显示装置及其校准方法与流程

文档序号:14785249发布日期:2018-06-27 22:16阅读:158来源:国知局
显示装置及其校准方法与流程

本公开内容涉及显示装置和用于校准该显示装置的方法,该显示装置更具体地为校准用于实时感测显示面板的特性的感测电路的显示装置。



背景技术:

有源矩阵型有机发光显示器涵盖自身发光的有机发光二极管(以下称为“OLED”),并具有响应速度快、发光效率高、亮度高和视角宽的优点。

自身发光的OLED包括阳极电极、阴极电极和在阳极电极与阴极电极之间形成的有机化合物层。有机化合物层包括空穴注入层HIL、空穴传输层HTL、发射层EML、电子传输层ETL和电子注入层EIL。当向阳极电极和阴极电极施加驱动电压时,穿过HTL的空穴和穿过ETL的电子被传送到EML以形成激子。结果是发光层EML生成可见光。

在有机发光二极管显示装置中,每个包括OLED的像素以矩阵形式布置,并且通过根据图像数据的灰度控制OLED的发光量来控制亮度。每个像素包括驱动元件,即驱动薄膜晶体管TFT,其根据施加在其栅电极与源电极之间的电压来控制流过OLED的像素电流。OLED和驱动TFT的电气特性随时间劣化并且可能导致像素的差异。这些像素之间的电气偏差是降低图像质量的主要因素。

已知下述外部补偿技术,其测量与像素的电气特性(驱动TFT的阈值电压和电子迁移率以及OLED的阈值电压)对应的感测信息并基于该感测信息在外部电路中调整图像数据以补偿像素之间的电气特性偏差。

在该外部补偿技术中,通过使用嵌入于源极驱动IC(集成电路)的感测块来感测像素的电气特性。接收电流形式的像素特性信号的感测块包括具有电流积分器和采样/保持单元的多个感测单元以及模数转换器ADC。电流积分器对通过感测通道输入的像素电流执行积分以产生感测电压。该感测电压通过采样/保持单元传递到ADC,并由ADC转换成数字感测数据。时序控制器基于来自ADC的数字感测数据计算用于补偿像素的电气特性的变化的像素补偿值并且基于该像素补偿值校正输入的图像数据。

由于有机发光显示器包括:用于以分段方式逐区域驱动显示面板的多个源极驱动器IC;感测块,每个感测块嵌入于每个源极驱动IC中,以分段方式区域接区域地感测显示面板上的像素。当通过感测块以分段方式感测像素时,由于感测块之间的偏移变化,所以感测准确度可能较低。特别是源极驱动IC内部的ADC根据温度或周围环境而改变其特性,因此ADC的输出在一定的室温范围内会在一定程度上保持恒定值,但是在室温以外的高温下其改变为与在室温下的值显著不同的值。ADC的这种输出特性影响面板的像素感测数据,导致块暗淡现象——在显示图像时源极驱动器IC负责的区域之间显示出亮度差异。

为了解决块暗淡现象,应当通过校准处理来补偿感测块之间的偏移偏差。校准处理对每个感测块施加测试电流以获得用于校准的感测数据并基于用于校准的感测数据来计算用于校准的补偿值,该补偿值可以补偿感测块之间的偏移偏差。时序控制器通过参考用于校准的补偿值以及调整输入的图像数据时的像素的补偿值来提高补偿准确度。

图1和图2示出了实现传统校准操作的配置。

图1中的第一传统校准方法提供了一个公共电流源Ix,以便对例如在3个源极驱动IC SIC1、SIC2和SIC3中配备的3个感测块施加测试电流。该校准方法在交替地导通在公共电流源Ix与源极驱动IC SIC1、SIC2和SIC3之间连接的开关SW1、SW2和SW3的同时将测试电流依次施加到3个感测块。

图2中的第二传统校准方法提供了3个独立电流源I1、I2和I3,以便对例如在3个源极驱动IC SIC1、SIC2和SIC3中配备的3个感测块施加测试电流。该校准方法经由独立电流源I1、I2和I3将测试电流同时施加到3个感测块。

因为使用公共电流源Ix,所以第一校准方法不会由于电流源的偏差而导致校准误差,但是由于所有源极驱动IC SIC1、SIC2和SIC3经由一个公共电流源Ix依次被校准,所以有增加附加时间的问题。

因为源极驱动IC SIC1、SIC2和SIC3经由独立电流源I1、I2和I3被同时校准,所以第二校准方法具有降低附加时间的优点,但是有以下问题:由于独立电流源I1、I2和I3之间的偏差导致校准误差。在显示装置中使用多个源极驱动IC(例如使用20个源极驱动IC)的情况下,独立电流源的数目应为20并且电流源的电路配置应变得精确且复杂或者电路规模将变大,使得相应电流源能够输出偏差非常小且值几乎相同的电流。

同时,因为在与相应感测通道对应的感测单元之间发生偏移偏差,所以当针对相应感测单元执行校准操作以校准感测单元的偏差时,第一校准方法和第二校准方法都有增加附加时间的问题。特别地,在第一校准方法的情况下,校准操作所需的时间增加这个问题是最严重的。



技术实现要素:

