图像显示装置和它所使用的光扩散部件的制作方法

文档序号:2654391阅读:143来源:国知局

专利名称::图像显示装置和它所使用的光扩散部件的制作方法
技术领域
:本发明涉及改善使用LCD(液晶显示器Liquidcrystaldisplay)禾口PDP(等离子体显示面板PlasmaDisplayPanel)等的显示面板的图像显示装置的对比度性能和波纹性能的技术。
背景技术
:使用LCD和PDP等的显示面板的图像显示装置,作为电视显示装置(TV)的用途正广泛普及。TV由于由多个观察者同时视听,因此必需有很大的可视角。另外,由于TV在明亮的环境下视听的情况多,因此必需抑制外部环境光(例如室内照明)照在显示面板上造成的对比度降低(即提高明室对比度性能)。在日本专利特开2005-338270号公报和日本专利特开2006-189867号公报中已知改善这种外部环境光的照入引起的明室对比度性能的技术。日本专利特开2005-338270号公报说明了利用梯形的透镜部和具有光吸收效果的楔形部的配置结构遮住外部环境光,另外,通过控制透镜部和楔形部的折射率,全反射光束的一部分。日本专利特开2006-189867号公报说明了利用透明树脂材质的底座和楔形黑条(blackstripe)的配置结构遮住外部环境光,另外通过分别控制透明树脂材质的底部和楔形黑色带的折射率,全反射光束的一部分。
发明内容为了减少外部环境光的照入,日本专利特开2005-338270号公报和曰本专利特开2006-189867号公报的光透过部和光吸收部的配置结构有效,但该配置结构有产生波纹的可能性。例如,由显示面板反射的外部环境光和由上述楔形部全反射的光互相干涉,产生波纹,它可作为噪声重叠在显示图像上被看见。本发明提供可得到良好的可视角特性和明室对比度性能,并可减少波纹的技术。本发明的显示装置在其显示面上配置有光扩散部件,光扩散部件具有规定方向的截面为大致梯形的多个光透过部和截面为大致楔形的光吸收部,上述光透过部的大致梯形部的上边和上述光吸收体的大致楔形的底边互相邻近,在上述第一方向的截面上,使上述光吸收部的大致楔形的截面积相对于与上述大致楔形的截面形状外接的外接梯形的面积为l/3以上,而且在2/3以下。另外,本发明当取上述光吸收体的大致楔形的底边长度为B,上述光透过部的梯形部的上边长度为W时,用W/(W+B)定义的开口率为10%以上且为40%以下。根据本发明,可以得到良好的可视角和对比度性能,减少波纹的发生。图1为具有本实施例的光扩散部件的显示装置的主要部分的透视图。图2为表示本实施例的光扩散部件的截面的示意图。图3为本实施例的主要部分的结构的放大图。图4为表示本实施例的主要部分的正面看的透过率的示意图。图5为表示作为本实施例的光学模型的正弦波的干涉的示意图。图6为表示作为本实施例的光学模型的正弦波的波长不同引起的干涉的变化的示意图。图7为表示本实施例的可视角的示意图。图8为表示本实施例的外光的透过率的示意图。图9为现有例的主要部分的放大图。图IO为表示现有例的正面看的透过率的示意图。图11为表示作为现有例的光学模型的矩形波的干涉的示意图。图12为表示在作为现有例的光学模型的矩形波中的波长不同造成的干涉变化的示意图。具体实施例方式以下,利用本发明的实施例。首先,利用图l、图2和图3说明本发明的一个实施例。在各个图中,具有共同功能的元件用相同的符号表示,省略对已说明的问题的重复说明。图1为具有本实施例的光扩散部件的显示装置的主要部分的透视图。图2为表示本实施例的光扩散部件的截面示意图。图3为本实施例的光扩散部件的主要部分的放大图。