用于透射和反射型液晶显示器的相位延迟元件的制作方法

文档序号:2782691阅读:238来源:国知局
专利名称:用于透射和反射型液晶显示器的相位延迟元件的制作方法
技术领域
本发明涉及一种用于液晶显示器的相位延迟元件,尤其涉及一种用于透射和反射型液晶显示器的相位延迟元件,其中该显示器在光量充足的明亮环境中以低功率消耗的反射模式进行显示操作,且在光量不足的黑暗环境中以高亮度的透射模式也进行显示操作。
背景技术
在目前信息定位的社会中,电子显示器的作用更加重要。在各种工业领域中广泛使用各种种类的电子显示器。
一般地,电子显示器是一种给人视觉提供多种信息的装置。换句话说,从各种电子器件输出的电子信息信号在电子显示器中转换成可视觉识别的光学信息信号。因此,电子显示器用作连接人和电子器件的桥梁。
电子显示器分为其中通过发光方式显示光学信息信号的发射型显示器或其中通过光学调制方式,如光反射、散射和干涉现象等来显示光学信息信号的非发射型显示器。发射型显示器公知为有源显示器,如,其包括CRT(阴极射线管)、PDP(等离子体显示面板)、LED(发光二极管)和ELD(电致发光显示器)等。非发射型显示器公知为无源显示器,其包括LCD(液晶显示器)、ECD(电化学显示器)和EPID(电泳图像显示器)等。
在图像显示器如电视接收器和监视器中使用的CRT在显示质量和经济效率方面具有最高的市场份额,但其还具有很多缺点,如分量重、体积大和较高的功率消耗。
同时,由于半导体技术的飞速发展,各种电子器件由低电压和低功率驱动,因而电子设备变得更加小和轻。因此,根据新的环境需要具有小和轻特性、以及具有低驱动电压和低功率消耗特性的平板型显示器。
在各种发展的平板型显示器中,LCD比任何其它显示器都更加小和轻,并具有低驱动电压和低功率消耗,还具有与CRT相似的显示质量。因此,LCD广泛用在各种电子设备中。
LCD分为使用外部光源如背光组件来显示图像的透射型LCD、使用自然光显示图像的反射型LCD,和其中当不存在外部光源的户内或黑暗环境时,使用显示器本身提供的内部光源以透射模式进行显示操作,以及在较明亮的环境中如户外通过反射外部入射光以反射模式显示图像来进行显示操作的透射反射型LCD。
反射型LCD装置一般使用外部自然光或提供给LCD装置的环境光显示图像。因此,当LCD装置在黑暗中时反射型LCD装置就不会显示图像。
透射型LCD装置使用从LCD装置内部的背光组件产生的非自然光显示图像。因此,当LCD装置在黑暗中时透射型LCD装置可以显示图像。然而,透射型LCD装置比反射型LCD装置具有大的功率消耗。此外,透射型LCD装置具有电池,导致比反射型LCD装置的重量重。因此,与反射型LCD装置相比,透射型LCD装置周作便携式显示装置并不理想。
LCD使用施加到液晶层的电压控制液晶分子的排列,并根据像素驱动的方式可分类为无源矩阵型或有源矩阵型。在无源矩阵型中,使用施加到信号线和扫描线的电压之间的差的均方根(rms)驱动像素,同时执行将信号电压同时施加到所有像素的行寻址。在有源矩阵型中,通过开关元件,如金属-绝缘体-金属(MIM)器件或薄膜晶体管(TFT)驱动像素。
图1是显示常规反射-透射型LCD装置的横截面图。一部分非自然光,即来自设置在反射-透射型LCD装置后侧的背光组件的非自然光损失掉了。
参照图1,反射-透射型LCD装置包括灯1、灯反射片2、下偏振器3、延迟膜4、反射层5、液晶层6、彩色滤光片7和上偏振器8。
灯1设置在下偏振器3的背侧,并夹在下偏振器3和灯反射片2之间。灯1给下偏振器3供给非自然光。下偏振器3具有大致垂直于水平方向的吸收轴,该水平方向相对反射-透射型LCD装置确定了大致平行的层。当灯1产生的非自然光入射到下偏振器3上时,在水平方向上振动的一部分非自然光穿过下偏振器3,并向反射-透射型LCD装置的观察者侧发射。当从LCD装置的外部提供的自然光入射到下偏振器3上时,在水平方向上振动的一部分自然光穿过下偏振器3,并向反射-透射型LCD装置的背侧发射。
延迟膜4包括1/4波长相位(λ/4)延迟膜4。当非自然光或自然光穿过λ/4延迟膜4时,光的相位延迟了大约1/4波长相位或λ/4。1/4波长相位延迟膜4用作将线偏振光转变为圆偏振光,或反之亦然,在彼此相互垂直并平行于1/4波长相位延迟膜4光轴的两个偏振分量之间产生1/4波长的相位差。
反射层5设置在液晶层6下面并如图所示在液晶层和1/4波长相位延迟膜4中间。当垂直偏振光入射到反射层5上时,垂直偏振光从反射层5反射。垂直偏振光的光量由液晶层6控制。更具体地说,液晶层6的排列响应于施加到那里的电场而变化,因而使得液晶层6的光透射率变化。穿过液晶层的一部分垂直偏振光入射到彩色滤光片7上,并根据预定波长范围而穿过彩色滤光片7。
上偏振器8包括允许垂直偏振的光穿过上偏振器8的垂直偏振轴。当从背侧提供的垂直偏振光入射到上偏振器8时,垂直偏振光穿过上偏振器8。此外,当自然光或前面的光入射到上偏振器8时,垂直偏振光穿过上偏振器8并入射到彩色滤光片7。
对应于透射模式的非自然光具有比对应于反射模式自然光低的效率。当反射-透射型LCD装置为透射模式时,由灯1产生的非自然光入射到允许线偏振光穿过下偏振器3的下偏振器3。线偏振光入射到允许右旋圆偏振光从延迟膜4发射的延迟膜4上。一部分右旋圆偏振光穿过液晶层6的透射窗口,所述液晶层具有根据施加到液晶层6的电场而变化的光的波长相位。
当右旋圆偏振光穿过液晶层6时,根据施加到液晶层6的电场而从液晶层6发射右旋圆偏振光或垂直偏振光。此外,注意到垂直偏振光穿过上偏振器8,而右旋圆偏振光不穿过上偏振器8。
从延迟膜4发射的其余右旋圆偏振光从反射层5反射,并作为左旋圆偏振光从那里发射。左旋圆偏振光入射到延迟膜4,以致从延迟膜4向下偏振器3发射垂直偏振光。垂直偏振光被下偏振器3阻挡。因此,非自然光的所述其余部分损失掉了,因而降低了灯的效率。
例如,当有效显示区域为大约单位像素的80%且透射窗口为大约单位像素的30%时,对于非自然光的透射,每个单位像素损失了超过大约70%。
因此,期望通过提高从反射层反射的非自然光的效率来提高反射-透射型LCD装置的亮度。

发明内容
因而,本发明是为了解决常规技术的上述问题,本发明的一个目的是提供一种能简化液晶单元结构并能减小透射模式中光损耗的透射和反射型LCD。
依照本发明示范性实施方案的透射和反射型LCD包括第一基板和具有设置成面对第一基板的内表面的第二基板。在第一基板和第二基板之间形成液晶层。在第一基板外表面上形成第一偏振片并在第一偏振片背侧设置背光。在所述背光与由液晶层和第一及第二基板之一设置的反射层之间设置亮度增强层。所述亮度增强层配置成将穿过亮度增强层的光的相位延迟大约1/4相位(λ/4),从而从所述亮度增强层向确定第一基板的背侧发射右旋圆偏振光。
在依照本发明一方面的制造相位延迟元件的方法中,在基板上设置的取向层上形成液晶层。将液晶层构图并固化,以形成亮度增强层。在亮度增强层上形成浮雕图案。
依照本发明一方面的基板包括绝缘片、开关元件、像素电极、反射层和亮度增强层。绝缘片包括由反射区域和透射窗口确定的像素区域。开关元件形成在像素区域中。像素电极与开关元件电连接。反射层与反射区域对准设置。所述反射层用于将从基板外侧的观察者侧发射的前光从反射层向观察者侧反射。所述反射层用于将从与观察者例相反的基板背侧发射的背光从反射层向背侧反射。亮度增强层形成在反射层和所述背光之间。通过亮度增强层从背侧向反射层发射的背光变成从反射层通过亮度增强层而向背侧发射的反射光。
在依照本发明一方面的制造基板的方法中,形成包含像素区域的开关元件,所述像素区域确定了反射区域和透射区域。对应于反射区域形成亮度增强层。所述亮度增强层用于将穿过其的背侧光的相位延迟大约1/4相位(λ/4)。在透射区域中形成像素电极,而在反射区域中形成反射层。
