衍射背光显示和系统的制作方法

文档序号:14419870阅读:175来源:国知局
衍射背光显示和系统的制作方法

相关申请的交叉引用

本申请要求于2015年9月5日提交的美国临时专利申请第62/214,976号以及于2016年6月30日提交的国际(pct)申请第pct/us2016/40582号的优先权,上述两项申请的全部内容通过引用包含于此。



背景技术:

近些年来,头戴式显示器(head-mounteddisplay,hmd)技术在虚拟和增强现实的应用中已经变得越来越流行。hmd是通常是以眼睛、护目镜(goggle)、头盔或面罩(visor)的形式戴在用户头上的显示设备。显示设备可以是当用户戴着hmd时位于用户的一只眼睛的视场内的单个小型电子显示单元,或者显示设备可以实现为当用户戴着hmd时位于用户的双眼的视场内的两个分别的小型电子显示单元。例如,小型电子显示单元可以使用小型等离子体显示面板或液晶显示器实现。hmd中使用的小型显示单元也可以使用一个或多个透镜、准直反射器以及半透镜实现,并使用显示面板聚焦创建的图像。hmd可以使用一个显示单元以创建增强现实观看体验,或hmd可以使用两个显示单元实现以创建虚拟现实观看体验。

附图说明

根据在此描述的原理的示例和实施例的各种特征可以参考以下的详细描述并结合附图而更容易地理解,其中相同的附图标记表示相同的结构元件,并且其中:

图1a示出了配置有衍射光栅的导光板(platelightguide)的平面图。

图1b示出了衍射光栅的放大的横截面图。

图1c示出了作为距离的函数的衍射光栅的衍射特征间隔的曲线图。

图2a-2c示出了不同的衍射光栅结构的横截面图。

图3a示出了衍射背光系统的平面图。

图3b示出了光入口边缘附近的导光板的横截面图。

图4示出了衍射背光系统的等距视图。

图5示出了将光聚集到局部空间区域的导光板的侧视图。

图6示出了显示器的等距视图。

图7示出了显示器的侧视图。

图8-9示出了两个不同显示器的侧视图。

图10a-10c示出了不同的导光板结构的平面图。

图11示出了衍射背光系统的侧视图。

图12示出了局部空间区域中的显示图像的方法的流程图。

图13示出了用以显示增强现实图像的头戴式显示器。

图14示出了用以显示虚拟现实图像的头戴式显示器。

某些示例和实施例可以具有额外或代替以上参考的附图中图示的特征的其他特征。下面参考以上参考的的附图描述这些和其他特征。

具体实施方式

根据在此描述的原理的实施例提供了用衍射背光系统实现的基于衍射光栅的背光显示器。衍射背光系统包括光源和导光板。导光板的表面配置有衍射光栅。根据一些实施例,衍射光栅可以包括弯曲的衍射特征(例如,弯曲的脊和凹槽)。由光源生成的光可以沿着导光板边缘耦合到导光板中。衍射光栅配置为将光耦合出导光板,并且将光聚集在位于与衍射光栅有一定距离的局部空间区域中。例如,衍射光栅可以将耦合进导光板中的一部分光耦合出。第一光阀阵列(如液晶显示器)可以布置在从衍射光栅输出的光的路径中,以形成聚集用于在局部空间区域中观看的图像的显示器。在一些实施例中,显示器可以包括布置在穿过第一光阀阵列的光路中的第二光阀阵列,以便在局部空间区域中提供眼睛适应。在一个实施例中,第二光阀阵列可以是平面光阀阵列。在另一实施例中,第二光阀阵列可以是由观看者佩戴的像素化的接触镜(contactlens)。一个或两个基于衍射光栅的背光显示器可以用在头戴式显示器中以便为佩戴者生成聚焦的增强或虚拟现实图像。

