通过掩膜曝光生成三维对象的设备和方法

文档序号:2729364阅读:303来源:国知局
专利名称:通过掩膜曝光生成三维对象的设备和方法
技术领域
本发明涉及通过经包含预定个分立成像元件(像素)的成像单元输入的能量,在电磁辐射的作用下固化可固化材料,生成三维对象的设备和方法。更具体地说,本发明涉及材料的固化基于通过光栅掩膜的曝光,以及掩膜中的最小物理分辨率由像素的大小给出并且将空间光调制器(SLM)技术应用于成像单元的设备和方法。
背景技术
如下的文献说明了构造“光硬化”光聚合物的三维对象的高度可变方法,相关内容请参阅“Automated Fabrication-ImprovingProductivity in Manufacturing”by Marshall Burns,1993(ISBN0-13-119462-3)。
除了其他因素之外,已知可能是通过如下的曝光a)多媒体投影仪;b)LC(液晶)显示器(反射、透射);c)LED(发光二极管)或激光二极管行(在一个区间中与行垂直地移动);d)光阀技术(MEMS)。
在如下的专利中描述了三种方法美国德克萨斯仪器公司的美国专利US005247180A“Stereolithographic Apparatus and Method of use”(1993年9月);SRI国际公司的美国专利US005980813A“Rapid Prototypingusing multiple materials”(1999年11月);和Karlsruhe大学信息学研究中心的实用新型公布DE G 93 19405.6“Device for the production of a three-dimensional object(model)according to the principle of photo solidification”;尤其,根据类似的方法,DeltaMed的实用新型公布DE 299 11 122U1“Device for producing a three-dimensional object”(1999年6月)描述了生成微技术三维部件的应用;Envision Technologies股份有限公司的EP1250997A(=US2002155189A)“Device for producing athree-dimensional obiect”(2002年4月);丹麦DICON AS Lystrup公司的德国专利DE69909136T“RapidPrototyping Device and Rapid Prototyping Method”(2003年7月)(等效于欧洲专利EP 1156922“Rapid Prototyping Apparatus andMethod of Rapid Prototyping”(2003年8月));HAP,Sitec Industrietechnologie and DELTAMEDMedizinprodukte股份有限公司的WO 01/00390A;和Envisiontec股份有限公司的WO 2005/110722A。
对于产生光聚合作用的基于激光系统,通过激光束的能量设置提供曝光点的光输出,从而可以在那个点上控制光聚合物的硬化深度。为了可选择地硬化相应层,在要相应硬化的横断区上扫描激光束。
可以像曲线那样用激光束扫描要硬化的横断区的轮廓。
对于通过利用SLM技术的投影系统,根据掩膜投影产生光聚合作用的系统,其优点在于,可以一次性曝光整个横断区。投影光栅图像的光区逐个体素地硬化光聚合物。
利用SLM技术的投影系统的缺点在于,取决于a)使用的光源;b)将光能耦合到SLM的光学系统;和c)投影光学器件的光晕,图像面上的光输出分布非常不均匀(绝对值高达50%)。
在使用寿命期间光源特性的变化导致可变的误差,因此,导致变化的均匀分布。
此外,光源光强的变化不会导致与激光一样的选择性变化,但影响整个投影图像。