本公开内容是鉴于上述情况而提出的。本公开内容的目的是提供用于减少感测时间并消除每个感测通道的感测偏差的校准装置和方法。

本公开内容的另一个目的是提供通过仅添加小的资源而用于防止通道之间出现感测偏差的校准装置以及包括该校准装置的显示装置。

根据本公开内容的实施方式的显示装置可以包括:显示面板,显示面板包括多个像素,每个像素连接到多个数据线中的一个数据线和多个感测线中的一个感测线;参考电流源,参考电流源被配置成提供参考电流;以及源极驱动IC,源极驱动IC包括用于对通过感测线从像素输入的信号进行采样的多个感测单元和连接到多个感测单元的模数转换器ADC,源极驱动IC被配置成通过数据线向像素提供数据电压并且获得与像素的驱动相关的感测数据。源极驱动IC还可以包括连接多个感测线和多个感测单元的开关阵列,并且开关阵列在每个感测单元中可以包括:第一开关,第一开关用于将对应的感测单元连接到与该对应的感测单元对应的第一感测线;以及第二开关,第二开关用于将该对应的感测单元连接到与第一感测线相邻并且在第一感测线之前的第二感测线或者连接到参考电流源。

在实施方式中,每个感测单元通过第一开关连接到第一感测线以接收第一测试电流,并且然后通过第二开关连接到第二感测线以接收第二测试电流或者通过第二开关连接到参考电流源以接收参考电流,或者,每个感测单元通过第二开关连接到第二感测线以接收第二测试电流或者通过第二开关连接到参考电流源以接收参考电流,并且然后通过第一开关连接到第一感测线以接收第一测试电流。

在实施方式中,第一源极驱动IC的第一感测单元可以通过第二开关连接到参考电流源。

在实施方式中,除了第一源极驱动IC以外的每个源极驱动IC的第一感测单元可以通过第二开关连接到与对应的源极驱动IC相邻并且在对应的源极驱动IC相邻之前的源极驱动IC的最后一个感测单元所对应的感测线。

在实施方式中,源极驱动IC可以针对每个感测单元在第一时段中获得与第一测试电流对应的第一校准数据,并且在第二时段中获得与第二测试电流对应的第二校准数据。或者源极驱动IC可以针对每个感测单元在第一时段中获得与第二测试电流或参考电流对应的第一校准数据,并且在第二时段中获得与第一测试电流对应的第二校准数据。

在实施方式中,显示装置还可以包括时序控制器,时序控制器被配置成处理从源极驱动IC输出的感测数据以及第一校准数据和第二校准数据。时序控制器可以被配置成:将在第一时段中通过第一感测单元获得的第一校准数据与在第二时段中通过与第一感测单元相邻的感测单元获得的第二感测数据相比较,并且计算用于校正通过第一感测单元获得的感测数据与通过第二感测单元获得的感测数据之间的偏差的补偿数据。

在实施方式中,第一测试电流可以从连接到第一感测线并且设置在预定像素线中的像素提供,或者可以从设置在非显示区域中并且连接到第一感测线的伪像素或电流源提供。并且第二测试电流可以从连接到第二感测线并且设置在预定像素线中的像素提供,或者可以从设置在非显示区域中并且连接到第二感测线的伪像素或电流源提供。

在本公开内容的另一实施方式中,显示装置可以包括:用于对通过连接到在显示面板中配备的像素的感测线输入的信号进行采样的多个感测单元;以及连接到多个感测单元并且获得与像素的驱动相关的感测数据的模数转换器ADC,并且用于校准该显示装置的方法可以包括:在第一时段中,由第一感测单元对从与第一感测单元对应的第一感测线输入的第一测试电流进行积分和采样、并由ADC将采样值转换成第一校准数据,并且由第二感测单元对从与第一感测单元相邻并且在所述第一感测单元之后的第二感测单元所对应的第二感测线输入的第二测试电流进行积分和采样、并由ADC将采样值转换成第二校准数据;并且在第二时段中,由第一感测单元对从与第一感测单元相邻并且在第一感测单元之前的第三感测线输入的第三测试电流或者从参考电流源输入的参考电流进行积分和采样、并由ADC将采样值转换成第三校准数据,并且由第二感测单元对从第一感测线输入的第一测试电流进行积分和采样、并由ADC将采样值转换成第四校准数据。

在实施方式中,当显示装置包括包含多个感测单元和ADC的多个源极驱动IC时,在第二时段中,第一源极驱动IC的第一感测单元可以连接到参考电流源以接收参考电流,并且除了第一源极驱动IC以外的每个源极驱动IC的第一感测单元可以连接到与对应的源极驱动IC相邻并且在对应的源极驱动IC之前的源极驱动IC的最后一个感测单元所对应的感测线以接收测试电流。

在实施方式中,校准方法还可以包括:将在第一时段中经由第一感测单元获得的第一校准数据与在第二时段中经由第二感测单元获得的第四校准数据相比较,以提取用于校正经由第一感测单元获得的感测数据与经由第二感测单元获得的感测数据之间的偏差的补偿值

