度时,所有的光线都携带着该实物的信息——但只是那一点的信息,尽管该信息是从上述光线的角度透视得到的。现在考虑,为了获取关于该实物的较为完整的由光线携带的信息,光线需要从构成实物的许多点的集合上以宽范围的角度发射出去。在本发明中,从实物上发射出来的光线的角度范围是由置于该实物和微透镜材料之间的光学元件控制的。这些光学元件是用来提供产生合成图像所必需的最佳角度范围。选用最好的光学元件,可使锥形光束的锥形顶点落在实物的位置上。最佳的锥角约大于40度。
用微透镜对实物进行缩小,从实物上发射出的光线聚焦在靠微透镜后面的能量敏感涂层上。焦斑的实际位置或在透镜后部所成图像的实际位置取决于从实物上发射出来的光线的入射方向。从实物的一点上发射出来的每个锥形光束照明着许多微透镜中的一部分,只有被足够强度的光照明的这些微透镜才会永久记录下实物在那点的图像。
可用几何光学来说明本发明各种合成图像的形成。如前所述,以下讲述的成像过程是本发明中较好的实施方案,但不代表所有实施方案。
A.形成悬浮于薄片上方的合成图像如图8所示,入射能量100(本实施例中是光)射入光漫射器101,使本身光源的光中的不均匀性均匀化。用光准直仪捕获漫射的散射光并使其平行,向发散透镜105a发射均匀的分布式光线100b。从发散透镜透过的光线100c发散射向微透镜薄片106。
单个微透镜111将射入微透镜薄片106上的光线能量聚焦在材料层(在图示的实施方案中为辐射敏感涂层112)上。这个聚焦的能量使辐射敏感涂层112发生变化,从而产生图像。该图像的尺寸、形状和外观取决于光线和辐射敏感涂层之间的相互作用。
图8所示的装置会使薄片产生一合成图像,如下文所述,观察者看到的该合成图像悬浮于薄片上方。这是因为如果将发散光线100c穿过透镜向后延长,会相交在发散透镜的焦点108a上。换句话说,如果假想的“成像光线”从材料层经过每一个微透镜发射返回并透过发散透镜,那么它们会在点108a相交,该点就是合成图像出现的位置。
B.观察悬浮于薄片上方的合成图像要观察形成合成图像的薄片时,采用从观察者相同方向上射到薄片的光(反射光),或从观察者背面方向上射到薄片的光(透射光),或两种情况兼有。图9是当在反射光下观察时,用观察者A的肉眼看到的悬浮于薄片上方的合成图像的示意图。肉眼可以校正到正常视力,但不能用诸如放大镜或特殊观察器等其他方法作辅助。当用反射光(可以是准直的或漫反射的)照明成像薄片时,光线会从成像薄片反射回来,其反射回来的方式取决于被光线照到的材料层。根据定义,在材料层中形成的图像看起来与材料层上非成像的部分不同,这样就可以看到图像。
例如,光线L1会被材料层反射回观察者方向。然而,材料层可能不能完全将光线L2由该材料层上的已成像部分反射回观察者,或者一点反射也没有。这样,观察者会看到在108a处光线的缺失,这些光线叠加后,在108a处会显示悬浮于薄片上方的合成图像。简而言之,光线会从成像部分以外的整个薄片上发生反射,即在108a处会出现相对较暗的合成图像。
也可能是未成像的材料部分吸收或透过入射光,相应地已成像的材料部分会反射或部分吸收入射光,从而产生形成合成图像所需的对比效应。在上述情况下形成的合成图像相对较亮,而薄片的其余部分与之相比则较暗。这种合成图像被称为“实像”,因为它是由实际存在的光线——而不是虚幻的光线在焦点108a处产生的图像。可根据需要选用上述可能的各种组合。
也可以用透射光线观察某些成像薄片,如图10所示。例如,当材料层的已成像部分是透明的,而未成像的部分不透明时,大多数光线L3会被材料层吸收或反射,而透射光线L4会穿过材料层的已成像部分,并通过微透镜射向焦点108a。在焦点处会出现合成图像。在本实施例中,该合成图像与薄片的其余部分相比较亮。这种合成图像被称为“实像”,因为它是由实际光线——而不是虚幻光线在焦点108a处形成的像。