在将光能耦合到SLM的光学系统和投影光学器件引起均匀偏差的情况下,所关心的是恒定误差。
要硬化的横断区的轮廓只能出现在光栅中;分辨率取决于图像点/像素的数量和取决于投影图像的大小。
此外,光强随曝光面结构的大小而变化(相邻面越大,光强越高;细小面结构越小,光强越低)。
对于上述的WO 01/00390A,通过控制掩膜的渗透率控制光束强度,其中,强度可以通过选择透射LCD的灰度级来控制。在WO2005/110722A中,为了提高沿着要生成的对象的横断区的轮廓内外的分辨率,在每层的子像素层面上进行多次曝光,所述曝光由图像/构建面中在子像素层面上偏移的多个图像的序列组成,其中,对于每个偏移图像,生成一个分开的掩膜/位图。
WO 01/00390A和WO 2005/110722A都没有阐明如何改善像面中的分辨率和细调以及如何使光源的固有不均匀性平衡得更好。

发明内容
本发明的目的本发明的目的是改善通过经包含规定个分立成像元件(像素)的成像单元输入的能量,在电磁辐射的作用下固化可固化材料,生成三维对象的设备和方法,以便实现系统的高精确度、高分辨率和细调、和/或高均匀性。
解决问题的方案根据本发明,提供了一种生成三维对象的设备,该设备包含用于能量输入能够在电磁辐射的作用下固化可固化材料、和包含预定个分立成像元件(像素)的成像单元;计算机单元、IC和/或软件实现;其中,计算机单元、IC和/或软件实现分别具有针对要生成的三维对象的横断区,通过多个相继光栅掩膜(位图)进行曝光控制能量输入的能力。
根据本发明,还提供了另一种生成三维对象的设备,该设备包含包含排列成点、行或矩阵的预定个分立成像元件(像素)的光栅成像单元,其中,成像单元将像素组成与要生成的三维对象的特定横断区有关的图像,因此,形成光栅掩膜(位图);其中,成像单元被设计成为在电磁辐射的作用下固化可固化材料提供能量输入;其中,成像单元被安排成受到这样的控制,至少可以生成两个掩膜,包括覆盖横断区的第一总掩膜(位图1);和总掩膜内的局部掩膜(位图2)。
本发明还提供了一种生成三维对象的方法,该方法包含提供包含预定个分立成像元件(像素)的成像单元;通过经成像单元输入的能量,在电磁辐射的作用下,在体像素(体素)的矩阵中固化可固化材料;其中,通过多个光栅位图的序列控制针对要生成的三维对象的横断区用于固化要硬化的材料中的体像素的能量输入,以便影响可固化材料中的每个体素(体像素)的硬化深度。
本发明还提供了另一种生成三维对象的方法,该方法包含提供包含预定个分立成像元件(像素)的成像单元;通过经成像单元输入的能量,在电磁辐射的作用下,固化可固化材料;其中,成像单元将像素组成与三维对象的横断区有关的图像,因此,形成光栅掩膜(位图),其中,三维对象的每个横断区至少使用两个掩膜,包括覆盖横断区的第一总掩膜(位图1);和总掩膜内的局部掩膜(位图2)。


图1A-1C示意性地示出了利用与特定横断区有关的多个位图的本发明原理的例子,其中,图1A例示性地示范了要生成的支持结构,和图1B和1C分别示出了要用于生成支持结构的位图1和2;图2A-2C示意性地示出了利用与特定横断区有关的多个位图的本发明原理的例子,其中,图2A例示性地示范了包含相对较大横断区的要生成结构,和图2B和2C分别示出了每个横断区要使用的位图1和2;
图3A和3B示意性地例示了根据本发明另一个实施例的基本概念,其中,通过包括位图模式1(图3A)和位图模式2(图3B)的相继位图模式分步骤地辐照一个具体预定横断区;图4示意性地示出了使突出物处于稳定状态的有利示范性实施例;和图5A-5C示出了在利用每个X,Y横断区包括位图1(图5B)和位图(5C)的多个位图同时生成复杂体素矩阵(图5A),以便沿着体素矩阵的Z方向获得不同硬化深度的进一步有利示范性实施例。
具体实施例方式
下面根据参照附图的进一步示范性实施例对本发明作更详细描述;但是,本发明不局限于所述的实施例和例子和图形,而是可以包含在权利要求书范围内的任何变化和修改。