在本公开内容的再一实施方式中,显示装置可以包括:用于对通过连接到在显示面板中配备的像素的感测线输入的信号进行采样的多个感测单元;以及连接到多个感测单元并且获得与像素的驱动相关的感测数据的模数转换器ADC,并且用于校准该显示装置的方法可以包括:将感测单元同时连接到与感测单元对应的感测线,在每个感测单元处对从所连接的感测线输入的测试电流进行积分和采样,并且将感测单元依次连接到ADC以获得用于相应感测单元的第一校准数据;并且将感测单元连接到与感测单元所对应的感测线相邻的感测线或者连接到参考电流源,在每个感测单元处对从所连接的感测线输入的测试电流或从参考电流源输入的参考电流进行积分和采样,并且将感测单元依次连接到ADC以获得用于相应感测单元的第二校准数据。

在实施方式中,校准方法还可以包括:将分别由第一感测单元和与该第一感测单元相邻的第二感测单元基于从同一感测线输入的相同的测试电流获得的第一校准数据和第二校准数据相比较,以提取用于校正经由第一感测单元获得的感测数据与经由第二感测单元获得的感测数据之间的偏差的补偿值。

因此,感测块之间或者源极驱动IC之间的偏差还有感测通道之间的偏差可以通过使用仅一个参考电流源而被有效地消除,因此能够防止块暗淡现象并且能够改善图像质量。

并且,由于提供仅一个参考电流源输出有准确值的电流,所以能够利用小的资源执行校准操作。

此外,能够减少执行用于补偿感测通道之间的偏差的校准操作所需的时间。

附图说明

附图被包括用于提供对本公开内容的进一步理解,并且附图被并入且构成本说明书的一部分,附图示出了本公开内容的实施方式,并与说明书一起用于解释本公开内容的原理。在附图中:

图1示出了实现第一传统校准方法的配置;

图2示出了实现第二传统校准方法的配置;

图3以块示出了根据本公开内容的实施方式的显示装置;

图4示出了根据本公开内容的实施方式的显示面板的配置和用于执行校准操作的源极驱动IC的配置;

图5示出了根据本公开内容的实施方式的参考电流源、向每个通道提供参考电流的感测线和感测单元的连接;

图6示出了根据实施方式的用于控制包括在图5的源极驱动IC中的开关块中的开关的操作的控制信号的时序;

图7示出了根据另一实施方式的用于控制包括在图5的源极驱动IC中的开关块中的开关的操作的控制信号的时序;

图8示出了在每个通道中配备独立的电流源用于校准操作的实施方式;

图9示出了根据实施方式的两个相邻的感测单元连接到测试电流流向其中的一个感测线的电路配置;

图10示出了根据实施方式的用于控制包括在图9的电路配置中的开关的控制信号的时序;

图11示出了根据实施方式的在图10的第一时段期间执行的开关块和感测单元的操作;

图12示出了根据实施方式的在图10的第二时段期间执行的开关块和感测单元的操作;

图13示出了根据另一实施方式的用于控制包括在图9的电路配置中的开关的控制信号的时序。

具体实施方式

在下文中,将参照附图详细描述本公开内容的优选实施方式。在整个说明书中相同的附图标记指代大致相同的组件。在以下描述中,如果并入本文的已知功能和配置的详细描述可能使本公开内容的主题相当不清楚时,则将省略所述详细描述。

数据驱动电路包括多个源极驱动IC,且每个源极驱动IC包括包含模数转换器ADC和多个感测单元的感测块以感测包括在显示面板中的像素的驱动特性。由于每个ADC的特性差异,块暗淡现象发生,且由于每个感测单元的特性差异,在显示相同亮度的相邻像素中存在亮度差异。

为了解决该问题,应当测量和补偿包括在感测块中的ADC的偏差,并且应当测量和补偿相应感测单元之间的检测偏差。例如,将源极驱动IC用于横向分辨率为3840的4K显示器并且每个源极驱动IC中包括192个感测单元,因此应当对每个感测单元施加相同的测试电流,校准数据应当通过ADC获得并彼此比较以补偿感测单元之间的偏差。

在如图1所示的配置采用仅一个电流源的情况下,存在为了执行感测单元之间的偏差补偿的校准操作而花费大量时间的问题。在如图2所示的配置采用多个电流源的情况下,所需的时间少于图1但是存在以下问题:将电路配置成使得使从电流源输出的测试电流保持为相同值的成本高。

本公开内容通过同时提供与感测线的数目对应的多个测试电流而减少了校准操作所需的时间,而且当不单独使用具有复杂的电路配置和大规模的多个参考电流源通过接收来自包括在显示面板中的像素的测试电流作为电流源时,可以降低电路构造成本。

并且,本公开内容将在连接到感测线的像素中生成的测试电流或在具有简单的电路配置并连接到感测线的电流源中生成的测试电流依次提供给相应的感测单元和相邻的感测单元,并且比较经由感测单元和ADC输出的校准数据,因此不仅能够消除相邻的感测单元之间的偏差,还能够消除ADC之间的偏差。

此外,本公开内容安装了一个参考电流源用于在显示面板上输出有精确值的电流,将从参考电流源输出的测试电流和在连接到对应的感测线的像素中生成的测试电流依次提供给一个感测单元以分别获得校准数据,并且比较该校准数据从而能够减少每个显示装置的亮度偏差的发生。

