直接成像聚合物液体喷嘴的制作方法

文档序号:2506780阅读:159来源:国知局
专利名称:直接成像聚合物液体喷嘴的制作方法
技术领域
本发明一般涉及热泡式(thermal)喷墨打印。本发明尤其涉及用直接成像技术制作由环氧树脂、聚酰亚胺或其它负型(negativeacting)光致抗蚀剂构成的精密聚合物喷嘴的设备和方法。
热泡式喷墨打印机一般有一个装在滑架(carriage)上的打印头,该滑架前后跨过该输送通过打印机的纸或其它介质的宽度移动。打印头带有一按矩阵排列的面对纸的喷嘴(也称喷口)。油墨(或其它液体)填充通道将储墨罐中的油墨送到喷嘴。单独给可寻址耗能元件(如,电阻器)加压,能量加热喷嘴使油墨沸腾并从喷嘴向纸喷射。本领域的技术人员会认识到已有的向油墨或液体传递能量的其它方法也处在本发明的构思、范围和原理之内。当喷射油墨时,气泡塌落消失、另外的油墨从储油罐填入通道,以便反复喷墨。
当前制造的喷墨打印头的结构,在喷墨打印头工作寿命和向纸喷射油墨的精度方面存在问题。目前制作的打印头包括一个穿过基底的油墨输送口、一个阻挡层界面(该阻挡层界面将油墨引向电阻器并限制加热腔的体积。阻挡层界面是一层叠加在基底上被曝光、显影和处理的不透光的光敏材料),和一个喷嘴板(喷嘴板是阻挡层界面所限定的加热腔的出口通道。喷嘴板通常由镍(Ni)电沉积而成,然后用金(Au)、钯(Pd)、或其它贵金属涂覆以抗腐蚀。控制喷嘴板的厚度和喷嘴开口直径以便在加热时能够重复液滴喷射)。在制造时,喷嘴板相对带有阻挡层界面材料的基底的准直要求特定的精度并需专门粘接剂粘接。如果喷嘴板翘曲、或粘接剂不能正确地将喷嘴板粘接到阻拦界面,则不能很好地控制油墨滴的最终轨迹、打印头的成品量或寿命会下降。如果打印头的准直不正确或喷嘴板有凹痕(平面不均匀),油墨就会偏离其正确轨迹、印出的图像质量下降。由于在普通结构的打印头中喷嘴板是一个分立件,为防止制造中的翘曲或扭弯所需的厚度要求喷嘴腔的高度(相对该喷嘴板的厚度)大于热效率所需的高度。通常,一个单个的喷嘴板安装在含许多打印头的半导体晶片上的一个单个的打印头模上。最好有一种方法允许横跨整个半导体晶片同时设置全部喷嘴板以提高生产率及确保喷嘴设置的精度。
加热腔内的油墨填充喷嘴腔直到喷嘴板的外边缘。于是,随着喷嘴腔内油墨高度的增加所带来的另一问题是更多的能量喷射油墨。另外,高质量的照片打印要求更高的分辨率,故需要更小的油墨滴。因此,需要制造一种较薄的喷嘴板。此外,当每滴喷射的油墨量变小时,打印头内就需要更多的喷嘴,以便在打印头的单次行程中以固定的打印速度在打印介质上打印给出的图样。为避免因增加喷嘴数量造成的打印头过热,必须减少每个喷嘴所使用的能量。
此外,在过去打印头的寿命是足够的。打印头曾是在油墨用完后即被更换的一次性笔的零件。然而,用户出于对性能的要求需要具有低成本及长期稳定性的长寿命打印头,本发明有助于实现这一要求。
下面介绍一种在半导体基底上形成喷嘴的制作方法和设备。第一层材料施加在半导体基底上,第二层材料施加在第一层材料上。然后,把喷嘴图像转移到第一层材料并把液体腔图像转移到第二层材料。而后,把带有喷嘴图像的第二层材料的部分沿着带有液体腔的第一层材料部分显影以限定基底上的喷嘴。
由喷嘴图像的形状和第二层材料的厚度限定喷嘴腔的体积。由液体腔图像的形状和第一层材料的厚度限定液体腔室的体积。


图1A是优选实施例的单个喷嘴的顶视图。
图1B是表示喷嘴基本结构的透视断面图。
图2A至2H是原位制作喷嘴的优选实施例的处理步骤。该剖视图是沿图1A中的线AA剖视图。
图3A是多喷嘴打印头的顶视图。
图3B是图3A中打印头的底视图。
图4是使用打印头的打印盒,该打印头可以应用本发明。
图5是使用带有一个打印头的打印盒的打印机机械结构,该打印头可以应用本发明。
图6A是用于制作本发明替换实施例的掩模图样。
图6B是可以使用本发明优选实施例的掩模图样。