根据本发明的设备和方法允许消除图像层面上的不均匀性,因此,实现更高精确度、更高分辨率和细调。
一方面,本发明可以通过像素层面上的光输出控制,控制要硬化材料中的体素的硬化深度,另一方面,可以通过一个或几个相继数字掩膜(位图)按每个构建面/曝光周期有选择地曝光,不改变包括光源的成像单元的特性地按每个横断区特别过曝光要硬化的横断区的可选择部分,其中,更进一步,掩膜中的BLACK/WHITE光栅(或分别是LIGHT/DARK光栅和/或COLOR光栅)最好随掩膜而异,和/或可以改变每个掩膜的曝光时间。
由于通过光栅掩膜曝光,在要硬化的材料中将硬化所谓体素(体像素)的矩阵,其中,XY光栅由像素的大小、数量和排列预定,并且材料中体素的高度(=硬化深度)可以通过多次曝光控制。更进一步,在优选实施例中,光强和/或光谱可以通过每个像素的灰度值和/或颜色值(后者通过电磁辐射的波长或波长范围)具体控制。
按照本发明和取决于需要,可以标识和选择要生成的结构的特殊部分-即,只在要硬化的横断区内。按照本发明,能量输入可以与三维对象通过其轮廓定义的特定横断区有关地受到非常有效影响。更适当地说,在通过第一位图定义的横断区内,生成第二位图,或进一步的位图,其中,第一和第二(和可能附加)位图通过多次曝光叠加在一起。然后,第二和可能附加位图在由第一位图形成的总掩膜内分别形成局部掩膜。按照本发明,术语“局部掩膜”和“在总掩膜内”通常意味着,与总掩膜相比,相对于其相同或较小的横断区,一个或几个较小的区域被曝光。第二和可能附加位图无需相同,但可以在第一位图的总掩膜内按需要改变。因此,除了总掩膜之外形成的局部掩膜可以相同或不同,或可以形成不同子局部掩膜。根据本发明,可以在构建面的预定、限定的总图像区内通过多次曝光生成体素矩阵。可以有利地省去每个横断区的构建层面中的图像的偏移。通过形成体素矩阵,可以细致得多地和更精确地形成,例如,支持结构、突出物和/或,尤其,微小/细小部分。
使用总掩膜和局部掩膜的顺序可以随机选择,即,“第一”、“第二”和“附加”位图不规定任何时间顺序,而只指定多次掩膜曝光的不同位图。但是,更适当地说,第一位图首先与总掩膜一起使用。各个位图可以通过相应软件算法生成。每个总掩膜和每个局部掩膜的曝光时间可以另外通过机电快门相互无关地控制。
通过根据本发明的多次掩膜曝光,可以精确到像素地控制每个单独体素的硬化深度,以便可以提高与表面质量、生坯硬度、每个细节精确度、和容限有关的部件总质量,也可以优化必要支持结构的条件。
根据本发明的多次掩膜曝光还允许在要硬化的体像素矩阵的所选区域中进行在位图内仅通过灰度值定标不可能实现的“过曝光”,因为灰度值调整将大体上,或至少部分消除基本上不需要的光能。还有,对于进一步的细调,在第一、第二、和/或进一步的位图内进行灰度值和/或颜色值调整尤其有利。由此可以实现附加细调,同时限制了总掩膜内没有灰度值和/或颜色值调整地实现相同细调所需的位图数量。灰度值和/或颜色值调整可以按位图或分别按局部位图针对各个像素或一部分像素以像素特有方式完成。
例如,对于突出物的硬化、细小结构和材料累积物的过曝光、构建面内材料收缩的减少等,可以实现按横断区在曝光周期内用于局部曝光的掩膜的明智选择和顺序,尤其,曝光策略。
进一步曝光掩膜的生成在技术上最好完全通过软件来完成,因此,非常灵活和可应用于基于SML技术的所有掩膜投影系统。
根据本发明的特定实施例,可以通过影响可硬化材料中的体素的硬化深度、像素层面上的位图的附加灰度值和/或颜色通道编码存储和应用附加参数;这种影响包括影响a)用亮度值(从白色=255到黑色=0的灰度值)表示的光强;和b)通过颜色信息表示的光谱(激发和吸收行为)。
由于各个像素的附加灰度值和/或颜色通道编码,可以使位图内的曝光参数得到细致校正。