依照本发明示范性实施方案的LCD装置包括第一侧、与用于确定LCD装置的第一侧相对的第二侧、液晶层、第一偏振器、下1/4相位(λ/4)延迟膜、亮度增强膜和反射层。液晶层接近第二侧并用于显示图像。当光从第一偏振器的每侧入射到第一偏振器上时,第一偏振器用于发射水平偏振光。下1/4相位(λ/4)延迟膜夹在液晶层和第一偏振器之间,且当所述水平偏振光从第一侧入射到下1/4相位(λ/4)延迟膜上时,所述下1/4相位(λ/4)延迟膜用于发射圆偏振光。当圆偏振光从第二侧入射到下1/4相位(λ/4)延迟膜时,从下1/4相位(λ/4)延迟膜向第一侧发射水平偏振光。亮度增强膜夹在液晶层和1/4相位(λ/4)延迟膜之间,且当圆偏振光从第一侧入射到亮度增强膜上时,所述亮度增强膜用于从那里向第二侧发射垂直偏振光。当垂直偏振光从第二侧入射到亮度增强膜上时,亮度增强膜也用于从那里发射圆偏振光。反射层夹在液晶层和亮度增强膜之间且用于将垂直偏振光反射到亮度增强膜,所述垂直偏振光从第一侧入射到反射层上。
依照本发明示范性实施方案的用于LCD装置的相位延迟元件包括设置在背光和反射层之间的亮度增强层。所述亮度增强层由底部元件和对向元件确定,所述对向元件与底部元件一体形成。对向元件面对反射层设置,其中入射到底部元件上的具有波长相位(λ)的第一光延迟了大约1/4相位(λ/4),并从对向元件向反射层发射第二光。第二光从反射层反射,从而变成从反射层向对向元件发射的第三光。穿过亮度增强层,第三光的相位延迟了大约1/4相位(λ/4),并从底部元件发射第四光。
因此,LCD装置包括1/4相位(λ/4)延迟膜,从而使用从反射层反射的一部分非自然光来提高LCD装置的亮度。
本发明要求2004年7月19日提交的韩国专利申请No.2004-55827的优先权,其全部内容结合在这里作为参考。


本发明上面和其它的优点将通过参照附图详细描述其示范性实施方案而变得更加显而易见,其中图1是显示常规反射-透射型LCD装置的横截面图;图2是显示依照本发明示范性实施方案的LCD装置的横截面图;图3是显示依照本发明示范性实施方案的胆甾型液晶的分子结构的平面图;图4A到4F是显示依照本发明示范性实施方案制造亮度增强层的方法的横截面图;图5A到5E是显示依照本发明另一个示范性实施方案制造亮度增强层的方法的横截面图;图6A到6F是显示依照本发明另一个示范性实施方案制造亮度增强层的方法的横截面图;图7A到7E是显示依照本发明另一个示范性实施方案制造亮度增强层的方法的横截面图;图8是显示依照本发明示范性实施方案的LCD装置的横截面图;图9A到9E是显示制造图8中所示的阵列基板的方法的横截面图;图10A到10D是显示依照本发明可选择的示范性实施方案的亮度增强层的横截面图;图11是显示依照本发明另一个示范性实施方案的LCD装置的横截面图;图12是显示依照本发明另一个示范性实施方案的LCD装置的横截面图;图13是显示依照本发明另一个示范性实施方案的LCD装置的横截面图;图14是显示依照本发明另一个示范性实施方案的LCD装置的横截面图;具体实施方式
应当理解,下面描述的本发明的示范性实施方案在不脱离这里描述的本发明的原理的条件下可以各种不同的方式变化或修改,因此本发明的范围并不限于下面这些特定的实施方案。而是,提供这些实施方案,以使该公开更加彻底和完整,并通过例子的方式而不是通过限制的方式给本领域熟练技术人员全面传达本发明的概念。
参照图2,依照本发明典型实施方案图解了LCD装置的横截面图。LCD装置包括灯10、下偏振器20、延迟膜30、亮度增强层40、反射层50、灯反射片60、液晶层70、彩色滤光片80和上偏振器90。在一个实施方案中,上偏振器90为检偏器。LCD装置的观察者侧对应于图示的LCD装置的上部或顶侧。LCD装置的背侧对应于图示的LCD装置的下部。
灯10设置在下偏振器20下面,如图所示,或夹在灯偏振器20和灯反射片60之间。灯10构造成产生非偏振光的非自然光。
下偏振器20包括一般由箭头22表示的水平偏振轴。当非自然光从背侧入射到下偏振器20上时,就从下偏振器20向观察者侧发射一般由双端箭头24表示的水平偏振光。当水平偏振光24从观察者侧入射到下偏振器20时,就从下偏振器20向背侧发射水平偏振光24。这样,允许水平偏振光24从两侧穿过下偏振器20。
穿过延迟膜30的光波长的相位延迟了大约1/4相位或λ/4。当水平偏振光24从背侧入射到延迟膜30上时,水平偏振光24的相位延迟了大约1/4相位(λ/4),因而从延迟膜30向观察者侧发射一般由36表示的右旋圆偏振光。当右旋圆偏振光36从观察者侧入射到延迟膜30上时,就从延迟膜30向背侧发射水平偏振光24。
穿过亮度增强层40的光的相位延迟了大约1/4相位(λ/4)。当右旋圆偏振光36从背侧入射到亮度增强层40上时,右旋圆偏振光36的相位延迟了大约1/4相位(λ/4),因而从亮度增强层40向观察者侧发射一般由44表示的垂直偏振光。当从反射层50反射的反射垂直偏振光36从观察者侧入射到亮度增强层40上时,反射垂直偏振光的相位延迟了大约1/4相位(λ/4),因而从亮度增强层40向背侧发射右旋圆偏振光36。
在示范性的实施方案中,亮度增强层40包括双折射膜、液晶聚合物的取向膜和例如用膜固定的液晶聚合物的取向层。聚合物膜在预定方向上延伸,从而形成双折射膜。聚合物膜包括,但并不限于聚碳酸酯、聚乙烯醇、聚苯乙烯、聚甲基异丁烯酸酯、聚丙烯、聚烯烃、聚丙烯酸酯、聚酰胺。
在参照图3中的一个示范性实施方案中,亮度增强层40包括胆甾型液晶,该胆甾型液晶是可紫外线固化的液晶聚合物。图3图解了显示胆甾型液晶分子结构的平面图。胆甾型液晶分子96的方向沿具有节距(P)的螺旋轴(没有示出)逐渐变化。螺旋轴对应于穿过胆甾型液晶的光的方向。特别地,改变一部分向列液晶,以具有含有螺旋形状的手性结构,由此形成所述液晶。一层胆甾型液晶大致与向列液晶的平面图相同,然而,向列液晶不具有螺旋轴。
参照图2,反射层50如图所示地设置在液晶层70下面或是夹在液晶层和亮度增强层40之间。当垂直偏振光44从反射层70反射时,垂直偏振光的相位不会变化。
灯反射片60设置在灯10下面,并确定了LCD装置的背侧。当灯10产生的非自然光或来自观察者侧的垂直偏振光44入射到灯反射片60时,非自然光就从灯反射片60向观察者侧反射,而不改变非自然光的相位。然后反射的垂直偏振光因此穿过亮度增强层40、延迟膜30和下偏振器20。
液晶层70控制根据施加到液晶层70的电场而从背侧提供的垂直偏振光44的相位,并发射入射到彩色滤光片80上的具有改变相位的光。因此,液晶层70的光透射率变化。液晶层70的厚度称作单元间隙。对应于反射区域的液晶层70的单元间隙不同于对应于透射区域的液晶层70的单元间隙。在该示范性的实施方案中,反射区域的单元间隙大约是透射区域单元间隙的一半。
穿过液晶层70的具有预定波长范围的一部分垂直偏振光44穿过彩色滤光片80相应的部分。更具体地说,彩色滤光片80包括红色滤光片部分、绿色滤光片部分和蓝色滤光片部分。例如,具有大约650nm波长的红光被允许穿过红色滤光片部分。具有大约550nm波长的绿光被允许穿过绿色滤光片部分。具有大约450nm波长的蓝光被允许穿过蓝色滤光片部分。在该示范性的实施方案中,彩色滤光片80如图所示地设置在液晶层70上面,或是夹在液晶层70与上偏振器90之间。可选择地,彩色滤光片80可设置在液晶层70下面,被夹在液晶层与反射层50之间。
上偏振器90包括垂直偏振轴92。当光从背侧入射到上偏振器90时,就从上偏振器90向观察者侧发射垂直偏振光。当自然光或前面的光从观察者侧入射到上偏振器90时,垂直偏振光就从上偏振器90发射并入射到彩色滤光片80上。在该示范性的实施方案中,上偏振器90的偏振轴92大致垂直于下偏振器20的偏振轴22。自然光例如包括太阳光或来自前面的照明光,但并不限于此。此外,前面的光可以是由设置在LCD装置观察者侧的辅助灯(没有示出)产生的非自然光。仍参照图2,下面将描述亮度增强层40的全部操作。当灯10产生的非自然光入射到下偏振器20时,就从下偏振器20向延迟膜30发射水平偏振光24。当水平偏振光24入射到延迟膜30上时,就从延迟膜30向亮度增强层40发射右旋圆偏振光36。当右旋圆偏振光36入射到亮度增强层40时,就从亮度增强层40向反射层50发射垂直偏振光44。垂直偏振光44从反射层50反射,以使反射光入射到亮度增强层40。垂直偏振光44可以被反射和散射。线偏振光(例如,分别水平和垂直偏振的光24和44)为P波,而圆偏振光36为S波。