图7A是本发明优选实施例的顶视图。
图7B是本发明优选实施例的侧视图,该侧视图显示用于限定凹腔喷嘴的相关尺寸。
图8是基于本发明优选实施例的凹腔喷嘴的高度比所画出的设计再填充时间和过冲量时的曲线图。
图9A至9G是制作单层型原位喷嘴的处理步骤。
图10A至10E表示在制作用于本发明优选实施例的多密度级掩模的处理中得到的结果。
本发明涉及一种新的聚合物喷嘴制作方法,该方法在基底上覆盖形成可光成像的多种材料夹层、且不需要Ni喷嘴板或阻挡层界面材料。每个可光成像层对于给定的能量密度具有不同的交联速率。另外,本发明具有采用可光成像层的设计结构布局,可光成像层形成顶帽形凹腔(指向里的)状喷嘴。可用不同的制造参数制作该顶帽形喷嘴以确定其最佳的液滴喷射特性。这种顶帽形设计结构布局具有几个超过直壁或按直线斜削结构的优点。用于喷射液滴的顶帽形凹腔喷嘴腔易于由液体腔和喷嘴腔限定。当向喷嘴内观看时,每个腔的面积和形状由带图样的掩模或一组掩模限定。这些掩模可基于喷嘴层的厚度和高度控制入口直径、出口直径和加热腔体积。分别控制喷嘴腔的高度和液体腔的高度以确定最佳的处理稳定性和设计范围。通过控制喷嘴和液体腔的形状、面积和高度,设计者可控制墨滴大小、墨滴形状、减小后冲作用(发射油墨的沸腾部分向喷墨方向的反向膨胀)并达到某种再填充速度(油墨填充整个顶帽喷嘴结构所需的时间)。另外,该顶帽结构布局允许使液体进入喷嘴的液体输送口进一步远离用于喷射液体的能量消耗元件,以减小沸腾液进入液体输送通道而造成的堵塞。
直接成像聚合物喷嘴通常含有溶蚀速率略不同的两层或多层负型光致抗蚀剂。溶蚀速率以具有不同分子量、物理结构、或光密度的各层不同材料为根据。在使用两层的实施例方法中,把需用500毫焦耳/平方厘米电磁能量强度进行交联的“慢速”光致抗蚀剂施加在基底上。在液体喷射打印头中,该基底包含施加在其表面的薄膜叠层的半导体材料。仅需用100毫焦耳/平方厘米电磁能量强度进行交联的“快速”光致抗蚀剂施加在该慢速光致抗蚀剂层上。固化后,以至少500毫焦耳/平方厘米高强度经掩模对基底光致抗蚀剂层曝光以确定液体腔。该电磁能量强度很高足以交联该上下层。之后,用100毫焦耳/平方厘米的低电磁能量经另一掩模对基底光抗蚀层曝光,以确定喷嘴腔。重要的是第二次曝光强度要足够低,以使喷嘴口下面的慢速光致抗蚀剂的下喷嘴层不交联。
聚合物材料以其能使薄膜外形布局平面化而公知于IC工业。实验数据表明,喷嘴板外形布局变化可保持在1微米内。这一特点对提供一致的墨滴轨迹很重要。
另外,现在有很多具有负型光致抗蚀剂特性的不同的聚合物材料。实施例的聚合物材料是聚酰亚胺,环氧树脂,聚苯并噁唑,苯并环丁烯,和溶胶凝胶。本领域的技术人员会明白,已有的其它负型光致抗蚀剂聚合物材料也处在本发明的构思和范围内。给透明聚合物材料填加光染料(诸如,橙#3、~2%重量),就可由不含染料或含有少量染料的快速光致抗蚀剂制成慢速光致抗蚀剂。另一实施例是涂敷一层带染料薄层的聚合物材料。另外的制作慢速光抗蚀的方法包括将具有不同分子量、不同波长吸收特性、不同显影速率的聚合物混合,并使用颜料。本领域的技术人员知道,现有减慢聚合物光敏性的其它方法也处在本发明的构思和范围内。
图1A是本发明优选实施例的单个喷嘴42(也称喷管或喷孔)的顶视图。上喷嘴层34由诸如可光成像的环氧树脂(如,由IBM研制的SU8)或可成像的聚合物(如,本领域中熟知的OCG)等快速交联聚合物构成。上喷嘴层34用于限定喷嘴42开通的形状和高度。隐藏在喷嘴层内的是液体输送口30和液体腔43。液体,如油墨经液体输送口流入液体腔43并被能耗元件32加热而形成液体蒸发汽泡,该汽泡从喷嘴强制喷射其余液体。线AA表示后续附图中剖视图的观看方向。