附加控制参数通过可以通过快门控制的每个位图的各个曝光时间提供。只有当通过成像单元完全建成数字图像时,才可以打开和随后再次关闭快门。
本发明与设备和方法有关的原理可应用于生成三维对象的各种类型或方式。构建或构造可以按层(逐层)进行,但是,可替代地,可以与层无关地进行。其它设计选择也是可以的。例如,硬化过程可以不分层地连续进行;不连续地(相同,不同或可变层厚)进行;部分连续和部分不连续地(相同,不同或可变层厚的不连续)进行;或以各种可能的组合进行。根据本发明的设备和过程尤其适用于构建与层无关的体素矩阵中的三维对象。
并且,利用多个位图,或第一和第二或进一步光栅掩膜的应用,可以将每个横断区用于要生成的三维对象的一个或多个横断区。
应用例子支持结构的过曝光如图1A示意性例示的那样,本发明的重要目的是,一般地说,将支持结构20最小化,具体地说,最小化对于构建部件10的它们的触点21。这可以通过在构建过程中由于较高的聚合程度使支持结构20获得较高的内在强度来实现,较高的聚合程度又可以通过应用按照本发明的概念进行过曝光实现。
根据数据结构,对于整个部件内的各个横断区(在图1A中,通过上横断表面用透视图示意性表示),可以将支持结构数据与部件数据区分开,因此,只有对于支持结构20位图区,和/或可选择地,对于触点21,生成总位图1(覆盖整个横断区)内的附加局部位图2,位图2以与第一掩膜曝光有关的定义、即,相同或不同曝光时间与第一位图1串联,并叠加在第一位图1上面,因此,只在支持结构(图1B和1C)的区域中实现过/后曝光。
大与细小横断区结构的硬化深度/细小结构的过曝光对于较大结构,可比细小结构获得更多的每个区域光输出;这种现象导致每个横断区xy扩展(在轮廓之外)和z扩展(深度)的硬化不同。
如果一次曝光,例如,10mm×10mm的大区域,将硬化成,例如,130μm的厚度;而2mm×10mm的结构在相同的曝光时间内将只硬化100μm。如果现在在,例如,100μm的层中构建部件,将可能发生,在细小部分中,由于过曝光(硬化到前一层中多达30%的130μm深度),生成的层未缔结足够的化学键接,致使这些层在这个部分中分开,和致使部件存在缺陷。这种现象对于细小支持结构尤其至关重要。
图2A示意性地示出了大横断区31和细小横断区32和33的例子。在图2A中,通过上横断区用透视图示意性地表示了要生成的部件的整个横断区。根据适当算法,在横断图像中分别识别不同区域扩展31或32和33的结构,和为了重新曝光细小结构生成位于总位图1(覆盖整个横断区)内和叠加在后者上的一个或多个相应局部位图2,并提供相应曝光时间。这里,局部位图的结构深度留给操作人员决定。
另外,可以精确到每个像素地将适当灰度值分配给较大横断区31,而精确到每个像素地将较低灰度值或不将灰度值(即,白色)分配给较小横断区32,以便在要曝光的整个结构上获得更均匀的硬化深度(Z)和硬化扩展部分(XY)。也就是说,较大结构区因此随着它们的扩展而变暗。
较高生坯(green compact)硬度、大块结构的过曝光、或一个部件内的较多材料累积。
对于一些部件,存在累积了一方面其壁厚超过后硬化中材料的最大可能硬化深度的材料或处在部件内在后硬化过程中光能到达不了或只在有限程度上到达的位置中的体部分。
早在生成过程中,这样的体部分就可以通过具体过曝光实现较高生坯硬度。这可以通过横断区的多次曝光实现。可替代地,或另外,这也可以通过随后横断区的相应灰度值分配实现,其中,在后一种情况中,Z方向的硬化深度应该超过当前固化好几倍。
更进一步,取决于所需硬化深度,可以逐步增加用于所选区的后/过曝光的局部位图的曝光时间。
减少收缩的曝光策略这里,示意性地例示了图3A和3B中的基本概念是不整体地和一次性地曝光和硬化,而是分步骤地(图3A和3B)通过包括位图1模式和位图2模式的补充相继位图模式曝光和硬化要硬化的预定横断区(这里,作为黑色阴影总横断区的一部分,通过区域60表示)。如图3A所示,尤其适用的位图模式1在辐射区中包含各种网格线具有适当厚度的网格结构61,而根据图3B的位图模式2填充辐射区的间隙62。因此,在由第一位图模式1引起的第一局部硬化之后,允许材料回流到由材料收缩形成的“空间”中,以便接着通过补充位图模式2硬化。相应位图模式不局限于这里所述的那些。此外,可以重叠位图模式的辐射区。