当来自反射层50的反射光入射到亮度增强层40时,就从亮度增强层40向延迟膜30发射右旋圆偏振光36。当右旋圆偏振光36入射到延迟膜30时,就从延迟膜30发射水平偏振光24。水平偏振光24穿过下偏振器20,且水平偏振光24从灯反射片60反射。反射的水平偏振光入射到下偏振器20,因而提高了LCD装置的亮度。
在该示范性的实施方案中,亮度增强层40设置在反射区域中。可选择地,亮度增强层可设置在反射区域和透射区域中。
在另一个示范性的实施方案中,亮度增强层40设置在液晶层70中。使用膜还可将亮度增强层设置在LCD装置的下基板上。
液晶层70的单元间隙由反射率的各向异性的差值Δn确定。在该示范性的实施方案中,液晶层70透射区域的单元间隙大约为4μm到大约6μm,液晶层70反射区域的单元间隙为大约2μm到大约3μm。参照图2,亮度增强层40可以组成大约2μm到大约3μm的1/4相位(λ/4)延迟膜30。在预定方向上延伸聚碳酸酯,以形成1/4相位(λ/4)延迟膜30。1/4相位(λ/4)延迟膜30还可通过排列液晶形成。
具有延伸的聚碳酸酯的1/4相位(λ/4)延迟膜30具有大约0.001的反射率各向异性的差值Δn。当反射率各向异性的差值Δn和参考波长分别为大约0.001和大约560nm时,对应于具有大约140nm波长的光的1/4相位(λ/4)延迟膜30的厚度为140μm。
具有排列的液晶的1/4相位(λ/4)延迟膜30具有大约0.1的反射率各向异性的差值Δn。当反射率各向异性的差值Δn和参考波长分别为大约0.1和大约560nm时,对应于具有大约140nm波长的光的1/4相位(λ/4)延迟膜30的厚度为1.4μm。
图4A到4F是图解依照本发明示范性实施方案制造亮度增强层40的方法的横截面图。
参照图4A,在用于印刷的基底膜210上形成取向膜211。在取向膜211上涂覆可紫外线固化的液晶聚合物,从而形成排列的液晶层212。可紫外线固化的液晶聚合物包括图3中所示的胆甾型液晶。
参照图4B,在排列的液晶层212上辐射一般由光线200表示的紫外光,以形成半固态的液晶层213。半固态的液晶层213可以为双轴膜或单轴膜。例如,在胆甾型液晶上辐射偏振的紫外光,从而形成双轴膜。在胆甾型液晶上辐射非偏振的紫外光,从而形成C片。“C片”表示双折射光学元件,例如具有大致垂直于该光学元件选择表面的主(principle)光轴(经常称作“非常轴”)的片或膜。主光轴对应于下述的轴,即沿着该轴,双折射光学元件具有不同于沿与主光轴正交方向上的大致均匀的折射率的折射率。
双轴膜具有彼此不同的x折射率(nx)、y折射率(ny)、和z折射率(nz)。单轴膜包括A片和C片。“A片”表示双折射光学元件,例如具有在光学元件的x-y平面内的主光轴的片或膜。例如使用如聚乙烯醇的聚合物的单轴拉伸膜或向列式正光学各向异性LCP材料的单轴取向膜可制造正的双折射a片。使用负的光学各向异性向列式LCP材料,例如包括盘状(discotic)化合物的单轴取向膜可形成负的双折射a片。A片的y折射率大致等于A片的z折射率,A片的y折射率小于A片的x折射率。C片的x折射率大致等于C片的y折射率,C片的y折射率小于C片的z折射率。
参照图4C,将半固态液晶层213设置在玻璃片214上。玻璃片214包括反射部分或反射区域(RA)和透射部分或透射区域(TA)。将半固态液晶层213加热或压缩,从而将半固态液晶层213固定到玻璃片214上。
参照图4D,然后将用于印刷的基底膜210从在玻璃片214上形成半固态液晶层213的取向膜211分离。
参照图4E,在玻璃片214之上排列具有透明片215和不透明图案216的分划板218。不透明图案216对应于反射区域RA,并与其对准。可选择地,不透明图案216对应于透射区域TA并与透射区域TA对准。当在显影工序中紫外光200通过分划板218辐射到半固态液晶层213上时,半固态液晶层213被显影。因此,对应于反射区域RA的半固态液晶层213的部分被固化,移除对应于透射区域TA的半固态液晶层213的其余部分。在显影工序中还移除取向膜211。
参照图4F,图示出亮度增强层217作为形成在设置在反射区域RA中的固化液晶层暴露表面上的浮雕图案。
图5A到5E是图解依照本发明另一个示范性实施方案制造亮度增强层的方法的横截面图。
参照图5A,在具有浮雕图案的光致抗蚀剂膜220上形成取向层221。在取向层221上形成液晶层222,以使取向层221夹在光致抗蚀剂膜220与液晶层222之间。
参照图5B,然后将液晶层222的暴露表面设置到玻璃片223上。在液晶层222上辐射紫外光200,以将液晶层222半固化,该液晶层可以是双轴膜或单轴膜。例如,在液晶层222的胆甾型液晶上辐射偏振的紫外光,从而形成双轴膜。可选择地,在胆甾型液晶上辐射非偏振的紫外光,从而形成C片。
参照图5C,图解了将光致抗蚀剂膜220从取向层221移除。
参照图5D,将具有透明片224和不透明图案225的分划板228设置在取向层221之上。不透明图案225对应于反射区域RA并与反射区域RA对准。可选择地,不透明图案225对应于透射区域TA。当通过分划板在半固态的液晶层222’上辐射紫外光200时,半固态的液晶层222’被显影。因此,半固态的液晶层222’对应于反射区域RA的部分被固化,移除对应于透射区域TA的半固态的液晶层222’的其余部分。在该显影工序中还移除了取向膜221。
图5E图解了在其暴露表面上具有浮雕图案的最终的亮度增强层226。
图6A到6F是图解依照本发明另一个示范性实施方案制造亮度增强层的另一方法的横截面图。
参照图6A和6B,在具有反射区域(RA)和透射区域(TA)的片230上形成取向层231。在取向层231上形成夹在液晶层232与片230之间的液晶层232。
参照图6C,在片230之上设置具有第一透明片234和不透明图案235的分划板238,如图所示。不透明图案235对应于反射区域RA并与反射区域RA对准。可选择地,不透明图案235对应于透射区域TA。当通过分划板在液晶层232上辐射紫外光200时,液晶层232被显影。因此,液晶层232对应于反射区域RA的部分被固化,移除对应于透射区域TA的液晶层232的其余部分。取向膜231在该显影工序中没有被移除。图6D图解了通过该显影工序形成的最终亮度增强层图案232。
参照图6E,在片230之上设置具有第二透明片236和多个不透明元件237的分划板239。不透明元件237对应于反射区域RA,并与反射区域RA对准。当通过分划板239在液晶层232上辐射紫外光200时,液晶层232被显影。因此,在形成亮度增强层233(见图6F)的亮度增强层图案232的暴露表面上形成了浮雕图案。图6F还图解了缺少取向膜231已经被移除的、对应于透射区域TA并与透射区域TA对准的部分。
图7A到7E是图解依照本发明另一个示范性实施方案制造亮度增强层的另一方法的横截面图。
参照图7A,在具有反射区域RA和透射区域TA的片240上形成光致抗蚀剂取向层241。
参照图7B,在片240之上设置具有透明片242和不透明图案243的分划板248。不透明图案243对应于透射区域TA并与透射区域TA对准。可选择地,不透明图案243对应于反射区域RA并与反射区域RA对准。当通过分划板248在光致抗蚀剂取向层241上辐射紫外光200时,光致抗蚀剂取向层241被显影。因此,移除对应于反射区域RA的光致抗蚀剂取向层241的部分,对应于透射区域TA的光致抗蚀剂取向层241的其余部分被固化。