此外,如果材料层的已成像部分不是半透明的,而材料层的其余部分是半透明的,那么在图像区域内没有透射光,会使形成的合成图像与薄片的其余部分相比显得较暗。
C.形成悬浮于薄片下方的合成图像在与观察者相背的薄片的面上也可以形成悬浮的合成图像。通过使用会聚透镜来代替图8所示的发散透镜105,就可以形成悬浮于薄片下方的悬浮图像。如图11所示,入射能100(本实施例中是光)射向光漫射器101,使来自光源的光中不均匀性均匀化。然后用准直仪102收集这种漫射光线100a并使其平行,向会聚透镜105b投射光线100b。从会聚透镜透过的光线100d入射到位于该会聚透镜和该会聚透镜的焦点108b之间的微透镜薄片106上。
一个个微透镜111将入射到微透镜薄片106上的光线能量聚焦在材料层(在图示的实施方案中为辐射敏感材料涂层112)上。这个聚焦的能量会改变辐射敏感涂层112,从而产生图像。该图像的尺寸、形状和外观取决于光线与辐射敏感涂层之间的相互作用。图11所示的装置会使薄片产生合成图像,且如下文所述,观察者看到的该合成图像悬浮于薄片下方。这是因为如果将会聚光线100d延长透过薄片,则会相交在会取透镜的焦点108b上。换句话说,如果假想的“成像光线”从会聚透镜105b发射出来,然后通过每一个微球,并通过每一个微透镜在材料层上所成的像,那么它们就会在点108b相交,该点就是合成图像出现的位置。
D.观察悬浮于薄片下方的合成图像具有看似悬浮于薄片下方的合成图像的薄片,可在反射光或入射光或两者兼有的光线中对其观察。图12是当在反射光下观察时,看似悬浮于薄片下方的合成图像的示意图。例如,材料层会将光线L5反射返回朝着观察者方向。然而,材料层可能不能将光线L6由该材料层上的已成像部分完全反射返回朝着观察者方向,或者一点反射也没有。这样,观察者会看到在108b处光线的缺失,这些反射的光线叠加后,在108b处会产生显示悬浮于薄片下方的合成图像。简而言之,光线会从除成像部分以外的整个薄片上发生反射,即在108b处呈现出相对较暗的合成图像。
也可能是未成像的材料部分吸收或透过入射光,相应地已成像的材料部分会反射或部分吸收入射光,从而产生形成合成图像所需的对比效应。在上述情况下形成的合成图像会呈现出相对较亮的图像,而薄片的其余部分与之相比则较暗。可根据需要选用上述各种可能的组合。
也可以用透射光线观察某些成像薄片,如图13所示。例如,当材料层上的已成像部分是透明的,而未成像的部分不透明时,大多数光线L7会被材料层吸收或反射,而透射光线L8会穿过材料层的已成像部分。将那些透射光线(此处称为“成像光线”)向入射光的反方向延伸,就会在108b处形成合成图像。在焦点处会出现清晰的合成图像,在本实施例中的合成图像与薄片的其余部分相比较亮。
此外,如果材料层上的成像已部分不是半透明,而材料层的其余部分是半透明的,那么在图像区域内没有透射光,会使形成的合成图像与薄片的其余部分相比显得较暗。
E.复合杂图像根据本发明原理形成的合成图像可以显示是二维的——即具有长和宽,且在薄片的下方或上方或薄片平面上;或者是三维的——即图像具有长、宽和高。三维的合成图像只能在薄片的下方或上方出现;或是根据需要,出现在薄片下方、薄片平面和薄片上方的任意组合位置上。术语“在薄片平面上”通常仅指将薄片展平后的薄片平面。也就是说,不平展的薄片也可以形成合成图像,该图像至少看似部分位于此处所使用意义的短语——“在薄片平面上”。
三维合成图像不是出现在一个焦点上,而是在连续许多个焦点上形成的图像的组合。这些焦点的范围可从薄片的一侧到达薄片,或穿过薄片到达薄片另一侧上的点。最好通过连续移动薄片或光源来改变两者的相对位置(优于使用许多个不同透镜的方法),使材料层在多个焦点处成像来获取三维图像。由此得到的空间上复杂的图像主要由许多单个的点组成。相对于薄片平面,该图像在三维笛卡儿座标的任一方向上都有空间范围。