图1B是充分集热的(FIT)液喷式打印头示于图1A的单个喷嘴的透视剖面图。下喷嘴35施加在薄膜叠层50之上,薄膜叠层被制成单独叠层并结合在半导体基底层20上。示例性的喷嘴的喷嘴42的直径为16微米,液体腔43长度为42微米,液体腔宽度为20微米,上喷嘴层34厚度为6微米,下喷嘴层35厚度为6微米。在施加薄膜叠层50后,蚀刻半导体基底层20以构成液体输送通道44,通道44将液体送到液体输送口30(末示出)。液体输送口30被限定在薄膜叠层50的范围内。
图2A至2H表示制作本发明不同实施例的各种处理步骤。图2A表示已经过处理与薄膜叠层50结合的半导体基底20,叠层50中含有能耗元件32。被处理的薄膜叠层50使液体输送口30穿过其整个厚度。
图2B表示由慢速交联聚合物构成的下喷嘴层35施加到薄膜叠层50顶部后的半导体基底20。使用如由Karl Suss KG制造的常规旋涂工具施加慢速交联聚合物。与该常规旋涂工具相关的旋涂方法可用于形成将交联聚合物35填充液体输送口30形成的平面及薄膜叠层50的表面。进行旋涂的示例性的方法是用旋涂工具以100每分钟转数/秒的加速度和20秒的涂覆时间在半导体晶片上涂覆抗蚀剂层。而后,以100每分钟转速数/秒的减速度阻止该晶片旋转停下并静止10秒钟。然后,该晶片以300每分钟转数/秒的加速度上升至1060转数/分转动,持续30秒,以将抗蚀剂涂覆在整个晶片上。其它的聚合物施加方法包括辊涂,幕涂,挤压涂,喷涂,和浸涂。本领域的技术人员清楚还有将聚合物层施加到基底的其它方法,这些方法处在本发明的构思和范围之内。通过混合光染料(诸如,橙#3、~2%重量)将慢速交联聚合物制成可光成像的聚酰亚胺或可光成像的环氧树脂透光聚合物材料。通过混合光染料,所需的电磁能的量将大于交联材料中不混合光染料的情况。
图2C表示将含有快速交联聚合物的上喷嘴层34施加到下喷嘴层35上的结果。
图2D表示高强度电磁幅射11施加到上喷嘴层34和下喷嘴层35。提供的电磁幅射能量(如图2D,2E和2F中叉线区以外(X-out areas))必需足够大以交联被曝光处的上喷嘴层34和下喷嘴层35。在实施例中,这一步用额定值300毫焦、聚焦偏差+9微米的SVG Micralign设备进行。这一步确定喷嘴中液体腔43的形状和面积。
图2E表示该处理的下一步,其中低强度的电磁幅射12施加在上喷嘴层34和下喷嘴层35。在这一步中消耗的总能量(由曝光的强度或时间限定、或由两者共同限定)仅能交联上喷嘴层34中的快速交联聚合物。在实施例中,这一步用额定值60.3毫焦、聚焦偏差+3微米的SVG Micralign设备进行。这一步确定喷嘴42的形状和面积。
图2F表示优选实施例的曝光处理。它不是用两个掩模,即在图2D中限定液体腔的一个掩模和在图2E中限定喷嘴口42的一个掩模,而只用一个掩模。这种方式减少了使用两个分立掩模时可能的对准误差。这个掩模由在每一喷嘴口(见图6A和6B)形成多密度级掩模的三个分别的密度区构成。第一区基本上完全透射电磁能。第二区部分地透射电磁能。第三区完全不透射电磁能。
第一区允许高强度的电磁能11穿过掩模以充分地交联并限定喷嘴层,喷嘴层处的可光成像材料不被去除。上喷嘴层34和下喷嘴层35均被交联以防在显影时被去除。第二区的作用是只允许低强度电磁能12通过该第二区以交联上喷嘴层34,而在下喷嘴层35中第二区下面的所余材料未产生交联。第三区(完全不透射)用于确定喷嘴口42的形状和面积。由于电磁能量不能通过第三区,因此位于掩模不透射第三区下方的交联聚合物将不被曝光并在以后显影时被去除。
图2G表示显影处理步骤,其中上喷嘴层34和下喷嘴层35中的材料及液体输送口30中的材料被去除。在示例性的处理中使用7110Solitec显影设备以1千转/分的速度在NMP中显影70秒,以1千转/分的速度混合IPA与NMP持续8秒,以1千转/分的速度用IPA漂洗10秒,以2千转/分的速度旋转60秒。