参照图7C,然后在具有对应于反射区域RA并与反射区域RA对准的光致抗蚀剂取向层241的片240之上形成液晶层244。
参照图7D,示出了在反射区域RA中的液晶层244的部分上选择性地辐射紫外光200,由此显影了液晶层244。通过分划板(没有示出)在液晶层244上辐射紫外光200。在反射区域RA中的选择性辐射之后,移除对应于透射区域TA的液晶层244的部分。对应于反射区域RA的液晶层244的其余部分被固化,由此形成了亮度增强层图案245。
参照图7E,在形成最终亮度增强层246的亮度增强层图案245的暴露表面上形成浮雕图案。
参照图8,图解了依照本发明示范性实施方案的LCD装置的横截面图。LCD装置包括反射-透射型阵列基板,其具有顶部透明导电氧化物,如铟锡氧化物(ITO)。在该实施方案中,在对应于反射区域的有机绝缘层上形成亮度增强层。
LCD装置包括阵列基板100、彩色滤光片基板200、设置在阵列基板100和彩色滤光片基板200之间的液晶层300、下膜组件410和上膜组件420。下膜组件410和上膜组件420分别设置在LCD装置最接近背侧和顶侧的相对端。
阵列基板100包括如图所示按向上的顺序设置的下透明片105、设置在下透明片105上的薄膜晶体管(TFT)、有机绝缘层40、亮度增强层150、像素电极160和反射层170。TFT包括形成在下透明片105上的栅极电极110、形成在具有栅极电极110的下透明片105上的栅极绝缘层112、半导体层114、欧姆接触层116、源极电极120和漏极电极130。有机绝缘层140设置在TFT之上。分别通过接触孔141和有机绝缘层140的开口部分地暴露与反射区域对应的漏极电极130和栅极绝缘层112。
亮度增强层150形成在有机绝缘层140上并具有不均匀厚度或非平坦表面。在一个实施方案中,沿确定所述不均匀厚度或非平坦表面的有机绝缘层140的长度形成凸起和凹入部分。可选择地,亮度增强层150可形成在具有均匀厚度的有机绝缘层上。在图8中所示的示范性实施方案中,亮度增强层150具有浮雕图案。因此,当穿过亮度增强层150的光从反射层170反射,并穿过亮度增强层150而射向LCD装置的背侧时,由于具有不同光学特性Δnd的不均匀亮度增强层150的原因,所述光穿过不同光程。不同光学特性Δnd是折射率各向异性的差值Δn与液晶层厚度的乘积。
像素电极160形成在亮度增强层150之上,使得通过亮度增强层150的开口、有机绝缘层140和使像素电极160与TFT的漏极电极130之间电连接的接触孔141而暴露一部分增强层。在该示范性的实施方案中,像素电极160通过接触孔141与TFT的漏极电极130电连接。反射层170形成在像素电极160上并对应于反射区域。由不存在反射层170的区域确定透射窗口。
像素电极160是包含导电氧化膜如铟锡氧化物(ITO)、氧化锡(TO)、铟锌氧化物(IZO)、氧化锌(ZO)等的透明电极。在与TFT间隔开的区域中,在有机绝缘层140与像素电极160之间形成有电容线(没有示出),以使电容线和一部分像素电极160形成存储电容器Cst。在图8所示的该示范性实施方案中,反射层170形成在像素电极160上。在可选择的实施方案中,可在反射层170与像素电极160之间设置绝缘层。
夹在液晶层300与上膜组件420之间的彩色滤光片200包括按向下的顺序设置的上透明片205、黑色矩阵210、彩色滤光片220、面保护层230和公共电极240,如图所示。黑色矩阵210形成在上透明片205上,以确定红色像素区域、绿色像素区域和蓝色像素区域(例如,为了阻止像素间的光泄漏)。彩色滤光片220包括设置在红色像素区域中的红色滤光片部分、设置在绿色像素区域中的绿色滤光片部分和设置在蓝色像素区域中的蓝色滤光片部分。面保护层230形成在具有黑色矩阵210和彩色滤光片220的上透明片205上,以保护黑色矩阵210和彩色滤光片220。公共电极240形成在面保护层230上。在可选择的实施方案中,红色、绿色和蓝色滤光片部分中的至少两个交迭,从而形成黑色矩阵210。
设置在阵列基板100和彩色滤光片基板200之间的液晶层300配置成响应于施加到那里的电场而改变液晶层300中液晶的排列。由设置在液晶层300任一侧上的阵列基板100的像素电极160与彩色滤光片基板200的公共电极240之间的电压差形成所述电场。这样,液晶层300使前光穿过彩色滤光片基板200或使背光穿过由不存在反射层170的部分确定的透射窗口。
与反射区域中的接触孔141对应的一部分液晶层300、与反射区域的其余区域对应的一部分液晶层300和与透射窗口对应的一部分液晶层300相对于彼此都具有不同的单元间隙。与接触孔141对应的液晶层300的第一单元间隙d1大于与反射区域的其余区域对应的液晶层300的第二单元间隙d2。与透射窗口对应的液晶层300的第三单元间隙d3不小于与接触孔141对应的液晶层300的第一单元间隙d1。
应当认识到,对应于接触孔141的液晶层300的光学特性Δnd1大致等于反射率的各向异性的差值Δn乘上第一单元间隙d1。同样的,对应于反射区域的其余区域和透射窗口的液晶层300的光学特性Δnd2和Δnd3分别大致等于反射率的各向异性的差值Δn乘上第二单元间隙d2和第三单元间隙d3。
根据液晶层300的液晶、阵列基板的光学条件或彩色滤光片基板200的光学条件来分别确定第一到第三单元间隙d1和d3。在该示范性的实施方案中,对应于反射区域的第二单元间隙d2不超过大约1.7μm,对应于透射区域的第三单元间隙d3不超过大约3.3μm。液晶层300具有均匀的取向模式,以致液晶层300的扭曲角大约为零度。
在该示范性的实施方案中,在第一方向上摩擦阵列基板100的下取向层(没有示出),在大致与第一方向相反的第二方向上摩擦彩色滤光片基板200的上取向层(也没有示出)。
在该示范性的实施方案中,在形成施加给液晶层300的电场的阵列基板100的像素电极160和彩色滤光片基板200的公共电极240上施加电压。在可选择的实施方案中,代替在彩色滤光片基板上形成公共电极240,阵列基板100包括像素电极160和公共电极240。
下膜组件410包括下λ/4延迟膜412和下偏振器414。下λ/4延迟膜412夹在阵列基板100和下偏振器414之间。下偏振器414设置在下λ/4延迟膜412下面,并确定了图8中示出的LCD装置的底部。
当水平偏振光从LCD装置的顶侧入射到下λ/4延迟膜412上时,水平偏振光的相位延迟了大约1/4相位(λ/4),从而从下λ/4延迟膜412向下偏振器414发射右旋圆偏振光。当右旋圆偏振光从LCD装置的顶侧入射到下延迟膜412上时,右旋圆偏振光的相位延迟了大约1/4相位(λ/4),从而从下延迟膜412向下偏振器414发射水平偏振光。
下偏振器414包括使在第一偏振轴方向上偏振的光向着下λ/4延迟膜412或背侧而穿过下偏振器414的第一偏振轴。例如,当第一偏振轴大致平行于用于确定LCD装置多层中的每一层的水平方向时,水平偏振光从背侧穿过下偏振器414,使得水平偏振光入射到下λ/4延迟膜412上。此外,水平偏振光从下λ/4延迟膜412穿过下偏振器414,从而从下偏振器414向背侧发射水平偏振光。
上膜组件420设置在彩色滤光片基板200上,并包括上λ/4延迟膜422和上偏振器424。上λ/4延迟膜422夹在上偏振器424与彩色滤光片基板之间。
当光从彩色滤光片基板200入射到上λ/4延迟膜422时,光的相位延迟了大约1/4相位(λ/4),从而从上λ/4延迟膜422向观察者侧发射具有延迟相位的光。当光从观察者侧入射到上λ/4延迟膜422时,光的相位延迟了大约1/4相位(λ/4),从而从上λ/4延迟膜422向彩色滤光片基板200发射具有延迟相位的光。
上偏振器424包括使在第二偏振轴上偏振的光从观察者侧向着上λ/4延迟膜422而穿过上偏振器424的第二偏振轴。例如,当第二偏振轴大致平行于垂直方向或与确定LCD装置的层正交时,垂直偏振光从观察者侧穿过上偏振器424,使得垂直偏振光入射到上λ/4延迟膜422上。此外,垂直偏振光从上λ/4延迟膜422穿过上偏振器424,从而从上偏振器424向观察者侧发射垂直偏振光。