突出物(overhang)的曝光策略图4示意性地示出了使突出物处于稳定状态的有利示范性实施例。
在某个局部结构40的突出区域中,为了能够在突出物41上形成更稳定的固化,在曝光周期内,在突出区内,最初例如,前3个结构面被留下,以便只在主部件区42中进行相应固化。只有在此之后,才在第四曝光周期内多能量地曝光突出区41。根据本发明,在第四曝光周期内,首先,在预定曝光时间t1内利用位图1曝光整个曝光区(即,主部件区40和处在其左右的突出区41)的位图1进行曝光;然后,在较长曝光时间t2,例如,与位图1的曝光时间t1相比,4至5倍的曝光时间内,利用只覆盖左右突出区41的局部位图2重新曝光(参见图4)。标号45示出了承载板。
通过组合多次掩膜曝光和灰度值和/或颜色值调整形成复杂体素矩阵形成复杂体素矩阵的另一个有利示范性实施例通过图5A-5C示出。这只对3×3像素的小局部区域作了示意性说明。显然,相同的原理也可应用于其它,尤其,更多像素的较大区域。为了获得如图5A所示具有三种不同硬化深度的体素矩阵,通过利用第一位图1生成的掩膜,针对由x和y定义的横断区进行第一次曝光,其中,将附加灰度值分配给最低硬化深度的两个像素(处在图左前侧,用标号51表示),和将白色分配给其它像素(无灰度值;在图中用标号52表示)。然后,针对由x和y定义的相同横断区,通过利用第二位图2生成的局部掩膜进行第二次曝光,其中,将白色分配给最高硬化深度的两个像素(无灰度值;处在图右后侧,用标号53表示),而其它像素完全变黑(黑色;在图中用标号54表示)。
结果,每个横断区只用两个曝光步骤就获得了复杂体素矩阵。
对于上述所有应用,局部位图内的细调可以通过精确到像素颜色通道编码进行,即,位图掩膜/曝光掩膜每个像素都可以包含通过其可精确到每个像素地控制位图内的曝光强度的附加黑色/白色、灰度值和/或颜色信息。此外,在所有应用中,可以相互无关地调整每个位图的曝光时间,以便为体素矩阵的可选择硬化深度提供附加参数。
关于根据本发明的多次曝光的每个总体掩膜和每个局部掩膜的曝光模式的顺序和设计,没有什么限制。唯一应该注意的是,对于每次局部曝光,能量至少达到使材料开始硬化或使它完全硬化所需的能量。
所述的示范性实施例可以随机地相互组合。并且,它们只是示范性的,而决不能理解成限制性的。相反,可以容易地将它们修改成通过其它实施例实现根据本发明的原理。
权利要求
1.一种生成三维对象的设备,包含用于能量输入能够在电磁辐射的作用下固化可固化材料、和包含预定个分立成像元件(像素)的成像单元;计算机单元、IC和/或软件实现;其中,计算机单元、IC和/或软件实现分别具有针对要生成的三维对象的横断区,通过多个相继光栅掩膜(位图)进行曝光控制能量输入的能力。
2.根据权利要求1所述的设备,其中,能量输入的控制生成体像素(体素)的矩阵;和/或其中,可固化材料中每个体素(体像素)的硬化深度可通过应用光强和/或所选光波长而改变。
3.根据权利要求1所述的设备,其中,更进一步,至少一个光栅掩膜被安排成在灰度值和/或颜色值方面按图像点(像素)控制。
4.根据权利要求1所述的设备,其中,对于可变能量输入,可以将不止两个能级分配给至少一部分像素,其中,不止两个能级包括a)打开和关闭状态(黑色/白色);和b1)预定个灰度级,或b2)预定个颜色值。
5.根据权利要求1所述的设备,其中,成像单元包含在投影单元中。
6.根据权利要求1所述的设备,其中,成像单元是空间光调制器(SLM)类型的。
7.根据权利要求1所述的设备,其中,成像单元涉及在MEMS技术中包含光阀的发射点、发射行或发射矩阵。