在另一种成像效果中,可以使合成图像移入微透镜薄片的一个区域内而消失不见。这种类型图像的形成有点类似于悬浮图像的例子,外加将不透明的掩模与微透镜材料相接触,以部分阻挡射向局部微透镜材料的成像光线。当观察这种图像时,可将图像移入成像光线被接触掩模减少或消除的区域。这样图像看起来就在那个区域内“消失”了。
依据本发明形成的合成图像具有非常宽的观察角,即观察者可以在薄片平面和观察轴线之间的宽角度范围内看到合成图像。在使用由单层平均直径约为70-80微米的玻璃微球组成的微透镜薄片,并使用数值孔径为0.64的非球体透镜时所形成的合成图像,可在圆锥形视界中看得见。该圆锥形视界的中心轴取决于入射能量的光轴。在环境光照下,依照上述条件形成的合成图像在大约80-90度全角度的锥形面内都能看见。使用发散性较小或数值孔径较低的成像透镜会形成较小的半角锥形。
按照本发明方法形成的图像也可以具有受限的观察角。换句话说,该图像只有在一特定的方向——或该方向的较小角度范围中才能看到。在这种图像的形成过程中,入射到末端非球形透镜上的光线被调节到只有部分透镜被激光辐射照射,除此以外,其成像过程类似于下文实施例1中所述的方法。入射光能量对透镜的局部照射致使受限的锥形发散光束入射到微透镜薄片上。对于铝涂层的微透镜薄片,只有在受限的观察锥角内才能看到暗灰色的合成图像和亮灰色的背景。该图像相对于微透镜薄片看似是悬浮的。
实施例本发明将进一步通过以下一些实施例进行说明。为方便起见,可结合某些附图。
实施例1本实施例为含有铝材料层的嵌入式透镜薄片,其合成图像悬浮在该薄片的上方。使用图14所示的光学系统来形成悬浮的像。该光学系统中包括由美国Spectra Physics公司生产的Quanta-RayTMDCR-2(10)型号的Nd:YAG激光器300。该激光器在1.06微米的基波波长处以Q开关的模式运作。该激光器的脉冲宽度通常为10-30毫微秒。从激光器发射出来的光能经99%反射率的转镜302、磨砂玻璃漫射器304、5倍的光束扩展望远镜306和数值孔径为0.64、焦距为39.0毫米的非球面透镜308而改变方向。从非球面透镜308射出的光射向XYZ镜台310。该镜台是由三个线性镜台组成,它是由美国宾西法尼亚州匹兹堡市的Aerotech公司生产的名No.ATS50060的商品。一个线性镜台用来使非球面透镜沿着非球面焦点和微透镜薄片(即z轴)之间的轴线移动,另外两个镜台能使薄片沿着两条相互正交的水平轴线,相对于光轴移动。
激光射向磨砂玻璃漫射器,以便消除热聚焦造成的光束不均匀性。一接近漫射器,5倍光束扩展望远镜306就会使漫射器射出的发散光线平行,并扩展该光束,使其照射在整个非球面透镜308上。
在本实施例中,将非球面透镜放置在XYZ镜台的XY平面的上方,使得透镜的焦点位于微透镜薄片312的上方1厘米处。使用由加拿大魁北克省Saint-Fey市的Gentec公司生产的ED500型号的带有机械掩模的有孔能量计,用来控制薄片平面上的光能强度。调节激光的输出,使其照射在距离非球面透镜的焦点1厘米处的能量计时,在照明面积上大约为每平方厘米8毫焦耳(8mJ/cm2)。将一个带有80nm厚的铝辐射敏感层的嵌入式透镜薄片312固定在XYZ镜台上,并使铝层涂面背向非球面透镜308。
使用由美国宾西法尼亚州匹兹堡市的Aerotech公司生产的名No.U21的控制器产生所需的控制信号用来移动XYZ镜台,并控制激光器300的脉冲电压。通过向控制器输入x-y-z坐标数据、移动指令和成像所需的激光器发射指令的CAD文件来使镜台移动。通过调整X、Y和Z镜台的移动和用于在微透镜材料的上方空间形成图像的激光的脉冲来产生任意复杂的合成图像。对于脉冲速率为10Hz的激光,镜台的移动速度调整到50.8厘米/分钟。这样就会在邻近微透镜的铝层上形成连续的合成线条。