在操作过程中,当灯(没有示出)产生的非自然光入射到下偏振器414时,就从下偏振器414向观察者侧发射P波的线偏振光。当线偏振光入射到下λ/4延迟膜412时,就从下λ/4延迟膜412向观察者侧发射椭圆偏振光。当椭圆偏振光入射到亮度增强层150上时,就从亮度增强层150向观察者侧发射S波的大致线偏振光。大致线偏振光从反射层170向着背侧反射和散射。线偏振光从反射层170扩散。
当反射光从观察者侧入射到亮度增强层150上时,就从亮度增强层150向背侧发射椭圆偏振光。当椭圆偏振光入射到下λ/4延迟膜412时,就从下λ/4延迟膜412通过下偏振器414向背侧发射线偏振光(P波)。
然后穿过下偏振器414的线偏振光从灯反射片60(见图2)反射,使得从灯反射片(没有示出)向反射层170发射反射光,并通过与不存在反射层170的部分对应的透射窗口射出。因此,从灯产生的一部分光发生循环,以提高LCD装置的亮度。此外,尽管不必增加LCD装置的功率消耗,但提高了透射模式的LCD装置的亮度。
图9A到9E是图解制造图8中所示阵列基板100的方法的横截面图。
参照图9A,在下透明片105上沉积金属。所述金属例如包括钽(Ta)、钛(Ti)、钼(Mo)、铝(Al)、铬(Cr)、铜(Cu)或钨(W),但并不限于此。下透明片105例如包括绝缘材料,如玻璃、陶瓷、石英。将沉积的金属构图,以形成多条栅极线(没有示出)和多个栅极电极110。栅极线(没有示出)在相对于下透明片105的纵向方向上延伸,并在大致垂直于纵向方向的水平方向上排列。每条栅极线(没有示出)都与一部分栅极电极110电连接,这是相关领域技术人员都能认识到的。与栅极电极110一起形成存储电极(没有示出)线。
使用等离子体化学气相沉积在具有栅极电极110的下透明片105上沉积氮化硅,从而形成栅极绝缘层112。在栅极绝缘层112上沉积无定形硅层,通过在原位置处的无定形硅层掺入杂质形成n+无定形硅层。将n+无定形硅层和无定形硅层构图,以形成半导体层114和设置在半导体层114上的欧姆接触层116。
在具有半导体层114和欧姆接触层116的栅极绝缘层112上例如沉积金属,如钽(Ta)、钛(Ti)、钼(Mo)、铝(Al)、铬(Cr)、铜(Cu)或钨(W)。然后将沉积的金属构图,从而形成多条源极线(没有示出)、多个源极电极120和多个漏极电极130。源极线(没有示出)在水平方向上延伸。每条源极线(没有示出)都与一部分源极电极120电连接,这是相关领域技术人员都能认识到的。每个漏极电极130都与每个源极电极120间隔开。在可选择的实施方案中,在具有半导体层114、欧姆接触层116、源极电极120和漏极电极130的栅极绝缘层112之上形成钝化层。
参照图9B,通过旋涂工序在具有半导体层114、欧姆接触层116、源极电极120和漏极电极130的栅极绝缘层112上涂布光致抗蚀剂形成有机绝缘层140。移除部分有机绝缘层140,从而形成部分暴露了漏极电极130的接触孔141和暴露与透射窗口对应的栅极绝缘层112的开口。有机绝缘层140包括丙烯酸树脂和正型光致抗蚀剂。通过具有曝光步骤和显影步骤的照相工序形成接触孔141和开口。当在一部分正型光致抗蚀剂上辐射紫外光时,在显影步骤中移除正型光致抗蚀剂的所述部分,并保留正型光致抗蚀剂的其余部分。
参照图9C,在有机绝缘层140上涂覆并取向可紫外线固化的液晶聚合物。可紫外线固化的液晶聚合物可以是图3中所示的胆甾型液晶。在取向的可紫外线固化的液晶聚合物上辐射紫外光,以固定可紫外线固化的液晶聚合物,由此形成亮度增强层150。在该示范性的实施方案中,亮度增强层150具有不均匀的表面。该不均匀的表面包括浮雕图案。根据辐射在其上的紫外光的偏振,亮度增强层150可以是双轴膜或单轴膜。当偏振的紫外光辐射到取向的可紫外线固化的液晶聚合物上时,亮度增强层150具有单轴膜。当非偏振的紫外光辐射到取向的可紫外线固化的液晶聚合物上时,亮度增强层150为C片。
参照图9D,像素电极160图解为通过对应于每个像素区域的亮度增强层150而形成在下透明片105上。像素电极160可通过构图或选择性沉积来形成。
参照图9E,反射层170图解为通过对应于反射区域的像素电极160而形成在下透明片105上。在可选择的实施方案中,下取向层(没有示出)形成在具有反射层170的透明片105上。
为了完成图8中所示的LCD装置的制造,将阵列基板100与彩色滤光片基板200结合,并在阵列基板100与彩色滤光片基板200之间形成液晶层300。
图10A到10D是图解依照本发明另一个实施方案的亮度增强层的横截面图。应该认识到,沿着其长度方向用不同的厚度或不均匀的表面确定了图10A到10D的亮度增强层。
参照图10A,沿其长度方向用均匀的厚度d1确定了亮度增强层,因而那里不存在散射部分。在该实施方案中在亮度增强层上设置反射层。亮度增强层的光程为大约2×d1,亮度增强层的光学特性为大约2×Δnd1。
参照图10B,沿其长度方向用多个凸起和凹入部分确定了亮度增强层。每个凸起部分都具有第一厚度d1,每个凹入部分都具有第二厚度d2。在该实施方案中,在亮度增强层上设置有反射层。
每个凸起部分的第一光程都是大约2×d1,每个凹入部分的第二光程都是大约2×d2。每个凸起部分的光学特性都是大约2×Δnd1,而每个凹入部分的光学特性都是大约2×Δnd2。
参照图10C,沿其长度方向用多个凸起部分和多个凹入部分确定了亮度增强层。凸起部分的厚度d1和d3,以及凹入部分的厚度d2和d4彼此不同。在该实施方案中,在亮度增强层上设置有反射层。
凸起部分分别提供了大约2×d1和2×d3的不同光程,而凹入部分也分别提供了大约2×d2和2×d4的不同光程。凸起部分的光学特性分别为大约2×Δnd1和2×Δnd3,凹入部分的光学特性分别为大约2×Δnd2和2×Δnd4。
参照图10D,用多个凸起部分和在相邻凸起部分之间的多个平坦部分确定了亮度增强层。凸起部分的厚度d1和d4彼此不同,而每个平坦部分都具有第五厚度d5。在该实施方案中,在亮度增强层上设置有反射层。
凸起部分提供了大约2×d1和2×d4的不同光程,而每个平坦部分的光程大约为2×d5。凸起部分的光学特性分别为大约2×Δnd1和2×Δnd4,每个平坦部分的光学特性为大约2×Δnd5。
图11是图解依照本发明另一个示范性实施方案的LCD装置的横截面图。亮度增强层550设置在下透明片505和阵列基板500的TFT之间。除亮度增强层550的位置以外,图11的LCD装置与图8中的相同。因而,相同的参考标记用于指代与图8中所述的相同或相似的部分,将省略进一步的解释。
LCD装置包括阵列基板500、彩色滤光片基板200、设置在阵列基板500与彩色滤光片基板200之间的液晶层300、下膜组件410和上膜组件420。下膜组件410和上膜组件420确定了LCD装置的外部层,如图所示。
阵列基板500包括如图按向上的顺序设置的下透明片505、亮度增强层550、TFT、有机绝缘层540、像素电极560和反射层570。亮度增强层550设置在下透明片505上,并在栅极绝缘层512之下,所述栅极绝缘层512形成在定义下透明片505的相反表面上。TFT包括形成在下透明片505上的栅极电极510、形成在下透明片505上的栅极绝缘层512、半导体层514、欧姆接触层516、源极电极520和漏极电极530。有机绝缘层540设置在TFT上。漏极电极530和栅极绝缘层512对应于反射区域,并分别通过接触孔541和有机绝缘层540的开口被部分暴露。
下透明片505包括反射区域和透射窗口。亮度增强层550设置在与反射区域相对的下透明片505上。在该示范性的实施方案中,亮度增强层550定义为具有面对下透明片505的不均匀的表面。在亮度增强层550上形成凸起和凹入部分,从而确定不均匀的厚度。因此,当已经穿过亮度增强层550的光从反射层570反射并向着LCD装置的背侧(即向着下膜组件410)穿过亮度增强层550时,所述光穿过与用于确定具有不同光学特性Δnd的亮度增强层550的不均匀表面对应的不同光程。