图2H表示在进行氢氧化四甲铵(TMAH)背面蚀刻处理(见U.Schnakenburg,W.Benecke及P Lange的“用于硅微切削加工的TMAHW蚀刻剂”,第6次固体传感器和致动器国际会议技术论文汇编(Trsnducer′91),旧金山,加利福尼亚,美国,1991年6月24-28日,815-818页)之后的结果,以便可制成向液体输送口30内开通的液体输送通道44,通道44使液体进入液体腔43并最终从喷嘴口42喷出。
图3A表示一个示例性的打印头60,该打印头60包含若干形成在上喷嘴层34和下喷嘴层35中的喷嘴口42。该喷嘴层施加在已形成半导体基底20上的薄膜叠层50上。
图3B表示为显示液体输送通道44和液体输送口30的打印头60的另一侧。
图4为使用打印头60的打印盒100的示范实施例。这种打印盒与可从Hewlet-Packard公司得到的HP51626A相似。打印头60与把控制信号从电接头102耦合到该打印头60的柔性电路106连接。液体存放在液体储存器104内,示出的液体储存器104包含一个由海绵108和竖管(未示出)组成的典型的输送组件。液体储存在海绵108中并经竖管输送到打印头60。
图5为示例的液喷记录设备200,它与使用图4所示的打印盒100的Hewlett-Packrad Deskjet 340(C 2655A)相似。从介质盘210中取出介质230(例如,纸)并由介质输送机构260沿横跨打印盒100的介质230的长度输送该介质。打印盒100沿盒组件240上介质230的宽度移动。介质输送机构260与盒组件240共同构成用于输送介质230的输送装置。在介质230完成记录后,它被送到接纸盘220。
图6A表示一个单个的多密度级掩模140,该掩模用于在本发明另一实施例中形成喷嘴口42。不透明区142用于限定喷嘴口42的形状和面积。部分不透明区144用于限定液体腔的形状和面积。透明区146基本透射电磁能量,掩模的这个区限定上喷嘴层34和下喷嘴层35的面积,上喷嘴层34和下喷嘴层35的该将被交联且在显影时不被除去。不透明区142的形状与部分不透明区144的几何形状相匹配以便进行最佳显影处理。
图6B表示最佳实施例的单个多密度级掩模150,其中不透明区152的几何形状与部分不透明区154的几何形状不同。可使用这种工艺是由于直接成像法允许分别确定液体腔和喷嘴口的形状。这种工艺对于快速再填充速率、汽泡后冲百分比、以及打印头上多喷嘴的最大密度可实施该液体腔的最佳设计。当液滴从喷嘴喷出时,液滴具有一个主体形状和一个拖带的尾部,它们共同构成液滴的体积。直接成像法可形成喷嘴口42的最佳设计以提供当液体从喷嘴喷出时喷出液体的恰当体积、喷出体积的尾部形状和液体的形状,该最佳设计可使液体在其飞向介质的路径上中断最少。透明区156基本上透射电磁能量,掩模的这个区限定上喷嘴层34和下喷嘴层35的面积,上喷嘴层34和下喷嘴层35中该区域将被交联且在显影时不被除去。在这个实施例中,示例掩模的透过速率为透明区156约100%、部分透明区154约20%、不透明区152约0%。
不同的形状可使液体输送口30更远离能耗元件32以减小汽泡向后吸的可能性,从而限制空气经喷嘴注入。
此外,由于可通过控制下喷嘴层35和上喷嘴层34两者的厚度而控制液体腔和喷嘴口各自的形状,因此可实现一个喷嘴结构的一般设计。
图7A是最佳喷嘴结构的顶视图。喷嘴口174为圆形,液体腔172为矩形。图7B是沿图7A中BB方向看时该喷嘴的侧视图。上喷嘴层168的上喷嘴高度162与确定喷嘴腔176体积的喷嘴口174的区域一致。下喷嘴层170的下喷嘴高度164与确定液体腔180体积的液体腔172的区域一致。整个喷嘴高度166等于上喷嘴高度162与下喷嘴高度164之和。下喷嘴高度164与上喷嘴高度162之比限定临界参数,该高度比为高度比=下喷嘴高度/上喷嘴高度这个高度比控制与其拖后尾部长度相关的喷射液滴的过冲体积和再填充时间,该时间是液体喷射后用液体再填充喷嘴所需的时间。