作为具有本实施例的光扩散部件的显示装置可举出使用成为像素的显示元件二维配置的显示面板的显示装置,例如PDP显示装置、LCD显示装置和FED(场发射显示器FieldEmissionDisplay)装置等。这里,为了方便使用PDP装置作为显示装置的一种进行说明,但不限于此。在图1中,为了容易说明PDP的结构,在分离的状态下表示上部面板和下部面板。另外,在图2中表示沿着显示装置的显示画面的纵(上下)方向切断的光扩散部件的截面。如图1所示,显示装置(这里为PDP装置)包含作为图像光源的等离子体显示面板(PDP)200、配置在该显示画面前面的光扩散部件100和驱动作为显示部的PDP的电路基板(未图示)。观察者视听从利用光扩散部件100将明室对比度提高的PDP200发出的图像光。光扩散部件100直接安装在PDP200上也可以,或者隔开规定的距离配置也可以。首先,从PDP的结构说明。PDP200具有相对配置的上部面板210和下部面板220。最初,说明上部面板210的结构。在上部面板210中,在成为显示面侧的基板的上部玻璃基板211上设置有在显示画面(以下简单地称为画面)的横(左右)方向上延伸的带状的显示电极212。显示电极212由互相相对,成为成对的平行电极组的X显示电极(称为共同电极)212x和Y显示电极(称为扫描电极)212y构成。各个显示电极由透明电极212a和电阻值降低的金属辅助电极212b构成。图中只表示一对显示电极212(212x,212y)。另外,在显示电极212上形成有介电质层213,以覆盖显示电极212,还形成有薄的MgO保护膜214,以覆盖介电质层213。其次,说明下部面板220的结构,在下部面板220中,在成为背面侧的基板的下部玻璃基板221上,在横方向上以规定的间隔形成有在与显示电极212正交的画面纵(垂直)方向上延伸的平行的带状地址电极222。在地址电极222上形成有介电质层223,以覆盖地址电极222,另外,在介电质层223上,互相以规定的间隔形成隔壁225,以夹住与地址电极222平行的地址电极222。在由隔壁225分隔的介电质层223上,与形成一个像素的三个相邻的地址电极222对应,涂布红(R)、绿(G)、蓝(B)色的荧光体224。上述这样构成的上部面板210和下部面板220相对配置,与显示电极212和地址电极222正交,利用未图示的烧结(frit)玻璃等密封。这样,在与上部面板的多个显示电极和下部面板的多个地址电极正交的位置上,分别构成多个放电单元(放电空间)230。在各个放电单元230内,以规定的压力充填氖(Ne)、氙(Xe)等混合气体作为放电气体。首先,对于上述结构的PDP200,利用驱动电路(未图示)施加在地址电极222和Y显示电极212y上(将其称为地址驱动),形成壁电荷,其次,将反极性的电压(维持电压)交互地施加在X显示电极212x和Y显示电极212y上(将其称为主放电驱动),维持放电。利用施加在这种电极上的放电单元230中的放电产生紫外线,该紫外线激励荧光体224,产生红、绿、蓝色的可见光,通过透明的显示电极侧的上部玻璃基板211,射出光(图像光)。其次,利用图1和图2说明本实施例的光扩散部件100。光扩散部件100屏蔽从PDP泄漏的电磁波、红外线,修正(调整)PDP的发光色,同时,形成具有衰减外部环境光的功能的所谓光学滤波器(未图示)的一部分。这里,为了容易说明,图中只表示光扩散部件IOO。另外,光扩散部件100与光学滤波器作成一体也可以,或分离构成也可以。由于可衰减外部环境光,提高明室对比度,光扩散部件100从PDP200依次由入射侧基体材料3、光扩散部IO、射出侧基体材料4构成,光扩散部10包含光透过部1和光吸收部2,光透过部1和光吸收部2在画面纵方向交互地配置。