像素电极560形成在通过亮度增强层550的开口、有机绝缘层540和接触孔541而暴露的栅极绝缘层512之上,以使像素电极560与TFT的漏极电极530电连接。反射层570形成在像素电极560上并对应于反射区域。透射窗口由像素电极560上不存在反射层570的部分确定。电容线任意形成在与TFT间隔开的区域中的有机绝缘层540和像素电极560之间,以使电容线和一部分像素电极560形成存储电容器Cst。在图11的示范性实施方案中,反射层570形成在像素电极560上,可选择地,可在反射层570与像素电极560之间设置绝缘层。
因此,循环由灯(没有示出)产生的一部分光,以提高LCD装置的亮度。此外,由于来自灯的光不入射到部分吸收光的TFT上,所以提高了LCD装置透射模式的亮度。
图12是图解依照本发明另一个典型实施方案的LCD装置的横截面图。在该实施方案中,亮度增强层650形成在TFT上。除亮度增强层650的位置以外,图12的LCD装置与图8中的相同。因而,相同的参考标记将用于指代与图8中所述的相同或相似的部分,并将省略进一步的解释。
LCD装置包括阵列基板600、彩色滤光片基板200、设置在阵列基板600与彩色滤光片基板200之间的液晶层300、下膜组件410和上膜组件420。下膜组件410和上膜组件420确定了LCD装置的外部层,如图所示。
阵列基板600包括如图按向上的顺序设置的下透明片605、TFT、亮度增强层650、有机绝缘层640、像素电极660和反射层670。TFT包括形成在下透明片605上的栅极电极610、形成在具有栅极电极610的下透明片605上的栅极绝缘层612、半导体层614、欧姆接触层616、源极电极620和漏极电极630。在该实施方案中,应当认识到亮度增强层650设置在TFT上。此外,有机绝缘层640设置在其上具有亮度增强层650的栅极绝缘层612上。对应于反射区域和透射窗口的漏极电极630和栅极绝缘层612分别通过接触孔641和有机绝缘层640的开口被部分暴露。接触孔641和开口形成在有机绝缘层640和亮度增强层650中。
下透明片605包括反射区域和透射窗口。亮度增强层650设置在源极电极620、漏极电极630、栅极绝缘层612、半导体层614和与反射区域对应的下透明片605上。在该示范性的实施方案中,亮度增强层650由面对有机绝缘层640的不均匀的表面确定。由沿亮度增强层650的长度方向上的凸起和凹入部分确定了不均匀厚度。因此,当已经穿过亮度增强层650的光从反射层670反射并向着LCD装置的背侧(即向着下膜组件410)穿过亮度增强层650时,所述光穿过与具有不同光学特性Δnd的不均匀亮度增强层650对应的不同光程。
像素电极660形成在通过亮度增强层650的开口、有机绝缘层640和接触孔641而暴露的栅极绝缘层612之上,以使像素电极660与TFT的漏极电极630电连接。反射层670形成在与反射区域对应的像素电极660上。透射窗口由像素电极660上不存在反射层670的部分确定。电容线任意形成在与TFT间隔开的区域中的有机绝缘层640和像素电极660之间,以使电容线和一部分像素电极660形成存储电容器Cst。应当认识到在该示范性的实施方案中,反射层670形成在像素电极660上。可选择地,可在反射层670与像素电极660之间设置绝缘层。
图13是图解依照本发明另一个示范性实施方案的LCD装置的横截面图。在该实施方案中,亮度增强层710形成在彩色滤光片730下面。
LCD装置包括彩色滤光片基板700、阵列基板800、设置在阵列基板800与彩色滤光片基板700之间的液晶层300、下膜组件410和上膜组件420。下膜组件410和上膜组件420确定了LCD装置的外部层,如图所示,同时彩色滤光片基板700设置在阵列基板800下面并夹在液晶层300与下膜组件410之间。
彩色滤光片基板700包括如图13中所示向上的顺序设置的下透明片705、亮度增强层710、反射层720、彩色滤光片730、面保护层740和公共电极750。亮度增强层710设置在与反射区域对应的反射层720上。彩色滤光片730包括红色滤光片部分、绿色滤光片部分和蓝色滤光片部分。红色滤光片部分设置在红色像素区域中,绿色滤光片部分设置在绿色像素区域中,蓝色滤光片部分设置在蓝色像素区域中。面保护层740设置在具有亮度增强层710和反射层720的下透明片705上。在该示范性的实施方案中,用不均匀的表面确定了亮度增强层710。由沿亮度增强层710的长度方向上形成的凸起和凹入部分确定了所述不均匀表面。在该实施方案中,如图所示,亮度增强层的凸起和凹入部分面对反射层720。
下透明片705包括反射区域和透射窗口。反射层720对应于反射区域,而透射窗口由不存在反射层720的部分确定并位于下透明片705上。
当已经穿过亮度增强层750的光从反射层720反射并向着LCD装置的背侧(即向着下膜组件410)穿过亮度增强层710时,所述光穿过与具有不同光学特性Δnd的不均匀亮度增强层710对应的不同光程。
阵列基板800包括如图13所示按向下的顺序设置的上透明片805、TFT、有机绝缘层840和像素电极850。TFT包括设置在上透明片805下的栅极电极810、设置在具有栅极电极810的上透明片805下的栅极绝缘层812、半导体层814、欧姆接触层816、源极电极820和漏极电极830。有机绝缘层840设置在具有TFT的上透明片805下面。漏极电极830通过接触孔841被部分暴露。
像素电极850形成在有机绝缘层840和液晶层300之间。特别地,像素电极850形成在有机绝缘层840和使像素电极850与TFT的漏极电极830电连接的接触孔841的下面。
像素电极850是例如包括铟锡氧化物(ITO)、氧化锡(TO)、铟锌氧化物(IZO)和氧化锌(ZO)的透明电极,但并不限于此。电容线任意形成在与TFT间隔开的区域中的有机绝缘层840和像素电极850之间,以使电容线和一部分像素电极850形成存储电容器Cst。
液晶层300设置在阵列基板800和彩色滤光片基板700之间,从而响应于施加到液晶层300的电场来改变液晶的排列。由阵列基板800的像素电极850和彩色滤光片基板700的公共电极750之间的电压差形成所述电场。因此,已经穿过阵列基板800的前光或已经穿过由反射层720确定的透射窗口的背光依赖于由像素电极850和公共电极750之间的电压差形成的电场。
与反射区域中的接触孔841对应的一部分液晶层300、与反射区域其余区域对应的一部分液晶层300、和与透射窗口对应的一部分液晶层300相对彼此具有不同的单元间隙。如上所述,像素电极850通过接触孔841与TFT的漏极电极830电连接。与接触孔841对应的液晶层300的第一单元间隙d1大于与反射区域的其余区域对应的液晶层300的第二单元间隙d2。与透射窗口对应的液晶层300的第三单元间隙d3小于与接触孔841对应的液晶层300的第一单元间隙d1,但大于与反射区域的其余区域对应的液晶层300的第二单元间隙d2。
对应于接触孔841的液晶层300的光学特性Δnd1大致等于反射率的各向异性的差值Δn乘上第一单元间隙d1。同样的,对应于反射区域的其余区域和透射窗口的液晶层300的光学特性Δnd2和Δnd3分别大致等于反射率的各向异性的差值Δn乘上第二单元间隙d2和第三单元间隙d3。面保护层730确定为具有与反射区域和透射窗口之间的界面对应的台阶部分,从而使对应于反射区域的彩色滤光片基板700的高度大于对应于透射窗口的彩色滤光片基板700的高度。该特征也可在图13中具体表现为单元间隙d3大于单元间隙d2。
根据液晶层300的液晶、阵列基板的光学条件或彩色滤光片基板的光学条件来分别确定第一、第二和第三单元间隙。在该示范性的实施方案中,对应于反射区域的第二单元间隙d2不超过大约1.7μm,而对应于透射区域的第三单元间隙d3不超过大约3.3μm。