图3以块示出了根据本公开内容的实施方式的显示装置,并且图4示出了根据本公开内容的实施方式的显示面板的配置和用于执行校准操作的源极驱动IC的配置。

根据本公开内容的显示装置包括显示面板10、时序控制器11、数据驱动电路12、栅极驱动电路13和存储器16。

多个数据线14A和14B和多个感测线以及多个栅极线(或扫描线)15在显示面板10上彼此交叉,并且像素P以矩阵形式布置以构成像素阵列。多个栅极线15可以包括被提供有第一扫描信号的多个第一栅极线。

在像素阵列中,每个像素被连接到数据线14A之一、感测线14B之一以及栅极线15之一并且形成像素线L#n。每个像素可以电连接到数据线14A并且响应于通过栅极线15馈送的栅极脉冲(或扫描脉冲)而从数据线14A接收数据电压,并且通过感测线14B输出感测信号。布置在同一像素线L#n上的像素根据从同一栅极线施加的栅极脉冲而同时操作。

像素被提供有来自未示出的电源的高电位驱动电压EVDD和低电位驱动电压EVSS,并且像素可以包括OLED、驱动TFT、存储电容器、多个开关TFT。构成像素的TFT可以实现为p型或n型或混合了p型和n型的混合型。此外,TFT的半导体层可以包括非晶硅、多晶硅或氧化物。

在本公开内容的驱动电路或像素中,开关元件可以由n型金属氧化物半导体场效应晶体管MOSFET或p型MOSFET的晶体管实现。以n型晶体管示出以下实施方式,但是本公开内容不限于此。晶体管是包括栅极、源极和漏极的3电极的元件。源极是用于向晶体管提供载流子的电极。在晶体管内,载流子从源极开始流动。漏极是载流子离开晶体管的电极。也就是说,MOSFET中的载流子的流动是从源极到漏极。在N型MOSFET(NMOS)的情况下,由于载流子是电子,源极电压具有低于漏极电压的电压,使得电子可以从源极向漏极流动。在N型MOSFET中,因为电子从源极向漏极流动所以电流方向是从漏极到源极。在P型MOSFET(PMOS)的情况下,由于载流子是空穴,源极电压高于漏极电压,使得空穴能够从源极向漏极流动。在P型MOSFET中,由于空穴从源极向漏极流动,所以电流从源极流向漏极。应当注意,MOSFET的源极和漏极不固定。例如,MOSFET的源极和漏极可以根据施加的电压而变化。在以下实施方式中,本公开内容不应由于晶体管的源极和漏极而受到限制。

本公开内容可以利用外部补偿技术(方案或方法)应用于显示装置。外部补偿技术感测在像素中配备的驱动TFT的电气特性并基于感测值来校正输入图像的数字数据。驱动TFT的电气特性可以包括驱动TFT的阈值电压和电子迁移率。

时序控制器11可以根据预定控制序列暂时地分离感测驱动和显示驱动或显示操作,感测驱动感测像素的驱动特性并更新对应于感测值的补偿值,显示驱动或显示操作将图像数据写入显示面板以显示反映出补偿值的输入图像。可以在图像数据的写入停止的时段期间进行感测操作。

在时序控制器11的控制下,感测驱动可以在垂直空白时段执行,或者在显示操作开始之前的上电序列时段期间(紧接在施加系统电力之后显示图像的图像显示时段之前的非显示时段)执行,或者在显示操作结束之后的断电序列时段(紧接在图像显示终止之后关断系统电力之前的非显示时段)。

垂直空白时段是输入图像数据未被写入并且被设置在写入1帧的输入图像数据期间的垂直活跃时段之间的时段。上电序列时段是指从系统电力接通直到显示出输入图像的过渡时段。断电序列时段是指从输入图像的显示结束直到系统电力关断的过渡时段。

除了显示驱动和感测驱动以外,本公开内容还可以包括用于测量相应感测单元的特性差异和相应ADC的特性差异并补偿差异的校准驱动。由于以源极驱动IC为单位向每个感测单元施加两个测试电流是耗时的,所以根据本公开内容的校准驱动可以在产品出货时执行,并且还可以在断电序列时段期间执行。

时序控制器11基于时序信号(例如垂直同步信号Vsync、水平同步信号Hsync、点时钟信号DCLK和数据使能信号DE)生成用于控制数据驱动电路12的操作时序的数据控制信号DDC和用于控制栅极驱动电路13的操作时序的栅极控制信号GDC。时序控制器11可以暂时地分离执行图像显示的时段和执行外部补偿操作的时段,并且不同地生成用于图像显示的控制信号和用于外部补偿的控制信号。

在校准驱动时,时序控制器11可以基于从数据驱动电路12发送的用于校准的数据来计算用于校准的补偿值(该补偿值能够补偿感测块之间的偏移偏差和感测单元之间的偏移偏差)并将其存储在存储器16中。

在感测驱动期间,时序控制器11可以基于从数据驱动电路12输入的数字感测值SD计算能够补偿像素的驱动特性的变化的用于像素的补偿值,并将其存储在存储器16中。可以在每次执行感测驱动时更新存储在存储器中的用于像素的补偿值,因此可以容易地补偿像素的时变特性。

在显示驱动期间,时序控制器11可以从存储器16读取补偿值、基于该补偿值校正输入图像的数字数据DATA并将其提供给数据驱动电路12。时序控制器11能够通过进一步参考校准的补偿值以及像素的补偿值来提高补偿准确度。