光透过部1为高效率地将入射的图像光引导至观察者一侧的导光路体,它可在PDP200的第一方向,例如画面纵(垂直)方向(即与地址电极222平行的方向)上,以规定间隔周期性地配置,同时沿着与第一方向正交的第二方向,例如画面横(水平)方向呈带状(即与显示电极212平行)延伸。沿着PDP的画面纵方向的光透过部1的截面形状为在图像光源的PDP200上向着上边的大致为梯形形状。光吸收部2为吸收并屏蔽入射的外部环境光的外光屏蔽层,利用碳等颜料或规定的染料着色成规定浓度。光吸收部2形成为掩埋相邻的光透过部1之间的槽,沿着PDP200的画面纵方向的截面形状为在图像光源的PDP侧,向着底边大致的楔形形状。g卩光透过部l和光吸收部2相邻,在PDP200的画面纵方向交互地配置。以下将沿着画面纵方向的截面简单地称为"截面"。在本实施例中,详细情况后述,但光透过部1和光吸收部2的折射率大致相同(严密地说,光透过部1的折射率nl比光吸收部2的折射率n2稍大或相等),在界面上难以引起反射。因此,从PDP200入射在作为光扩散部件100的光扩散部10的导光路体的光透过部1上的入射光中,垂直入射在光透过部1的梯形部上边的入射光L1直接从光透过部1的下边射出,而倾斜地入射在光透过部1的上边的入射光L2,与光路上的光吸收部2的厚度相应,受到衰减而射出。如上所述,由于构成光扩散部件100,可在画面纵方向上对图像光采样,可以良好地确保画面横方向的可视角特性,并且使画面纵方向的可视角特性为规定特性,可提高明室对比度。以后详细说明画面纵方向的可视角特性。在本实施例中,从倾斜方向入射在光吸收部2上的外部环境L6进入光吸收部2内,根据光路上的光吸收部2的厚度,一部分透过。在光吸收部2中,受到衰减的外部环境光,由PDP200(例如上部玻璃基板211)反射(未图示),利用该反射光和原来入射的外部环境光引起干涉,产生波纹。以后说明用于减少这种波纹的本实施例的结构。上述光扩散部件100的形成方法的一个例子如下。首先,在射出侧基体材料4的一个面上,涂布利用紫外线硬化树脂构成的光透过部1。其次,在表面上截面形状形成为与大致楔形相反形状的大致楔形成形用辊子(未图示)之间,使射出侧基体材料4通过。这样,将大致楔形的槽复制在射出侧基体材料4上。将紫外线照射在该槽上使其硬化。另外,在将紫外线硬化树脂充满该槽后,通过照射紫外线可形成大致楔形的光吸收体2。最后,考虑树脂层的保护和光扩散部件的处理,设置入射侧基体材料3。其次,利用图3具体地说明本实施例的主要部分。图3为图2所示的光扩散部件的主要部分的结构的放大图。在图3中,省略了入射在基体材料3和射出侧基体材料4的表示。为了使以下的说明容易,导入坐标系。如图3所示,以与入射侧基体材料3接合的面的光吸收部2的中心为坐标原点,以图像光的射出方向为Z轴,以与和入射侧基体材料3接合的面平行的方向为X轴。在图3中,光吸收部2的截面整体为大致的楔形,由截面倾斜不同的二个楔形部构成。第一楔形部2a与入射侧基体材料3接触或结合,其截面与Z轴有大的倾斜,大致为梯形。另外,第二楔形部2b与第一楔形部2a结合,其截面为与Z轴有小的倾斜的大致楔形。这样,光吸收部2与Z轴正交的截面面积在PDP侧大,前端形成为细长的棒状的大致钉子状。形成这种形状的理由以后详述,是为减少波纹的影响。另外,第二楔形部2b的顶上部(前端)不形成为尖的,而是平坦的,这是由制造上的理由决定。其次,说明光透过部1和光吸收部2的具体结构。首先,说明尺寸的一个的例子。在本实施例中,光吸收部2的底边(即第一楔形部2a的下边部)的长度Bl为50(im,高度h为104pm,顶点部长度E为4pm。