液晶层300具有均匀的取向模式,以致液晶层300的扭曲角大约为零度。
在该示范性的实施方案中,在第一方向上摩擦阵列基板800的上取向层(没有示出),在大致与第一方向相反的第二方向上摩擦彩色滤光片基板700的下取向层(也没有示出)。
在该示范性的实施方案中,当给阵列基板800的像素电极850和彩色滤光片基板700的公共电极750施加电压时,将由所述电压产生的电场施加给液晶层300。在可选择的实施方案中,阵列基板800包括像素电极850和公共电极750。
下膜组件410包括下λ/4延迟膜412和下偏振器414。下λ/4延迟膜412设置在阵列基板800下面并夹在下透明片705和下偏振器414之间,如图13中所示。下偏振器414设置在下λ/4延迟膜412下面,并确定了LCD装置的背侧。
当水平偏振光入射到下λ/4延迟膜412上时,水平偏振光的相位延迟了大约1/4相位(λ/4),从而从下λ/4延迟膜412向下偏振器414发射右旋圆偏振光。当右旋圆偏振光入射到下延迟膜412上时,右旋圆偏振光的相位延迟了大约1/4相位(λ/4),使水平偏振光从下延迟膜412向下偏振器414发射。
下偏振器414包括使在第一偏振轴方向上偏振的光向着下λ/4延迟膜412或LCD装置的背侧而穿过下偏振器414的第一偏振轴。例如,当第一偏振轴大致与相对于具有在同一方向上延伸的多层的LCD装置的水平方向平行时,水平偏振光从背侧穿过下偏振器414,使得水平偏振光入射到下λ/4延迟膜412上。此外,水平偏振光从下λ/4延迟膜412穿过下偏振器414,使水平偏振光从下偏振器414向背侧发射。
上膜组件420包括上λ/4延迟膜422和上偏振器424。上λ/4延迟膜422设置在阵列基板800的上透明片805上。上偏振器424设置在上λ/4延迟膜422上,夹在上λ/4延迟膜422和上λ/4延迟膜422之间。
当光从阵列基板800入射到上λ/4延迟膜422时,光波长的相位延迟了大约1/4相位(λ/4),从而从上λ/4延迟膜422向与观察者侧对应的上λ/4延迟膜422发射具有延迟相位的光。当光从观察者侧入射到上λ/4延迟膜422时,光的相位延迟了大约1/4相位(λ/4),从而从上λ/4延迟膜422向阵列基板800发射具有延迟相位的光。
上偏振器424包括使在第二偏振轴上偏振的光从观察者侧向着上λ/4延迟膜422而穿过上偏振器424的第二偏振轴。例如,当第二偏振轴大致与相对于确定LCD装置的层叠层的垂直方向平行时,垂直偏振光从观察者侧穿过上偏振器424,使得垂直偏振光入射到上λ/4延迟膜422上。此外,垂直偏振光从上λ/4延迟膜422穿过上偏振器424,使垂直偏振光从上偏振器424向观察者侧发射。
图14是图解依照本发明另一个示范性实施方案的LCD装置的横截面图。在该实施方案中,亮度增强层180设置在与反射区域对应的下透明片105的下面。除亮度增强层180的位置以外,图14的LCD装置与图8中的相同。因而,相同的参考标记用于指代与图8中所述的相同或相似的部分,将省略进一步的解释。
LCD装置包括阵列基板100、彩色滤光片基板200、设置在阵列基板100与彩色滤光片基板200之间的液晶层300、下膜组件410和上膜组件420。下膜组件410和上膜组件420确定了LCD装置的外部层,如图所示。
亮度增强层180设置在阵列基板100下面并设置在下透明片105和下膜组件410之间,如图所示。在该示范性的实施方案中,亮度增强层180一体形成在阵列基板100下面。可选择地,亮度增强层180可一体形成在下膜组件410上。亮度增强层180确定为具有不均匀的厚度。该不均匀的厚度包括形成在亮度增强层180上的凸起和凹入部分。在图14中所示的实施方案中,凸起和凹入部分确定了沿其长度面对下膜组件410的亮度增强层180的表面。因此,当已经穿过亮度增强层180的光从反射层170反射并向着LCD装置的背侧穿过亮度增强层180时,所述光穿过与具有不同光学特性Δnd的不均匀亮度增强层180对应的不同光程。
因此,循环由灯(没有示出)产生的一部分光,以提高LCD装置的亮度。此外,光不会入射到部分吸收光的TFT上,所以提高了透射模式的LCD装置的亮度。
依照本发明,对应于阵列基板的反射区域形成了亮度增强层,使得循环了灯产生的至少一部分光。更具体地说,亮度增强层使从反射层反射的一部分光循环,从而提高了LCD装置的亮度。此外,添加亮度增强层降低了LCD装置的功率消耗。
尽管已经参照这里公开的示范性实施方案描述了本发明,但根据前面的描述,对于本领域熟练技术人员来说,一些可选择的修改和变化是很显而易见的。因此,本发明包含所有落入所附权利要求精神和范围内的可选择的修改和变化。
权利要求
1.一种透射和反射型LCD,包括第一基板;第二基板,具有面对所述第一基板而设置的内表面;液晶层,形成在所述第一基板和所述第二基板之间;第一偏振片,形成在所述第一基板外表面上;背光,设置在所述第一偏振片背侧;和亮度增强层,设置在所述背光与由液晶层和第一第二基板之一设置的反射层之间,所述亮度增强层配置成将已经穿过亮度增强层的光的相位延迟大约1/4相位(λ/4),从而从所述亮度增强层向确定第一基板的背侧发射右旋圆偏振光。
2.根据权利要求1所述的透射和反射型LCD,其中所述亮度增强层与液晶层和第一、第二基板之一一体形成。
3.根据权利要求1所述的透射和反射型LCD,其中所述亮度增强层与所述液晶层和第一、第二基板之一分离地形成。
4.根据权利要求1所述的透射和反射型LCD,其中所述亮度增强层包括双折射膜、液晶聚合物的取向膜、和被固定的液晶聚合物的取向层。
5.根据权利要求4所述的透射和反射型LCD,其中所述亮度增强层包括为可紫外线固化的液晶聚合物的胆甾型液晶。
6.根据权利要求4所述的透射和反射型LCD,其中所述亮度增强层包括固化的胆甾型液晶。
7.根据权利要求1所述的透射和反射型LCD,其中所述亮度增强层由第一表面和与第一表面一体形成的相对的第二表面确定,第一表面面对反射层设置,其中第一光入射到第二表面上,且该第一光的相位延迟了大约1/4相位(λ/4),从而获得从第一表面向反射层发射的第二光,所述第二光从反射层反射,从而变成从反射层向第一表面发射的第三光,第三光的相位被延迟了大约1/4相位(λ/4),从而获得从亮度增强层的第二表面发射的第四光。
8.根据权利要求7所述的透射和反射型LCD,其中所述第一光是圆偏振的,所述第二光和第三光是垂直偏振的,所述第四光是在与第一光相同的方向上圆偏振的。
9.根据权利要求7所述的相位延迟元件,其中所述第一表面由不均匀的表面确定。
10.根据权利要求7所述的透射和反射型LCD,其中所述第二表面由不均匀的表面确定。
11.根据权利要求7所述的相位延迟元件,其中所述亮度增强层的所述第二表面和第一表面是固化的胆甾型液晶。
12.根据权利要求7所述的透射和反射型LCD,其中所述亮度增强层的第一表面由凹入和凸起部分确定。
13.根据权利要求12所述的透射和反射型LCD,其中所述亮度增强层的第一表面由圆形的凹入和凸起部分确定。
14.根据权利要求12所述的透射和反射型LCD,其中所述亮度增强层第一表面的每个凹入部分都由大致平坦的部分确定,所述亮度增强层第一表面的每个凸起部分都由圆形部分确定。
15.一种制造相位延迟元件的方法,包括在基板上设置的取向层上形成液晶层;将所述液晶层构图并固化,以形成亮度增强层;和在所述亮度增强层上形成浮雕图案。
16.根据权利要求15所述的方法,其中所述基板是透明基板和玻璃基板之一。
17.根据权利要求15所述的方法,还包括在印刷膜上取向包含光致抗蚀剂引入剂的所述液晶层;在取向的所述液晶层上辐射紫外光,以固化液晶层;用基板设置所述固化的液晶层;和从所述液晶层移除所述印刷膜,将液晶层构图并固化,从而形成亮度增强层。