数据驱动电路12可以包括用于逐区域划分和驱动显示面板10的一个或更多个源极驱动IC SDIC。每个源极驱动IC可以包括连接到数据线14A的多个数模转换器DAC、通过感测通道连接到感测线14B的感测块SB以及用于控制感测线14B与感测单元之间的连接的交叉开关块X-SWB。

每个感测单元通过感测线14B共同连接到设置在一个像素线L#n中的多个像素P。包括两个或更多个像素(例如4个像素)的一个单位像素可以共享一个感测线14B以连接到对应的感测单元。

DAC根据数据控制信号DDC将从时序控制器11输入的数字图像数据RGB转换成用于显示的数据电压,并将该数据电压提供给数据线14A。用于显示的数据电压是根据输入图像的灰度级而变化的电压。

在感测驱动期间,DAC根据数据控制信号DDC生成用于感测的数据电压并将该数据电压提供给数据线14A。用于感测的数据电压是在感测驱动期间能够导通在像素中配备的驱动TFT的电压。用于感测的数据电压可以被生成为对于所有像素为相同值。已知每种色彩的像素特性是不同的,则用于感测的数据电压可以针对每种色彩使用不同值来生成。

在校准驱动期间,DAC根据数据控制信号DDC生成用于校准的数据电压并将该数据电压提供给数据线14A。用于校准的数据电压是在感测驱动期间能够导通在像素中配备的驱动TFT以使得用于校准的测试电流流向感测线14B的电压。

数据驱动电路可以向设置在同一像素线中并且连接到同一感测线14B的多个像素之中的仅一个像素施加用于校准的数据电压,而不向该多个像素之中的其他像素施加任何数据电压或者施加足以关断驱动TFT的数据电压。

感测块SB可以包括与感测通道一样多的多个感测单元SU和一个ADC。感测单元可以包括连接到感测通道并且对通过该感测通道输入的电流进行积分的电流积分器CI和用于对经积分的电流值进行采样的采样/保持单元SH。ADC可以依次连接到相应感测单元并且将采样值转换成感测数据或校准数据。图4示出了第一源极驱动IC SIC#1包括6个感测单元SU#1~SU#6。

交叉开关块X-SWB是包括根据数据控制信号DDC选择性地将感测单元连接到感测通道(或感测线)或参考电流源Iref的多个开关的开关阵列。交叉开关块X-SWB可以在感测驱动期间将每个感测单元连接到对应的感测通道并且将每个感测单元依次连接到两个相邻的感测通道。

也就是说,交叉开关块X-SWB可以在校准驱动期间将每个感测单元连接到对应的感测通道,并且然后将每个感测单元连接到与上述对应的感测通道相邻的之前或之后的感测通道。并且在校准驱动期间,交叉开关块X-SWB可以通过第一感测通道CH#1将第一感测单元SU#1连接到第一感测线,并且然后通过第0感测通道将第一感测单元SU#1连接到参考电流源Iref或者连接到之前的源极驱动IC的最后一个感测线。如图4所示,第一源极驱动IC SIC#1的最后一个感测线可以连接到第二源极驱动ICSIC#2的第一感测单元SU#1。

ADC在感测驱动期间输出与像素的驱动特性对应的感测数据,并且在校准驱动期间输出与测试电流或参考电流对应的校准数据。

栅极驱动电路13在显示驱动期间基于栅极控制信号GDC生成用于显示的扫描信号,并且向连接到像素线的栅极线15依次提供所述扫描信号。像素线L#n是指一组水平相邻的像素。栅极驱动电路13在感测驱动期间基于栅极控制信号GDC生成用于感测的扫描信号,并且向连接到像素线的栅极线15依次提供所述扫描信号。

栅极驱动电路13在校准驱动期间基于栅极控制信号GDC生成用于感测的扫描信号,并且向一个预定像素线15提供该扫描信号,以便设置在该像素线中的像素向感测线14B提供测试电流。

时序控制器11可以比较从轮流接收来自同一感测线的相同的测试电流的两个相邻的感测单元输出的两个校准数据并且计算可以补偿这两个感测单元之间的偏差的校正值。类似地,时序控制器11可以比较从轮流接收来自下一个感测线的相同的测试电流的两个相邻的感测单元输出的两个校准数据并且计算可以补偿这两个感测单元之间的偏差的校正值。

如上所述,时序控制器11可以通过依次补偿相邻的感测单元之间的偏差来补偿包括在所有源极驱动IC中的所有感测单元之间的特性偏差。此外,时序控制器11可以比较测试电流源的校准数据与第一源极驱动IC的第一感测线的测试电流的校准数据以校正显示装置之间的偏差。因此,时序控制器11可以计算校准值的补偿数据,该补偿数据可以利用校准数据补偿感测单元之间的偏差、感测块的偏差和显示装置之间的偏差并将它们存储在存储器16中。

存储器16存储由ADC将从参考电流源输入并流过感测单元的参考电流转换成的校准数据的参考值。当参考电流被输入到第一源极驱动IC的第一感测单元并且校准数据被输出时,时序控制器11可以通过比较校准数据和存储在存储器16中的参考值来确定用于补偿第一源极驱动IC的第一感测单元的参考补偿值。

如上所述,时序控制器11根据从感测线施加到两个相邻感测单元的测试电流通过比较两个校准数据来确定用于校正感测单元之间的偏差的补偿值,并且通过参考电流确定用于校正预定感测单元的补偿值,因此可以获得通过参考电流校正所有感测单元的结果。