另外,形成光吸收部2的基底部的第一楔形部2a的高度hl为20.8pm,上边部的长度D为14.36pm。另一方面,配置在光吸收部2之间的光透过部1的梯形部的上边部的长度Wl为15pm。第一楔形部2a的底边和光透过部1的梯形部的上边部互相相邻。因此,由光透过部1和光吸收部2构成的配置的l个周期的长度p为65pm。另外,当取光透过部1在显示面板显示面上的占有比例为开口率p,用下述式(1)定义开口率p时,在本实施例中,开口率p为23.iy。p=Wl/(W1+B1)......(1)考虑采样的影响,光透过部1和光吸收部2上的配置的1个周期的长度p为PDP的1个像素长度的1/4以下。其次,说明光透过部1和光吸收部2的材料构成。在本实施例中,在光透过部1中使用在可见光区域中透过率为100%的材料,在光吸收部2中使用在可见光区域中的透过率每60pm为4%的材料。例如,在光透过部1中使用在光学透镜中使用的聚碳酸酯,以其在可见光区域的透过率约为90%(厚度3mm)为基础,当计算1^0.104mm厚度处的透过率时。0.90^4^0.996,即可得到大约100%的透过率。另外,光吸收体2利用吸收外部环境光的碳等颜料或规定的染料着色至规定的浓度。材料的折射率n是光透过部1和光吸收部2都为1.55。其次,利用图9图12说明本发明者的新注意的现有的光扩散部件的问题。图9为日本专利特开2006-189867号公报中所述的现有的光扩散部件的主要部分的放大图。与图3同样,导入以光吸收部的底边侧中心部为坐标原点的座标。在图9中,光透过部11的截面形状为在图像光源的PDP侧向着上边的梯形,光吸收部12的截面形状为在图像光源的PDP侧,向着底边的楔形,光透过部1和光吸收部2相邻交互地配置。光吸收部2的截面为楔形,底部的长度B2为19.5|am,高度h为104pm,顶点部的长度E为4pm。另外,光透过部11配置成掩埋光吸收部12之间。由于光透过部11的上边部的长度W2为45.5pm,因此,由光透过部11和光吸收部12构成的配置的1个周期的长度P为65pm。在光透过部11上使用在可见光区域中的透过率为100%的材料,在光吸收部12上使用在可见光区域中的透过率每60pm为4%的材料。图10为表示从观察者侧正面看图9的光扩散部件的画面纵方向的透过率特性,即从图9的Z轴方向看时的X轴方向的透过率特性的示意图。首先,以表示在间距P的一半范围的光吸收部12的截面形状的一半的坐标(0,104)、(2,104)、(9.75,0)和(32.5,0)为基础,利用式(2)求光吸收部12的Z轴方向的长度。其次,利用式(3)换算光吸收部12的每0.06mm的透过率4%,求表1和图9的透过率T。间距P的剩余的一半的后半部分在与前半部分对称性的基础上求出。Z=104(0《X《2)......(2)Z=104/(2-9.75)X(X-9.75)(2《X《9.75)Z=0(9.75《X《32.5)表l<table>tableseeoriginaldocumentpage12</column></row><table>如图10所示,透过率特性的轮廓为大致的矩形。另一方面,上述的光扩散部件具有带有规则性的配置结构。在这种情况下,如专利文献2所述,在光吸收部的周期的图案被PDP装置的前面基板反射的情况下,利用原图形和反射光的图形之间的相互干涉产生波纹现象。现在,研究与具有由光透过部1和光吸收部2构成的规则性的配置结构产生的波纹性能的关系。图11为表示作为现有例的光学模型的矩形波的干涉的示意图。图11(1)表示波长10mm的矩形波,图11(2)表示波长12mm的矩形波,图11(3)表示二个矩形波重写,图11(4)表示二个矩形波相加。