8.根据权利要求1所述的设备,其中,成像单元涉及分别包含LED的发射点、发射行或发射矩阵。
9.根据权利要求1所述的设备,其中,进一步将快门安排在要硬化的材料与能量源之间,以便控制每个光栅掩膜的曝光时间。
10.一种生成三维对象的设备,包含包含排列成点、行或矩阵的预定个分立成像元件(像素)的光栅成像单元,其中,成像单元将像素组成与要生成的三维对象的特定横断区有关的图像,由此,形成光栅掩膜(位图);其中,成像单元被设计成为在电磁辐射的作用下固化可固化材料提供能量输入;其中,成像单元被安排成受到这样的控制,至少可以生成两个掩膜,包括覆盖横断区的第一总掩膜(位图1);和总掩膜内的局部掩膜(位图2)。
11.一种生成三维对象的方法,包含提供包含预定个分立成像元件(像素)的成像单元;通过经成像单元输入的能量,在电磁辐射的作用下,在体像素(体素)的矩阵中固化可固化材料;其中,通过相继多个光栅位图控制针对要生成的三维对象的横断区用于固化要硬化的材料中的体像素的能量输入,以便影响可固化材料中的每个体素(体像素)的硬化深度。
12.根据权利要求11所述的方法,其中,为了固化材料,通过投影单元将图像投影到构建面上。
13.根据权利要求11所述的方法,其中,按横断区确定要硬化的体素的矩阵中的将不被曝光或将被附加曝光的区域,并从该信息中生成相应局部位图和将相应局部位图用于曝光。
14.根据权利要求11所述的方法,其中,在按横断区生成的横断图像中,识别不同区域扩展的分开区,并对于扩展较小的区域,生成与较小区域扩展的结构相对应的一个或多个附加位图和将一个或多个附加位图用于随后局部曝光。
15.根据权利要求11所述的方法,其中,识别部件内的特定结构,对该特定结构的横断面,为了每个横断区的多次扩展生成附加位图。
16.根据权利要求11所述的方法,其中,通过生成每个横断区的具有不同信息的一个或多个位图掩膜和随后利用生成的一个或多个位图掩膜曝光,经过单次或多次曝光进行所选区域的增强硬化,其中,实现的体素的硬化深度(沿着Z方向)超过多次曝光的区域中当前固化的厚度好几倍。
17.根据权利要求11所述的方法,其中,在要硬化的材料与能量源之间进一步使用快门,以便控制每个掩膜的曝光时间。
18.根据权利要求11所述的方法,其中,将有关灰度值和/或颜色值的信息按图像点(像素)存储在光栅图像(位图)中。
19.根据权利要求11所述的方法,其中,为每个光栅图像(位图)当前在线计算有关每个图像点(像素)的灰度值和/或颜色值的信息。
20.一种生成三维对象的方法,包含提供包含预定个分立成像元件(像素)的成像单元;通过经成像单元输入的能量,在电磁辐射的作用下,固化可固化材料;其中,成像单元将像素组成与三维对象的横断区有关的图像,由此,形成光栅掩膜(位图),其中,三维对象的每个横断区至少使用两个掩膜,包括覆盖横断区的第一总掩膜(位图1);和总掩膜内的局部掩膜(位图2)。
全文摘要
本发明描述了通过经包含预定个分立成像元件(像素)的成像单元输入的能量,在电磁辐射的作用下固化可固化材料,生成三维对象的设备和方法。通过多个相继光栅掩膜(位图;例如,位图1和位图2和可能附加位图)进行曝光,控制与三维对象的特定横断区有关的能量输入。成像单元可适当控制成至少可以生成两个掩膜,包括覆盖横断区的第一总掩膜(位图1;用白光曝光的专用于像素区域元件);和总掩膜内的局部掩膜(位图2;其中,用白光专用于像素地只曝光一部分区域元件)。可以形成体素矩阵。可以在可固化材料中具体和精确地影响每个体素(体像素)的硬化深度。
文档编号G03F7/20GK101063812SQ200710101018
公开日2007年10月31日 申请日期2007年4月23日 优先权日2006年4月28日
发明者亨德里克·约翰, 沃尔科尔·希勒恩, 阿里·埃尔-斯博兰尼 申请人:想象科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1