OLED显示装置将主要被描述为应用本公开内容的显示装置,但是本公开内容的显示装置不限于此。例如,本公开内容的显示装置可以应用于需要感测像素的驱动特性以便增大显示装置的可靠性和寿命的任何显示装置,例如液晶显示器LCD或者使用无机物质作为发光层的无机发光显示装置。

图5示出了参考电流源、向每个通道提供参考电流的感测线和感测单元的连接,并且图6示出了根据实施方式的用于控制图5的源极驱动IC包括的开关块中的开关的操作的控制信号的时序。

交叉开关块X-SWB配备有第一开关A和第二开关B,即,包括用于N个感测单元的N个开关对,每个感测单元包括开关对A和B,因此可以将每对感测单元连接到对应的感测线或与对应的感测线相邻的之前的感测线。

第一开关A将感测单元连接到对应的感测线,并且第二开关B将感测单元连接到与对应的感测线相邻的之前的感测线或参考电流源。

在图5中,第一源极驱动IC SIC#1中的第一感测单元SU#1可以通过第一开关A#1经由第一感测通道CH#1与第一感测线SL#1连接或断开,并且第一源极驱动IC SIC#1中的第一感测单元SU#1可以通过第二开关B#1经由第0感测通道CH#0与参考电流源Iref连接或断开。

并且,第二感测单元SU#2通过第一开关A#2经由第二感测通道CH#2连接到第二感测线SL#2,并且第二感测单元SU#2通过第二开关B#2经由第一感测通道CH#1连接到第一感测线SL#1。

同时,基于感测线对其进行解释,第k感测线SL#k可以通过包括在交叉开关块X-SWB中的开关对A#k和B#(k+1)与对应的感测单元SU#k连接,并且然后连接到下一个感测单元SU#(k+1)。

第一源极驱动IC SIC#1的最后一个即第N感测线SL#N通过第一开关A#N与对应的第N感测单元SU#N连接,并且然后通过下一个源极驱动IC SIC#2中的交叉切换块X-SWB中包括的第二开关B#1连接到与第N感测线SL#N相邻并且在第N感测线SL#N之后设置的第(N+1)感测线SL#(N+1)所对应的感测单元(第二源极驱动SIC#2的第一感测单元SU#1)。

在校准驱动期间,由于测试电流通过相应感测线被提供给感测单元并且来自一个感测线的相同的测试电流被依次施加到两个相邻的感测单元,所以两个感测单元之间的特性差异可以通过对所述相同的测试电流使用从所述两个感测单元输出的校准数据来校正。

如图6所示,在第一时段T1期间,第一开关A#1~A#N依次导通,因而每个感测线的测试电流被施加到对应的感测单元。也就是说,在第一时段T1期间,开关A#1将第一感测线SL#1连接到第一感测单元SU#1以将第一感测线SL#1的测试电流提供给第一感测单元SU#1,然后开关A#2将第二感测线SL#2连接到第二感测单元SU#2以将第二感测线SL#2的测试电流提供给第二感测单元SU#2,并且类似地开关A#N将第N感测线SL#N连接到第N感测单元SU#N。第一开关A#1到A#N在第一时段T1中在所有源极驱动IC上依次导通以将每个感测线连接到对应的感测单元。

在第二时段T2期间,第二开关B#1到B#N依次导通以将每个感测线的测试电流施加到与对应的感测单元相邻的下一个感测单元。也就是说,在第二时段T2期间,开关B#1将参考电流源Iref连接到第一感测单元SU#1以提供参考电流,开关B#2将第一感测线SL#1连接到与对应的第一感测单元SU#1相邻的下一个感测单元(第二感测单元SU#2)以将第一感测线SL#1的测试电流提供给第二感测单元SU#2,并且类似地,开关B#N将第(N-1)感测线SL#(N-1)连接到第N感测单元SU#N。第二开关B#1到B#N在第二时段T2中在所有源极驱动IC上依次导通以将每个感测线连接到与对应的感测单元相邻的下一个感测单元。

与图6不同,在第一时段期间第二开关B#1到B#N依次导通然后在第二时段期间第一开关A#1到A#N依次导通。当然,可以从A#N到A#1依次导通第一开关和从B#N到B#1依次导通第二开关,而非从A#1到A#N依次导通第一开关和从B#1到B#N依次导通第二开关。

图7示出了根据另一实施方式的用于控制包括在图5的源极驱动IC中的开关块中的开关的操作的控制信号的时序。

在图7中,感测单元以感测单元序号的顺序、例如以第一感测单元SU#1、第二感测单元SU#2、…、和第N感测单元SU#N的顺序连接到感测线或参考电流源。每个感测单元SU#k首先通过第二开关B#k连接到位于与感测单元SU#k所对应的感测线SL#k相邻并且在其之前的感测线SL#(k-1),并且然后通过第一开关A#k连接到对应的感测线SL#k。

也就是说,可以使交叉开关块X-SWB中包括的第一开关和第二开关如图7所示操作,使得连接到第一感测单元SU#1的第二开关B#1导通、连接到第一感测单元SU#1的第一开关A#1导通、连接到第二感测单元SU#2的第二开关B#2导通然后连接到第二感测单元SU#2的第一开关A#2导通。