从图11(4)可看出,矩形波相加造成的弯曲,即产生波纹的样子,另夕卜,根据以下的理由计算波长10mm和波长12mm的弯曲,即波纹。图12为表示作为现有例的光学模型的矩形波中的波长不同造成的干涉变化的示意图。图12(1)表示与图10(4)相同的波长10mm和波长12mm的相加波,图12(2)表示波长10mm和波长15mm的相加波,图12(3)表示波长10mm和波长18mm的相加波,图12(4)表示波长10mm和波长20mm的相加波。可看出,特别在近的波长相加时产生弯曲即波纹的样子。当重新着眼于矩形波,考虑图11和图12的相加波时,由于矩形波本来的波上升/下降急剧,该矩形波的相加波的斜度也急剧。另外,以缓和波的上升/下降为目的,研究光透过部l和光吸收部2的形状,将透过率特性的轮廓作成正弦波状的改善,即为图2所示形状的光扩散部件。其透过率特性为图4。图4表示从观察者侧正面看图3的光扩散部件的画面纵方向的透过率特性。即从图3的Z轴方向看时的X轴方向的透过率特性的示意图。首先,在图4中,以表示光吸收部2的截面形状的一半的坐标(0,104)、(2,104)、(7.181,20.8)、(25,0)和(32.5,0)为基础,利用式(4)求光吸收部12的Z轴方向的长度。其次,利用式(3)换算光吸收部2的每60(im的透过率4%,求表2和图4的透过率T。另夕卜,间距P的剩下的一半的后半部分,以与前半部分的对称性为基础求出。Z=104(0《X《2)......(4)Z=(104-20.8)/(2-7.181)-(X-7.181)+20.8(2《X《7.18)Z=20.8/(7.181-25)X(X-25)(7.18《X《25)Z=0(25《X《32.5)表2<table>tableseeoriginaldocumentpage14</column></row><table>采用本实施例,如图4所示,可使透过率特性的轮廓为大致的正弦波形。其次,利用图5和图6,说明本实施例的波纹性能。图5为表示作为本发明的光学模型的正弦波的干涉的示意图。图5(1)表示波长10mm的矩形波,图5(2)表示波长12mm的矩形波,图5(3)表示二个矩形波的重写,图5(4)表示二个矩形波相加。艮P,如图5(4)那样,正弦波相加产生弯曲即波纹。在本实施例的正弦波中,计算由波长不同产生的干涉变化,与图12同样,特别在近的波长相加时,产生弯曲即波纹的样子。在相加波中,比较现有例和本实施例时可看出,与图11(4)比较,在图5(4)中,相加波的上升/下降的急剧性缓和。补充图3的光吸收部2的截面形状。如从图4中可看出那样,为了使光吸收部2的透过率特性为正弦波形,可拓宽用光吸收部2遮光的范围,结果,必需减小开口率。但当在图9的现有例的截面形状下,减小开口率时,光吸收部2的面积(截面的面积)增大,图像光的透过率(和可视角)减小。另外,即使减小开口率,为了不增大光吸收部2的截面面积,定义包含光吸收部2的截面形状的梯形形状,即外接梯形,利用与该外接梯形的面积比(以下称为"外接梯形面积比")规定光吸收部2的面积(截面面积)。艮P,在本实施例中,如图3所示,使从倾斜方向入射在光吸收部2上的图像光L2被吸收一些而衰减,并从光吸收部2射出,使光吸收部2的截面外形形状为凹形。所谓凹形是指Z轴与其切线形成的角度沿着图像光的射出方向(Z轴)逐渐减小。采用这种截面外形形状,即使在相同的开口率下,可以扩宽画面纵方向的可视角特性。具体地是,利用两个楔形部构成光吸状部2,增大光吸收部2的底边侧第一楔形部2a相对于Z轴的截面倾斜,减小对第二楔形部2b相对于Z轴的截面倾斜。