当在环境光线下观察此微透镜薄片时,图像在亮灰色背景的对照下呈暗灰色。当焦点和嵌有微球的薄片表面之间的间隔固定为1厘米时,得到的图像是在薄片上方大约1厘米处看似悬浮着的二维合成图像。而且,该合成图像可随着观察者的观看角度的变化而出现相当大的移动,因此观察者可以通过改变观察角很容易地观看合成图像的不同方位。
实施例2在本实施例中,使用带有透明反射镜辐射敏感层的外露式透镜薄片结构,以形成看心悬浮于微透镜薄片下方的合成图像。在实施例1中使用的光学系统也可在本实施例中使用。相对于非球面透镜308放置微透镜薄片,使该透镜几乎与微透镜薄片相接触。将激光器输出调整到在非球面透镜正下方获得大约14mJ/cm2。此外露式透镜薄片含有局部嵌入的、如美国专利3,801,183所述的微球,在微球的一面介质镜蒸汽沉积的硫化锌(ZnS)。ZnS层的标称厚度为60nm。与实施例1中一样,当薄片以50.8厘米/分钟的速度移动时,在10Hz脉率下运行的激光器会在微透镜薄片上形成连续的合成线条。通过镜台系统可以形成一个“球状”图案(具有四个内切弧的圆)。
在环境光线下,上述球体在白/黄色背景的对照下显现出浅黑色的图像。该浅黑色的合成图像显示悬浮在薄片下方大约39毫米处。合成图像的位置对应于非球面透镜的焦点位置。本实施例中此焦点位置在透镜后面大约39毫米处。
实施例3本实施例是使用透镜阵列来代替单个的非球面透镜,在具有铝辐射敏感层的外露式透镜薄片上形成合成图像。使用如图15所示的类型的光学系统来形成悬浮的合成图像。该光学系统由Q开关激光器300、99%反光镜302、光学漫射器304和光束扩展望远镜306组成。本实施例中使用的光学系统的各元件与实施例1中所述的那些元件完全相同。本实施例中的光学系统还包括一个二维透镜阵列407、反射掩模409和双凹面负透镜411。反射掩模409上相对于微透镜材料412区域的那部分是透明的,从而使微透镜材料暴露在激光辐射下;而遮光框的其他部分的表面则不透明或反射光线。
透镜阵列407是由美国阿拉巴马州汉斯维尔市的MEMS Optical,LLC公司生产的3038型号的熔凝石英折射微透镜阵列组成。将这个密填的球面透镜阵列放置在与直径为75毫米、焦距为负150毫米的双凹面负透镜411几乎相接触的位置。将涂有80nm厚的铝辐射敏感层的外露式透镜薄片412放置在距离双凹面负透镜411的25毫米以内。将微透镜材料放置在距离微透镜阵列和双凹面负透镜的合成光径焦距大约1厘米处。调节激光器的输出,使其在微透镜薄片的外露式透镜表面上产生约为4mJ/cm2的能量。激发单个脉冲曝光产生整个图像。
当在环境光线下观察得到的已成像微透镜薄片时,会在该薄片上方大约1厘米处显示出悬浮的像。该图像在亮灰色背景的对照下呈暗灰色。
实施例4在本实施例中,由散射源发出的光线经反射后得到发散光源。该散射反射体由直径大约为5毫米的陶瓷珠子组成。在本实施例中使用图16所示的类型的光学系统。它包括与实施例1中所述激光器相似的Q开关Nd:YAG激光器500,还有用来缩小入射激光束尺寸至大约1毫米直径的望远镜502。然后将光线以充分偏离法线的某个角度入射到陶瓷珠子504上,使其照明面向微透镜薄片512的陶瓷珠子504的半球的大约四分之一。可以通过红外摄像机观察散射辐射来加以证实之。
将陶瓷珠子504放置在距XY镜台510上方大约25毫米远的位置。调整激光器发射的入射光线,使其与样品镜台平行。将含有80nm厚铝辐射敏感层的嵌入式透镜薄片512固定在XY镜台510上,并使用控制器来对镜台和激光器输送控制信号。调节激光器的输出,使其在微透镜薄片的表面上达到大约8mJ/cm2。调节陶瓷珠子504的照度,使微透镜薄片512的表面暴露在最均匀的光线下。激光脉冲为10Hz时,XY镜台510的移动速度为50.8厘米/分钟。当微透镜薄片暴露在由陶瓷反射器发出的散射光线下时,镜台就会记录下复杂图像的轮廓。