或者,在图7中,第一开关和第二开关的顺序改变,第一开关和第二开关可以以A#1->B#1->…->A#N->B#N的顺序操作。

或者,类似于通过参考图6所解释的内容而与图7所示的顺序相反,第一开关和第二开关的操作可以以A#N->B#N->…->A#1->B#1的顺序控制或者以B#N->A#N->…->B#1->A#1的顺序控制。

在图7中,可以基于每个感测单元建立第一时段和第二时段。对于第k感测单元SU#k,第二开关B#k在第一时段中工作以将来自前一个感测线SL#(k-1)的测试电流施加到第k感测单元SU#k,并且第一开关A#k在第二时段中工作以将来自与第k感测单元SU#k对应的感测线SL#k的测试电流施加到第k感测单元SU#k。

或者,在图7中,可以基于每个感测线建立第一时段和第二时段。对于第k感测线SL#k,在第一时段中,第一开关A#k工作使得第k感测线SL#k将测试电流施加到对应的第k感测单元SU#k,并且在第二时段中,第二开关B#(k+1)工作使得第k感测线SL#k将测试电流施加到与第k感测线所对应的第k感测单元SU#k相邻并且在第k感测单元SU#k之后的感测单元SU#(k+1)。

当感测单元被连接到感测线或参考电流源以接收测试电流或参考电流时,感测单元对电流积分并对积分值采样,并且然后ADC将其转换成校准数据以发送到时序控制器。由于多个感测单元连接到一个ADC,所以连接到感测线并接收测试电流的感测单元依次连接到ADC。

在校准驱动期间,每个感测线用作通过其提供测试电流的通道。对于每个感测线,设置在像素线中且共享对应的感测线的多个像素之中的一个像素可以作为提供测试电流的电流源的角色。或者,可以在显示区域以外的非显示区域中配备连接到每个感测线的伪像素,并且将其作为在校准驱动期间提供测试电流的电流源进行操作。或者,如图8所示,可以在非显示区域中(像素线L#0中)为每个感测线(或感测通道)配备独立电流源(I#k,I#k+1),并且其仅在校准驱动期间进行操作。可以通过开关(Ck,Ck+1)来控制独立电流源与感测线的连接。

图9示出了两个相邻的感测单元连接到测试电流流向其中的一个感测线的电路配置。

参照图9,本公开内容的像素可以配备有OLED、驱动TFT DT、存储电容器Cst、第一开关ST1和第二开关ST2。

OLED包括连接到驱动TFT DT的源极节点的阳极电极、连接到低电位驱动电压EVSS的输入端子的阴极电极以及位于阳极电极和阴极电极之间的有机化合物层。驱动TFT DT根据栅电极和源电极之间的电压Vgs来控制输入到OLED的电流量。驱动TFT DT的栅电极连接到栅极节点N1,驱动TFT DT的漏电极连接到高电位驱动电压EVDD的输入端子,并且驱动TFT DT的源电极连接到源极节点N2。存储电容器Cst连接栅极节点N1和源极节点N2。第一开关ST1响应于扫描信号SCAN而将数据线14A中的数据电压Vdata施加到栅极节点N1。第一开关ST1的栅电极连接到栅极线,第一开关ST1的漏电极连接到数据线14A,并且第一开关ST1的源电极连接到栅极节点N1。第二开关ST2响应于扫描信号SCAN而导通/关断在源极节点N2与感测线14B之间的电流流动。第二开关ST2的栅电极连接到栅极线,第二开关ST2的漏电极连接到感测线14B,并且第二开关ST2的源电极连接到源极节点N2。

构成数据驱动电路12的源极驱动IC通过感测线14B连接到像素。源极驱动IC可以包括:多个感测单元,其包括用于在感测驱动期间对模拟感测电流(或模拟像素电流)积分或者在校准驱动期间对测试电流或参考电流积分的电流积分器CI和用于采样和保持经积分电流值的采样/保持单元SH;以及用于将采样值转换成数字感测数据或数字校准数据的ADC。

源极驱动IC还可以包括用于将感测单元连接到对应的感测线的第一开关A和用于将感测单元连接到与对应的感测线相邻的感测线的第二开关B。在图9中,第k感测线SL#k经由第一开关A#k连接到第k感测单元SU#k并且第k感测线SL#k经由第二开关B#(k+1)连接到第(k+1)感测单元SU#(k+1)。

电流积分器包括运算放大器AMP、反馈电容器Cfb和复位开关RST。电流积分器对通过感测线14B输入到感测块的像素电流、测试电流或参考电流积分并输出积分值。运算放大器AMP包括接收像素电流或测试电流的反相端子(-)、接收预定电压Vpre的非反相端子(+)和输出积分值的输出端子。反馈电容器Cfb连接反相端子(-)和输出端子并累积电流。复位开关RST连接到反馈电容器Cfb的两端并且当复位开关RST导通时反馈电容器Cfb被初始化。

采样/保持单元包括采样开关SAM、保持电容器Ch和保持开关HOLD。如果采样开关SAM导通,则电流积分器CI的输出被存储在保持电容器Ch中,并且如果保持开关HOLD导通,则将存储在保持电容器Ch中的电压施加到ADC。