图8表示在喷嘴直径为16微米、液体腔的长度为42微米宽度为20微米的示例中,该高度比对再填充时间以及该高度比对过冲体积影响的曲线图。打印头设计人员可用这个曲线图为要求的喷射液滴形状选择各层厚。
图9A至9E表示在使用单层慢速交联聚合物的本发明另一实施例中,通过对慢速交联聚合物实施电磁能量的欠曝光和过曝光而形成分立层的方法步骤。
图9A表示一个处理过的半导体基底20,它上面施加有一个薄膜叠层50,薄膜叠层50含有能耗元件32和液体输送口30。
图9B表示慢速交联材料层34施加在薄膜叠层50之上及填充在液体输送口30之内的情况。
图9C表示用低剂量电磁能量12对慢速交联聚合物层34曝光以限定该喷嘴口。该低剂量是仅使慢速交联聚合物交联到所需深度的欠曝光量。一个示例的曝光量为63.3毫焦耳。
图9D表示用足以使除形成液体腔的位置之外所有慢速交联聚合物层34均被交联的高剂量电磁能量11对慢速交联聚合物层34过曝光以交联所有的慢速交联聚合物层34。一个示例的曝光量为300毫焦耳。
图9E表示一种替代图9C和图9D所示处理的处理步骤,该处理使用具有多密度级的单个掩模、可使不同剂量的电磁能量对慢速交联聚合物34曝光。这一工艺能实现喷嘴口42和液体腔43的精确对准、并减少处理步骤数。
图9F表示将非交联材料从液体腔和喷嘴腔除去的显影处理。喷嘴腔具有微凹的锥形,这是由于其内混合了染料或其它材料而使射入的电磁能量减弱、使得慢速交联聚合物层34的深度上材料交联较少造成的。
图9G表示在背面TMAH蚀刻处理后制成向液体输送口30开通的液体输送通道44的最终结果。
图10A至图10E表示制作多密度级掩模的处理步骤,该多级掩模用于单个掩模的制作以在喷嘴层中形成开口。
图10A表示一个石英基底200,该石英基底200可透过电磁能量以便对用于制作喷嘴层的可光成像聚合物曝光。石英基底200必须具有适宜的光特性。
图10B施加有半透明介电材料层210的石英基底200。这种示例材料是氧化亚铁(FeO2)。在半透明介电材料层210施加例如铬的不透明材料层220。FeO2和铬均可由常规的电子束蒸发器进行沉积。将一层负型光致抗蚀剂施加在不透明材料层220上,然后用电磁能量曝光并经显影保留用于限定液体腔的形状和大小的光致抗蚀剂区230。
图10C表示石英基底200经常规蚀刻后的情况。当不透明材料层220由铬构成时,则蚀刻处理是标准的KTI铬蚀刻浴。然后,对石英基底200进行另一常规蚀刻处理以从半透明层212除去半透明介电材料210。当半透明介电材料210使用FeO2时,其示例性蚀刻处理是使用SF6或CF4等离子体的等离子体蚀刻。而后将所留下的光致抗蚀剂230剥去。
在图10D中,将另一光致抗蚀剂层施加到石英基底200上,并曝光以限定喷嘴口的形状和区域、然后经显影制成喷嘴图样240。
图10E表示在蚀刻中石英基底200经处理除去了不含喷嘴口图样240的不透明层222从而制成不透明层的喷嘴口图样224的情况。对于铬这样的不透明材料所用示例性的蚀刻处理是湿化学蚀刻,因此,在该蚀刻处理中半透明介电层212不受影响。
直接成像聚合物喷嘴的工艺简单、成本低,可使用现有设备并能与目前的热液喷技术相适应。它能提供设计的灵活性,并可在喷嘴和液体腔几何形状的独立控制中实施严密地喷嘴尺寸控制。多密度级掩模结构允许使用单次曝光以进行喷嘴和液体腔的内在对准,从而提高产量和一致性。
虽然已表示了一些不同的内凹的喷嘴形状,但用上述工艺还可制成其它内凹的喷嘴形状且均处在本发明的构思和范围之内。
本发明可适应为满足生动的清晰的照片打印所需更细微分辨速率而采用的更严格的液喷方向控制和更小的液滴体积的需要。此外,本发明简化了打印头的制造,降低了生产成本,能进行大批量生产并提高了打印头的质量、可靠性和一致性。本发明的优选实施例及其替代实施例表明所制成的独特的喷嘴形状能解决更多问题或得到利用打印头喷射液体的不同特性的优点。