在环境光线下,合成图像悬浮在薄片上方大约25毫米处,并在亮灰色背景的对照下呈现暗灰色。该图像相对于观察者的观察位置可以产生大范围的移动。在透射光线下,可观察到明亮的合成图像悬浮在薄片上方大约25毫米处。
实施例5在本实施例中,一嵌入式透镜薄片的材料层由多层光学叠片组成。调整该材料层的性能使其在可见光谱中呈现特定的颜色。采用真空蒸发和等离子聚合作用,将薄膜层沉积在微透镜薄片的一个表面上。该薄膜层依次由铬/等离子聚合丁二烯/二氧化硅/铝组成,其铬层紧贴嵌入式透镜。调节各单层材料的厚度,以得到颜色为可见光谱的红、绿和蓝色。表1为制备的各单层材料的具体厚度。
表1多层结构
然后,将以涂层微透镜为底基的薄片叠压在一背衬上使其相互接触。然后克石灰石的25wt%的浆液,从而将酸度中和至pH1.7。最终的浸出液中含2g/L H2SO4、5.8g/L Ni、4.3g/L Fe(包括3.3g/L Fe2+)、18.8g/L Mg和0.20g/L Co。浸取残余物的重量是413克。表7中列出了进料、残余物的组成和浸取过程的提取率。
表7实施例6的结果
实施例7用饮用水分别制备低镁含量矿石(Mg wt%<6,如褐铁矿)的浆液和高镁含量矿石(Mg wt%>8,如腐泥土)的浆液。腐泥土的铁含量是11wt%。褐铁矿浆液和腐泥土浆液的固体含量分别是20wt%和25wt%。在这个实验中,在常压和温度为95-105℃的条件下,将1001克褐铁矿浆液与286g98wt%的硫酸在反应器中混合2.5小时。浸出液中含28g/L H2SO4、2.6g/LNi、74g/L Fe、1.9g/L Mg和0.20g/L Co。通过加入不含钠的亚硫酸盐将氧化还原电位控制在835-840mV(SHE)。当酸度稳定在28g/L H2SO4左右之后,向反应器中连续加入720克腐泥土浆液和40克含针铁矿的晶种。这个实验中硫酸/褐铁矿、腐泥土/褐铁矿和硫酸/(褐铁矿+腐泥土)的重量比分别是1.40、0.90和0.74。在95-105℃和常压下,将浸取腐泥土和铁沉淀反应进行10小时。无需加入不含钠的亚硫酸盐,氧化还原电位为720-800mV(SHE)。浸出液中含11g/L H2SO4、4.3g/L Ni、14.8g/L Fe、16.6g/L Mg和0.16g/L Co。最后在95-105℃和常压下,向反应器中加入含80克石灰石的25wt%的浆液,从而将酸度中和至pH1.7。最终的浸出液中含1.7g/L H2SO4、4.3g/L Ni、2.1g/L Fe、17.3g/L Mg和0.16g/L Co。浸取残余物的重量是381克。表8中列出了进料、残余物的组成和浸取过实施例1中所述的光学系统也在本实施例中用来成像。在本实施例中,将末端非球面透镜放置在几乎与样品接触的位置上,使形成的合成图像悬浮在薄片上方。对激光能量进行调整,使其能量密度能永久改变表2中所示的各个多层叠片的光学特性。此在材料描绘出的文字字符“SAMPLE”的图像的方式与实施例1中所述的方式相似。在环境光照下,该合成图像在微透镜薄片的背景颜色的对照下呈现暗色,其轮廓线为白/黄色。所有的合成图像都显示悬浮在薄片下方大约39毫米处,并随观察者对薄片观察角的变化而移动。