但是,本实施例不限于此,为实现上述的凹截面外形形状,不用两条倾斜的折线,用多条倾斜的折线也可以。当然作成光滑的曲线也可以。在图3中,当取Sl为第一楔形部12a的面积,S2为第二楔形部2b的面积,S3为外接梯形的面积时,从下述的式(5)(式5-l式5-3)和式(6)可得出,在本实施例中外接梯形面积比(Sl+S2)/S3为51%Sl=(7.181X2+25X2)X20.8+2=669…(5)S2=(2X2+7.181X2)X(104-20.8)+2=764S3=(2X2+25X2)X104+2=1433外接梯形面积比=(Sl+S2)/S3=51%…(6)如已说明那样,当上述外接梯形面积比大时,由于图像光(和可视角)过小,为2/3以下;另外,当小时,由于对外部环境光的屏蔽作用过小,优选为1/3以上。另外,在光吸收部2的截面形状中,如果使大致楔形的顶点部分的厚度E为0,则上述外接梯形为外接三角形也可以。另外,以正弦波的观点补充式(1)所示的开口率23.1%。在0180°范围内,近似地将正弦波的振幅为90%以上的范围作为100%的范围,求其比率。首先,由于Sin"0.9二64.2度,正弦波的角度范围为64.2115.8度(=180-64.2)。因此,0180度角度范围的比率为(115.8-64.2)/180=28.7%。这个值为与式(1)所示的开口率对应的值。由于当开口率大时,接近矩形波,因此优选开口率为40%以下。另外,由于当减小开口率时,图像光的透过率小,因此优选开口率为10%以上。其次,在图7中表示图3所示的本实施例的光扩散部件的画面纵方向的可视角特性,在图8中表示外部环境光的透过率。图7表示将从图像光源发出的光线入射在图3的光透过部1和光吸收部2的配置结构上,从光扩散部件射出的光线L5的射出角度a(度)和透过率(%)的关系。不用入射角度,而用射出角度定义是为了通过选定折射率,在光扩散部件中产生光线的折射和反射。在图7中,在半值角度下,达到40度弱的可视角。一般,在PDP装置等直视型显示装置中,有从倾斜方向看显示画面的情况,因此必需扩宽显示画面在横方向的可视角范围。但是,在画面的纵方向上,很少从上侧观察,因此不扩宽画面纵方向的可视角范围也可以。在半值角度下,如为40度已很好。实际上,如图2所示,存在入射侧基体材料3,由于入射在入射基体材料3上的光线以与向入射侧基体材料3的入射角度相同的角度射出,因此利用削除入射侧基体材料3的光学模型计算也可以。另一方面,图8(1)表示当观察者分别以规定的角度P(度)将光线L6照射在图3的光透过部1和光吸收部2的配置结构上时的透过率(%)。这里,所谓透过率为由光透过部1和光吸收部2构成的配置的l个周期的平均透过率。由于在外部环境光(光线L6)的角度卩为0度的情况下,大部分入射在光透过部1上,一部分入射在光吸收部2上被吸收,其平均透过率为60%弱,可提高明室对比度。另外,当角度P大时,从倾斜方向入射在光扩散部件上的外部环境光入射在光吸收部分2上的比例(次数也)增大,该透过率逐渐降低,更可提高明室对比度。图8(2)为表示透过率的倒数的示意图,即使对于小的入射角度的外部环境光,也可得到很好的对比度性能(明室对比度性能)。作为小角度的外部环境光有太阳光或室内顶灯由窗玻璃等的反射光等。另外,由于与图6中说明的相同的理由,在图7中,利用削除射出侧基体材料4的光学模型进行计算。如上所述,根据本实施例,通过将透过率特性的轮廓作成大致正弦波状,可保持作为图像显示装置的很好的可视角性能和明室对比度性能,并可缓和外部环境光引起的波纹的影响。权利要求1.