权利要求
1.一种制造液喷打印头的方法,该液喷打印头具有一个含一个第一表面和第二表面的半导体基底(20),该第一表面具有若干伸向所述半导体基底(20)且与所述第二表面上的若干液体输送通道(44)相连的液体输送口(30),所述方法的步骤包括在所述半导体基底(20)的所述第一表面上施加慢速交联材料层(34);将喷嘴图形(42)和液体腔图形(43)转移到所述的慢速交联材料施加层(34);对所述慢速交联材料层(34)中所设置的与喷嘴口对应的所述转移的喷嘴图形(42)和与液体腔口对应的所述转移的液体腔图形(43)的那些部分进行显影。
2.如权利要求1的方法,其中施加所述慢速交联材料层(34)的步骤还包括从由可光成像聚合物与光染料的不同层、可光成像聚合物与光染料的混合物、以及可光成像聚合物构成的组中选取所述慢速交联材料(34)的步骤。
3.如权利要求1的方法,其中施加所述慢速交联材料层(34)的步骤还包括从由可光成像环氧树脂与光染料的不同层、可光成像环氧树脂与光染料的混合物、以及可光成像环氧树脂构成的组中选取所述慢速交联材料(34)的步骤。
4.如权利要求1的方法,其中施加所述慢速交联材料层(34)的步骤还包括施加一个8至34微米厚的所述慢速交联材料层(34)。
5.如权利要求1的方法,其中所述转移该喷嘴图形(42)和液体腔图形(43)的步骤还包括经一个多密度级掩模用电磁能量对所述慢速交联材料(34)曝光的步骤。
6.如权利要求1的方法,其中所述转移该喷嘴图形(42)和液体腔图形(43)的步骤还包括以具有构图的高剂量电磁能量对所述慢速交联材料(34)曝光;以具有构图的低剂量电磁能量对所述慢速交联材料(34)曝光。
7.一种采用半导体基底、用于喷射液体的打印头,包括一个半导体基底(20),它具有一个第一表面和一个第二表面;一个薄膜叠层(50),它附着在所述半导体基底(20)的所述第一表面,所述的薄膜叠层(50)还包括一个能耗元件(32),所述的薄膜叠层(50)限定液体输送口(30);一个其内限定一个喷嘴(42)的慢速交联材料层(34),所述的慢速交联材料层(34)施加在所述的薄膜叠层(50)上,所述的喷嘴(42)位于所述能耗元件(32)的上方,所述的慢速交联材料层(34)其内限定一个液体腔(43),所述的液体腔(43)位于所述液体输送口(30)的上方;一个限定在所述半导体基底(20)的所述第二表面内、并向所述液体输送口(30)开通的液体输送通道(44)。
8.一个多密度级掩模,包括一个透明的石英基底(200);一层被施加到所述透明石英基底(200)上的具有构图的半透明介电材料(212);一层被施加到所述具有构图的半透明介电材料(212)上的具有构图的不透明材料(224)。
9.如权利要求8的多密度级掩模,其中的所述具有构图的半透明介电材料层(212)在365-436毫微米波长范围内是半透明的。
10.如权利要求8的多密度级掩模,其中的所述具有构图的半透明介电材料层(212)是FeO2。
全文摘要
在半导体基底(20)上制作具有一定形状喷嘴的方法和设备。将一层慢速交联材料(34)施加在半导体基底(20)上。将喷嘴图形(42)和液体腔图形(43)转移到该慢速交联材料层(34)。而后,使该慢速交联材料层(34)中含喷嘴图形(42)和液体腔图形(43)的部分同时显影,以便在在半导体基底(20)限定一个喷嘴口。
文档编号B41J2/14GK1227790SQ981223
公开日1999年9月8日 申请日期1998年12月2日 优先权日1998年3月2日
发明者陈健华, 河村直人, D·E·温泽尔, R·W·瑟维尔, 刘钦, 吴澜, C·V·沃伦, J·S·赫斯, C·C·达维斯 申请人:惠普公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1