实施例7在本实施例中,采用银原子百分数为50与锌原子百分数为50的一种相变合金(Ag50Zn50),由铬和二氧化硅组成的调谐双层叠片作为辐射敏感层,在嵌入式透镜薄片上形成彩色的合成图像。使用的辐射光不会使该相变合金烧蚀,而调谐双层叠片提高在可见电磁波谱中的蓝色部分的光谱反射系数。辐射敏感层沉积在封闭式透镜薄片的间隔层上,其沉积方式与实施例5中将多层叠片的薄片层沉积以微透镜为底基的薄片上的工序相似。首先,分别将铬层和二氧化硅层真空沉积在聚合物间隔层上,使其厚度分别为40nm和260nm。接下来,在二氧化硅层上溅射一层80nm厚的Ag50Zn50合金。然后将该样品叠置起来,然后剥离使微透镜薄片的透明部分曝光。
在环境(反射)光线下观察时,上述薄片呈蓝紫色。使用与实施例1中相似的光学系统来使Ag50Zn50辐射敏感层成像。使用发射1.06微米波长光线的连续波Nd:YAG激光器代替Q开关激光器作为光源。在光学系统中使用声光调制器来控制脉冲宽度。发射一级衍射光束,使其穿过图14所示类型的光学系统。将以封闭式透镜薄片样品固定在XYZ镜台上。调节输入声光调制器的激光能量,使其在微透镜材料上的能量为810毫瓦。将声光调制器设置为100微秒脉冲宽度时脉冲为10Hz。将如实施例1中所述的非球面正透镜放置在距离微透镜材料表面上方12毫米处。当辐射敏感层暴露在激光辐射下,用XYZ镜台就可形成图像。
当在环境光照下观察薄片时,成像区域呈亮绿色,并悬浮在微透镜薄片上方大约12毫米处。
实施例8在本实施例中,使用含有铜辐射敏感层的复制式透镜结构作为微透镜薄片。使用在美国专利No.5,254,390文中所述的复制式类型的薄片作为微透镜的薄片。采用真空蒸发工艺,使80nm厚的铜辐射敏感层沉积在上述薄片的平坦表面上。将微复制式微透镜材料暴露在如实施例1所述的光学装置发射的激光辐射下。将末端非球面透镜放置在距离微透镜材料表面6.5毫米处的焦点上。调节激光器的输出,使激光在薄片表面的能量密度大约为7mJ/cm2。当XYZ镜台的移动速度为50.8厘米/分钟时,将激光脉冲设置为10Hz。在样品上方形成一个“球体”图形(具有四个内切弧的圆)。
当在环境光照下观察该薄片时,在铜色辐射敏感层的对照下可以看到悬浮球体的发白的图像。该合成图像显示悬浮在薄片上方大约6毫米处。
实施例9本实施例描述平面合成图像的结合,该合成图像显示悬浮于薄片下方。使用在实施例1中所述的光学系统,使含有80nm厚铝辐射敏感层的外露式微透镜薄片成像。将非球面透镜放置在几乎接触到微透镜薄片的位置上,调节激光器的输出,使其在样品表面产生4mJ/cm2的能量密度。对控制器进行编程,以便开成一文字字符“SAMPLE”的图形。将一个吸收性掩模放置在开敞式薄片的顶部。通过采用普通影印机,在透明薄片上印刷成排的文字字符“SAMPLE”的方式制得上述掩模。文字字符吸收激光辐射,而周围区域则透过激光辐射。放置具有这种吸收性掩模的外露式透镜薄片,使得形成的“SAMPLE”字符位于掩模位置顶部的上方。
当在环境光照下观察时,字符“SAMPLE”显示悬浮在薄片下方大约39毫米处,而未曝光的字符“3M”则显示在薄片平面上。只有在“SAMPLE”字符形成的暗色字符图像的对照下才能观察到“3M”字符。
实施例10本实施例是能形成复杂的三维图像的薄片。在本实施例中使用含有80nm厚的铝辐射敏感层的嵌入式微透镜薄片。使用在实施例1中使用的光学系统。将微透镜薄片粘贴在XYZ移动镜台的XY平面上,而将非球面透镜粘贴在Z轴上。该非球面透镜的数值孔径为0.64,焦距为39毫米。对控制器进行编程,使其产生一个对角线(立方体上两个对角之间的距离)为5厘米长的等比例立方体轮廓。该立方体的相对位置和取向,如控制器中编制所决定的,其合成立方体图像的一个端点距离薄片表面上方大约5毫米处,而该合成立方体图像的另一个端点距离该表面上方大约5.5厘米处。对立方体图像进行取向,使该立方体的一角最靠近观察者。
在形成等比例立方体图形的过程中,控制激光器每个脉冲的能量,使其不管发散透镜和薄片之间的间隔有多大,都要在样品表面上产生8mJ/cm2的恒定的能量密度。激光器在10Hz下运作,X、Y和Z镜台的移动速度为50.8厘米/分钟。通过控制器在微透镜薄片上方的空间连续形成等比例立方体的图形。