18.根据权利要求15所述的方法,还包括在具有浮雕表面的光致抗蚀剂膜上形成取向层;在所述液晶层上辐射紫外光;用基板设置所述液晶层;和从所述液晶层移除所述光致抗蚀剂膜,将所述液晶层构图并固化,从而形成亮度增强层。
19.根据权利要求15所述的方法,其中取向层是光致抗蚀剂取向材料,所述方法还包括在具有反射区域和透射区域的所述基板上的反射区域中涂覆光致抗蚀剂取向材料;将形成在所述反射区域中的所述光致抗蚀剂取向材料取向;和在所述反射区域中形成所述液晶层,以取向在反射区域中的液晶层,将所述液晶层固化并形成在反射区域中,从而形成亮度增强层。
20.一种制造基板的方法,包括形成包含像素区域的开关元件,所述像素区域由反射区域和透射区域确定;形成与反射区域对准的亮度增强层,所述亮度增强层配置成将穿过其的背侧光的相位延迟大约1/4相位(λ/4);在所述透射区域中形成像素电极;和在所述反射区域中形成反射层。
21.根据权利要求20所述的方法,还包括在绝缘片上形成开关元件;在所述反射区域中形成有机绝缘层;在所述有机绝缘层上形成亮度增强层;和在所述亮度增强层上形成像素电极。
22.根据权利要求20所述的方法,还包括在绝缘片上形成所述亮度增强层;在具有所述亮度增强层所述绝缘片上形成开关元件;在所述反射区域中形成有机绝缘层;和在所述亮度增强层上形成所述像素电极。
23.根据权利要求20所述的方法,还包括在绝缘片上形成所述亮度增强层;在所述亮度增强层上形成所述反射层;和在所述反射层上及所述透射区域中形成彩色滤光片。
24.根据权利要求23所述的方法,还包括在所述彩色滤光片上形成涂覆层;和在所述涂覆层上形成公共电极。
25.根据权利要求20所述的方法,还包括在绝缘片上形成所述开关元件;在所述绝缘片上形成所述亮度增强层;在所述亮度增强层上形成有机绝缘层;和在所述有机绝缘层上的所述透射区域中形成像素电极。
26.一种基板,包括绝缘片,具有像素区域,所述像素区域由反射区域和透射窗口确定;开关元件,形成在所述像素区域中;像素电极,与所述开关元件电连接;反射层,与反射区域对准设置,所述反射层用于将从基板外侧的观察者侧发射的前光从反射层向观察者侧反射,且所述反射层用于将从与观察者侧相反的基板背侧发射的背光从反射层向背侧反射;和亮度增强层,形成在反射层和所述背光之间,其中通过亮度增强层从背侧向反射层发射的背光变成从反射层通过亮度增强层而向背侧发射的反射光。
27.根据权利要求26所述的基板,其中所述亮度增强层将背光的相位延迟,将相位延迟的背光提供给反射层,且亮度增强层将反射光的相位延迟,将相位延迟的反射光提供给背侧。
28.根据权利要求26所述的基板,其中所述亮度增强层将背光的相位延迟了大约1/4相位,将相位延迟的背光提供给反射层,且亮度增强层将反射光的相位延迟了大约1/4相位,将相位延迟的反射光提供给背侧。
29.根据权利要求26所述的基板,其中所述亮度增强层确定为具有大致相同的厚度。
30.根据权利要求26所述的基板,其中所述亮度增强层由第一表面和与第一表面一体形成的相对的第二表面确定,所述第一表面面对反射层设置,第一和第二表面每个都是大致非平面的。
31.根据权利要求26所述的基板,其中所述亮度增强层设置在绝缘片和开关元件之间。
32.根据权利要求26所述的基板,其中所述亮度增强层设置在开关元件和像素电极之间。
33.根据权利要求26所述的基板,还包括有机绝缘层,设置在开关元件之上,所述开关元件的漏极电极暴露在反射区域中,所述基板暴露在透射窗口中;和钝化层,设置在有机绝缘层之上,所述钝化层形成在与反射层连接的像素电极上,其中反射层形成在用于确定与反射区域对应的钝化层的上部区域中。
34.根据权利要求33所述的基板,其中所述亮度增强层形成在有机绝缘层的表面上。
35.根据权利要求26所述的基板,还包括彩色滤光片,形成在所述像素区域中;和公共电极层,形成在于像素区域中具有彩色滤光片的绝缘片上。
36.根据权利要求26所述的基板,其中所述亮度增强层设置在透射窗口下面,并将背光的相位延迟了大约1/4相位,将相位延迟的背光提供给透射窗口。
37.一种用于LCD装置的相位延迟元件,包括亮度增强层,设置在背光和反射层之间,所述亮度增强层由底部元件和对向元件确定,所述对向元件与底部元件一体形成,对向元件面对反射层设置,其中入射到底部元件上的具有波长相位(λ)的第一光延迟了大约1/4相位(λ/4),并从对向元件向反射层发射第二光,第二光从反射层反射,从而变成从反射层向对向元件发射的第三光,穿过亮度增强层,第三光的相位延迟了大约1/4相位(λ/4),从底部元件发射第四光。
38.根据权利要求37所述的相位延迟元件,其中所述第一光是圆偏振的,第二光和第三光是垂直偏振的,且第四光是在与第一光相同的方向上圆偏振的。
39.根据权利要求37所述的相位延迟元件,其中所述对向元件由大致非平面的表面确定。
40.根据权利要求37所述的相位延迟元件,其中所述底部元件由大致非平面的表面确定。
41.根据权利要求37所述的相位延迟元件,其中所述底部元件和对向元件是固化的胆甾型液晶。
42.根据权利要求37所述的相位延迟元件,其中所述对向元件由凹入和凸起部分确定。
43.根据权利要求42所述的相位延迟元件,其中所述对向元件的凹入和凸起部分是圆形的。
44.根据权利要求42所述的相位延迟元件,其中所述对向元件的凹入部分由平坦的部分确定,对向元件的凸起部分由圆形部分确定。
45.一种LCD装置,包括第一侧;第二侧,与用于确定LCD装置的第一侧相对;液晶层,与第二侧接近,所述液晶层用于显示图像;第一偏振器,当光从第一偏振器的每侧入射到第一偏振器上时,用于发射水平偏振光;下1/4相位(λ/4)延迟膜,夹在液晶层和第一偏振器之间,当所述水平偏振光从第一侧入射到下1/4相位(λ/4)延迟膜上时,所述下1/4相位(λ/4)延迟膜用于发射圆偏振光,并且当圆偏振光从第二侧入射到下1/4相位(λ/4)延迟膜时,从下1/4相位(λ/4)延迟膜向第一侧发射水平偏振光;亮度增强膜,夹在液晶层和1/4相位(λ/4)延迟膜之间,当圆偏振光从第一侧入射到亮度增强膜上时,所述亮度增强膜用于从那里向第二侧发射垂直偏振光,当垂直偏振光从第二侧入射到亮度增强膜上时,亮度增强膜用于从那里发射圆偏振光;和反射层,夹在液晶层和亮度增强膜之间,该反射层用于将垂直偏振光反射到亮度增强膜,所述垂直偏振光从第一侧入射到反射层上。
46.根据权利要求45所述的LCD装置,其中所述液晶层响应于从亮度增强膜提供的垂直偏振光而显示图像。
47.根据权利要求45所述的LCD装置,其中所述亮度增强膜形成在反射区域中,对应于所述反射区域形成有反射层。
48.根据权利要求45所述的LCD装置,其中所述亮度增强膜形成在反射区域和透射区域中,其中反射区域是形成反射层的区域,透射区域是不存在反射层的区域。
49.根据权利要求45所述的LCD装置,还包括上1/4相位(λ/4)延迟膜,其用于将穿过液晶层的光的相位延迟大约1/4相位;和上偏振器,其用于透过来自上1/4相位(λ/4)延迟膜的一部分1/4相位(λ/4)延迟的光,其中上偏振器具有预定的偏振轴,且上1/4相位(λ/4)延迟膜夹在上偏振器和液晶层之间。
全文摘要
一种相位延迟元件包括夹在反射层和非自然光之间的亮度增强层。亮度增强层由第一表面和相对的第二表面确定。第一表面面对反射层。来自非自然光的第一光入射到第二表面上。第一光的相位延迟了大约1/4相位(λ/4),从而从第一表面向反射层发射第二光。第二光从反射层反射,从而从反射层向第一表面发射第三光。第三光的相位延迟了大约1/4相位(λ/4),从而从第二表面发射第四光。因此,循环了从反射层反射的一部分非自然光,从而提高了LCD装置的亮度。
文档编号G02F1/1335GK1740872SQ20051010982
公开日2006年3月1日 申请日期2005年7月19日 优先权日2004年7月19日
发明者平井彰, 尹晋赫, 鱼基汉, 朴敏秀 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1