一种配置在图像显示装置的显示面上的光扩散部件,其特征在于,包括多个光透过部,在第一方向上以规定间隔配置,而且该第一方向的截面形状具有大致梯形部;光吸收部,配置在所述多个光透过部相互之间,所述第一方向的截面形状具有大致楔形;其中,所述光透过部的大致梯形部的上边和所述光吸收体的大致楔形的底边互相邻接,在所述第一方向的截面上,使所述光吸收部的大致楔形的截面积相对于与所述大致楔形的截面形状外接的外接梯形的面积为1/3以上且2/3以下。2.如权利要求1所述的光扩散部件,其特征在于所述光透过部和所述光吸收部在与所述第一方向正交的方向上延伸形成。3.如权利要求2所述的光扩散部件,其特征在于所述第一方向为所述显示面的垂直方向,所述第二方向为所述显示面的水平方向。4.如权利要求1所述的光扩散部件,其特征在于所述光吸收体的大致楔形的底边的长度比所述光透过部的梯形部的上边长度长。5.如权利要求4所述的光扩散部件,其特征在于当设定所述光吸收体的大致楔形的底边长度为B,所述光透过部的梯形部的上边长度为W时,以W/(W+B)确定的开口率为10%以上且40°/。以下。6.—种配置在图像显示装置的显示面上的光扩散部件,其特征在于,包括多个光透过部,在第一方向上以规定间隔配置,而且该第一方向的截面形状具有大致梯形部;光吸收部,配置在所述多个光透过部相互之间,所述第一方向的截面形状具有大致楔形;其中,所述光透过部的大致梯形部的上边和所述光吸收体的大致楔形的底边互相邻接,当设定所述光透过部的大致梯形的上底的长度为w,所述光吸收体的大致楔形的底部长度为B时,以W1/(W1+B1)确定的开口率为10%以上且40%以下。7.—种图像显示装置,其特征在于,包括显示面板;配置在该显示面板的显示面上的光扩散部件,其中,所述光扩散部件包含以下部分多个光透过部,在第一方向上以规定间隔配置,而且该第一方向的截面形状具有大致梯形部;和光吸收部,配置在所述多个光透过部相互之间,所述第一方向的截面形状具有大致楔形,所述光透过部的大致梯形部的上边和所述光吸收体的大致楔形的底边互相邻接,在所述第二方向的截面上,使所述光吸收部的大致楔形的截面积相对于与所述大致楔形的截面形状外接的外接梯形的面积为1/3以上且2/3以下。8.—种图像显示装置,其特征在于,包括显示面板;配置在该显示面板的显示面上的光扩散部件,其中,所述光扩散部件包含以下部分多个光透过部,在第一方向上以规定间隔配置,而且该第一方向的截面形状具有大致梯形部;和光吸收部,配置在所述多个光透过部相互之间,所述第一方向的截面形状具有大致楔形,所述光透过部的大致梯形部的上边和所述光吸收体的大致楔形的底边互相邻接,当设定所述光透过部的大致梯形的上底的长度为w,所述光吸收体的大致楔形的底部长度为B时,以W1/(W1+B1)确定的开口率为10%以上且40%以下。全文摘要本发明提供作为图像显示装置的很好的可视角和明室对比度性能优良的光扩散部件。本发明的光扩散部件(100)具有在一个方向上,以规定间隔配置,截面形状为大致梯形配置的光透过部(1)和在光透过部相互之间,截面形状为大致楔形配置的光吸收部(2)。所述光透过部的大致梯形的上边和所述光吸收体的大致楔形的底边互相邻近,在所述截面上,使所述光吸收部的大致楔形的截面积(S1+S2)相对于与所述大致楔形的截面形状外接的外接梯形的面积(S3)为1/3以上,而且在2/3以下。文档编号G09F9/00GK101162273SQ20071010746公开日2008年4月16日申请日期2007年5月14日优先权日2006年10月12日发明者安达启,平田浩二,谷津雅彦申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1