当在环境光照下观察时,在亮灰色背景的对照下,形成的等比例合成立方体图像呈暗灰色,它显示悬浮在薄片表面上方5毫米至5.5厘米之间。而且,当观察者改变观察角时,等比例立方体在微透镜薄片的上方呈现在空间中旋转,使一些先前在不同观察角下看起来模糊的立方体表面暴露在光线中。
实施例11本实施例是其悬浮图像能消失消失的情况。即通过改变观察角,该合成图像可以消失或重新被观察到。使用含有80nm厚的铝辐射敏感层的嵌入式透镜薄片。用来成像的光学系统与实施例1中的相似。调整非球面透镜到薄片之间的距离,使焦点位于微透镜薄片上方1厘米处。对控制器进行编程,以产生“球体”图形(具有四个内切弧的圆)。并调整激光器的输出,使其在样品表面产生8mJ/cm2的能量密度。在样品本身上,将半透明胶带的一个方形部分粘贴在嵌入式透镜薄片上。放置该方形的胶带部分是为了在球体的成像过程中,使受到激光辐射的成像区域的一部分与半透明带胶覆盖的部分发生重叠。
当在环境光线下观察成像薄片时,观察到的悬浮的球体图形在亮灰色背景的对照下呈暗灰色,且显示悬浮在薄片上方1厘米处。通过改变观察角,上述“球体”就会移入或移出半透明胶带遮盖的区域。当球体移入遮盖区域时,在该区域的球体的部分就看不见了。当球体移出上述遮盖区域时,在该区域的球体的部分又再次出现。在合成图像移入遮盖区域的过程中,该合成图像不仅仅是逐渐消失,而是在移入遮盖区域时,刚好完全消失。
形成本发明的有合成图像的成像薄片与众不同,而且在普通设备上不可能复制。可以在具有特定用途——诸如用于护照、身份证、钞票、鉴定图、信用卡的薄片上形成合成图像。需要查核的文件会在层状薄片上形成这些图像,用来辨别、确认和保证该文件真实性。可以使用诸如叠压——含有或不含粘合剂的传统结合方式。例如所有电子产品、激光唱盘、驾驶执照、红头文件、护照或贴有商标的产品等有价物品的供应者,只要将本发明所述的多层膜片施加在他们的产品上,并指导他们的顾客只购买如此标示的可信的商品。对于需要这些保护的产品,可以通过将产生合成图像的薄片纳入到它们的结构中去,或通过将上述薄片粘贴在产品上,就能达到加强保护的作用。该合成图像可用于广告、牌照等展示材料上,并可用于需要一个特定图像来形象表示的众多其他用途的展示材料。当在广告或诸如标语、布告板或半拖车等大型物体的信息展示中使用该合成图像时,可增强人们对该信息的关注。
无论是在环境光线下、透射光线下或在使用逆反射薄片时的逆反射光线下,能产生合成图像的薄片具有非常突出的视觉效果。该视觉效果可用来作为装饰,以美化粘贴有上述成像薄片的物品的外表。这种饰品能传达一种强烈的风格和时尚感,并能以引人注目的方式表现设计者的标志或品牌。可以看到,将上述薄片用于装饰的例子包括在诸如便服、运动服、设计师服装、外套、鞋袜、便帽、礼帽、手套等服饰衣服上使用。类似地,在流行的附件上可以使用此成像薄片,以达到装饰、吸引人们注意和商标辨认的目的。这些附件包括女用手提包、皮夹、公文包、背包、挎包、电脑机箱、皮箱、笔记簿等。上述成像薄片的其他装饰用途可扩展到各种各样的、通常用装饰性图像、商标或标示来进行美化的物品。这些例子包括书籍、家电、电子产品、五金器皿、车辆、运动器械、收藏品、艺术品等。
当装饰性成像薄片是逆反射性时,在注意时尚或品牌的同时,还要注意安全和人射保护。服饰和附件上的逆反射附着物是人们所熟知的,并能在低光度的环境下增强穿用者的可见性和显著度。当这种逆反射附着物与能产生合成图像的薄片组合使用时,可在环境光线、透射光线或逆反射光线中得到引人注目的视觉效果。可以想象,本技术在安全和防护性服装与配件领域中的应用包括诸如背心、制服、消防员衣服、鞋袜、腰带和安全帽等的职业安全服饰;诸如运行装置、鞋袜、救生衣、保护性头盔和制服等运动装备和衣服;儿童的安全服等。