ADC将模拟输出转换成数字感测数据或校准数据来将其输出。

图10示出了根据实施方式的用于控制包括在图9的电路配置中的开关的控制信号的时序,图11示出了在图10的第一时段期间执行的开关块和感测单元的操作,并且图12示出了在图10的第二时段期间执行的开关块和感测单元的操作。

在图10中,在第一时段T1中,第k感测线SL#k连接到第k感测单元SU#k,并且在第二时段T2中,第k感测线SL#k连接到第(k+1)感测单元SU#(k+1)。在第一时段T1中,将第k感测线SL#k连接到第k感测单元SU#k的第一开关A#k导通,复位开关RST和采样开关SAM导通以便第k感测单元SU#k处理通过第k感测线SL#k输入的测试电流。在第二时段T2中,将第k感测线SL#k连接到第(k+1)感测单元SU#(k+1)的第二开关B#(k+1)导通,复位开关RST和采样开关SAM导通以便第(k+1)感测单元SU#(k+1)处理通过第k感测线SL#k输入的测试电流。

在图11中示出了第一时段的连接状态,第一开关A#k导通并且来自第k感测线SL#k的测试电流被输入到第k感测单元SU#k,因此测试电流经由电流积分器CI和采样开关SAM被存储在保持电容器Ch中。ADC将通过保持开关HOLD提供的保持电容器中的电压转换成数字数据(校准数据)并将其输出到时序控制器11。

在图12中示出了第二时段的连接状态,第二开关B#(k+1)导通,并且来自第k感测线SL#k的测试电流被输入到第(k+1)感测单元SU#(k+1),因此测试电流经由电流积分器CI和采样开关SAM被存储在保持电容器Ch中。ADC将通过保持开关HOLD提供的保持电容器中的电压转换成数字数据(校准数据)并将其输出到时序控制器11。

在第一时段和第二时段中输出的校准数据是通过处理分别从第k感测单元SU#k和第(k+1)感测单元SU#(k+1)中的同一感测线输出的相同测试电流而获得的两个值,所以两个值之间的差值对应于两个感测单元的特性差异。

时序控制器11可以通过使用在第一时段和第二时段中输出的校准数据来获得可以校正第k感测单元SU#k与第(k+1)感测单元SU#(k+1)之间的差异的补偿值。

对于每个源极驱动IC,时序控制器11可通过使用接收相同测试电流的两个相邻感测单元中的每个感测单元通过ADC输出的校准数据来生成用于校正包括在对应的源极驱动IC中的感测单元之间的特性差异(根据所接收的像素电流生成感测数据的特性的差异)的补偿数据。时序控制器11可按类似方式生成用于校正源极驱动IC之间的特性差异的补偿数据。

此外,时序控制器11可以通过比较感测单元(例如第一源极驱动IC的第一感测单元)通过处理从参考电压源输入的有精确值的参考电压而经由ADC输出的校准数据和感测单元通过处理从特定感测线输入的测试电流而经由ADC输出的校准数据来减少显示装置之间的偏差。

图13示出了根据另一实施方式的用于控制包括在图9的电路配置中的开关的控制信号的时序。

在前述实施方式中,将感测单元连接到对应的感测线的第一开关以A#1->A#2->…->A#N的顺序操作,并且将感测单元连接到与对应的感测线相邻并且在对应的感测线之前的感测线的第二开关以B#1->B#2->…->B#N的顺序操作。

在图13的时序中,在第一时段T1期间,第一开关A#1~A#N同时导通以将所有感测单元分别连接到对应的感测线,并且然后相应感测单元中包括的并将该感测单元连接到ADC的保持开关HOLD依次导通(例如以HOLD#1->HOLD#2->…->HOLD#N的顺序导通,其中HOLD#1、HOLD#2和HOLD#N分别指代包括在第一感测单元、第二感测单元和第N感测单元中的保持开关)以将感测单元依次连接到ADC,因此可以获得根据测试电流的相应感测单元的校准数据。

此外在第二时段T2期间,第二开关B#1~B#N同时导通以将所有感测单元分别连接到与对应的感测线相邻并且在对应的感测线之前的感测线或参考电流源,并且然后保持开关HOLD依次导通以将感测单元依次连接到ADC,因此可以获得根据测试电流或参考电流的相应感测单元的校准数据。

当然,在第一时段T1期间,第二开关B#1~B#N可以同时导通,并且然后在第二时段T2期间,第一开关A#1~A#N可以同时导通。

与图1中使用一个参考电流源的传统的校准方法相比,本公开内容尽管使用仅一个参考电流源但是当源极驱动IC的数目是L时本公开内容能够将校准驱动所需的时间减少到L/2分之一。

图2中使用与源极驱动IC的数目一样多的多个参考电流源的传统校准方法需要将第一电流源连接到第二源极驱动IC(类似地将第二电流源连接到第三源极驱动IC)的步骤和将每个电流源连接到每个感测单元的步骤,以便减小参考电流源之间的偏差。本公开内容通过使用仅单个参考电流源能够进一步减少校准驱动所需的时间和减小感测通道之间的偏差。

本领域技术人员应当理解,在整个说明书中,在不脱离本公开内容的技术原理的情况下可以进行各种改变和修改。因此,本公开内容的技术范围不限于本说明书中的详细描述,而应由所附权利要求书的范围限定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1