可用许多已知的技术将此成像薄片固定在上文所述的物品上。这些技术包括在美国专利No.5,691,846(Benson,Jr.等人发明)、5,738,746(Billingsley等人发明)、5,770,124(Marecki等人发明)和5,837,347(Marecki发明)中所记述的。选用上述何种技术取决于基层材料的性质。在基层材料为织物的情况下,可将该薄片进行冲切或绘图仪切割,然后通过缝纫、热熔粘合、机械固定、射频焊接或超声波焊接等技术固定上述薄片。对于耐用品,最好选用压敏粘合剂的固定技术。
在有些情况下,可以将薄片固定在衬底或物品上以后,再形成最佳图像。这在习需要惯用的或独特的图像时特别有用,例如,先将未成像的薄片固定在基材或物品上,然后将艺术品、素描、抽象设计、照片等用计算机生成,或数码传输到计算机中,然后在薄片上成像。接下来用计算机对前文所述的成像设备进行控制。在同一张薄片上可形成多个合成图像,这些合成图像可以是相同的或不同的。合成图像也可以和其他的普通图像——如印刷的图像、全息图、等值图、衍射光栅、远距离图、照片等一起使用。在物品上施加所述薄片之前或之后,可在该薄片上形成图像。
熟悉此工艺的人会对本发明所述的实施方案作各种不同的修改和结合。只要在本发明附加的权利要求书所限定的范围内进行修改。
权利要求
1.一种薄片,它包括a.至少一层微透镜,该层具有第一和第二面;b.在紧贴微透镜层第一面的位置上设置一层材料;c.在与许多微透镜中的每个微透镜相邻的所述材料上形成至少部分完整的图像,该图像与材料形成对照;d.合成图像,由各个单独图像提供,所述图像用肉眼观察时显示悬浮在所述薄片的上方或下方,或者上下方均有。
2.权利要求1所述的薄片,其特征在于,所述合成图像在反射光下显示,悬浮在所述薄片上方、下方或者悬浮在所述薄片的平面上。
3.权利要求1所述的薄片,其特征在于,所述合成图像在透射光下显示,悬浮在所述薄片上方、下方或者悬浮在所述薄片的平面上。
4.权利要求1所述的薄片,其特征在于,当观察位置相对于该薄片变化时,合成图像会显示相对于该薄片进行移动。
5.权利要求1所述的薄片,其特征在于,当观察该薄片的角度变化时,合成图像会消失并重新出现。
6.权利要求1所述的薄片,其特征在于,该薄片包括一个以上的合成图像。
7.权利要求1所述的薄片,其特征在于,所述辐射敏感材料选自氟化铝钠、氧化钛、氯氧化铋或者碳酸铅。
8.权利要求1-6任一项所述的薄片,其特征在于,该薄片在汽车牌照上使用。
9.权利要求1-6任一项所述的薄片,其特征在于,该薄片在钞票和其他有价证券上使用。
10.权利要求1-6任一项所述的薄片,其特征在于,该薄片在时装上使用。
11.权利要求1-6任一项所述的薄片,其特征在于,该薄片在安全服上使用。
12.权利要求1-6任一项所述的薄片,其特征在于,该薄片在一些附属品上使用。
13.权利要求12所述的薄片,其特征在于,所述附属品包括女用手提包、皮夹、公文包、背包、挎包、电脑机箱、皮箱、笔记簿。
全文摘要
本发明涉及具有合成图像的微透镜薄片,该合成图像显示悬浮在所述薄片的上方或下方,或显示悬浮在两处。合成图像可以是两维的或三维的。本发明还涉及上述成像薄片的制备取方法,其中包括对紧贴微透镜的辐射敏感材料层进行辐照。
文档编号B41M3/14GK1650193SQ02813404
公开日2005年8月3日 申请日期2002年7月2日 优先权日2001年7月3日
发明者J·M·弗罗扎克, R·T·克拉萨, S·P·马基, R·M·奥斯格德三世 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1