图1a示出了在导光板100的表面上形成的衍射光栅102的衍射光栅图案的平面图。下面使用具有正交的x,y和z轴的笛卡尔坐标系来描述导光板100的不同方向。如图1a所示,同心的黑色和白色曲线(如黑色曲线104和白色曲线106)表示弯曲的衍射特征。在一些实施例中,由曲线104、106表示的弯曲的衍射特征可以包括在导光板100的表面上交替的弯曲的脊和凹槽。如图所示,交替的弯曲的脊和凹槽可以具有或共享位于离边缘180一定距离处的公共的曲率中心110。如此,交替的弯曲的脊和凹槽可以是交替的同心的弯曲的脊和凹槽并且表示同心的弯曲的衍射特征。根据各种实施例,交替的弯曲的脊和凹槽或者更一般的弯曲的衍射特征形成衍射光栅102的衍射光栅图案。

在一些实施例中,弯曲的衍射特征可以采用或由双曲线定义(即,由双曲线定义或基于双曲线定义),并且因此可以是“双曲线形状”。具体地,在一些实施例中,弯曲的衍射特征可以是同心的双曲线形状的曲线衍射特征(例如,同心的双曲线形状的交替的弯曲的脊和凹槽)。在其他实施例中,形成衍射光栅102的曲线衍射特征或弯曲的脊和凹槽的形状可以是半圆形或同心半圆形(例如,位于远离边缘108的公共曲率中心110的半圆形)。在又一些其他实施例中,可以采用基本上既不是双曲线形状也不是半圆形状的另一曲线形状来定义曲线衍射特征的曲线。

图1b示出了放大的xz平面,其是导光板100的横截面图。在该视图中,衍射光栅102包括在z方向上伸出并且通过凹槽(如凹槽116)分离的脊(如脊114)。凹槽的宽度由wg表示,以及脊的宽度由wr表示。凹槽宽度wg和脊宽wr之和称为“特征间隔”,用表示。如图1a所示,沿着凹槽和脊的长度上凹槽和脊的宽度是基本上恒定的。每对相邻的凹槽和脊称为“衍射特征”,并且沿着衍射特征长度上的特征间隔是基本上恒定的。

图1c示出了作为离公共中心110的径向距离的函数的衍射特征间隔的曲线图。水平轴线118表示从公共中心110沿着半径(如图1a中的从公共中心110延伸出的半径120)的径向距离。垂直轴线122表示特征间隔λ。曲线124-126表示特征间隔随着离公共中心110的距离的增加而变化的方式。曲线124表示随着离公共中心110的距离增加,特征间隔呈指数下降。曲线125表示随着离公共中心110的距离增加,f呈线性下降。曲线126表示特随着离公共中心110的距离增加,特征间隔呈指数下降。

在图1b的示例中,以及在随后的图示中,衍射特征的横截面视图由矩形的凹槽和脊表示。在其他实施例中,衍射光栅102的脊和凹槽可以具有锯齿形、梯形或半球形的横截面形状。例如,衍射光栅102的衍射特征可以具有梯形横截面的脊。

导光板100可以是板状的光学波导,其形式为延伸的、基本上平坦的光学透明、介电材料的片或板。导光板100可以包括多种不同的光学透明材料中的任何一种,或者包括各种介电材料中的任何一种,包括但不限于各种类型的玻璃的一种或多种,如二氧化硅玻璃、碱金属铝硅酸盐玻璃、硼硅酸盐玻璃和基本上光学透明的塑料或聚合物,例如聚(甲基丙烯酸甲酯)或丙烯酸玻璃以及聚碳酸酯。在一些实施例中,导光板100可以包括在导光板100的表面的至少一部分上的包覆层(未示出),以促进全内反射。

衍射光栅102可以使用许多不同的微制造技术中的任何一种来形成,包括但不限于湿蚀刻、离子铣削、光刻、各向异性蚀刻和等离子体蚀刻。例如,如图1b所示,导光板100的衍射光栅102可以使用离子铣削的电介质材料的板形成。在一个实施例中,导光板100的衍射光栅102可以通过在介电材料板的表面上沉积介电材料层或金属层,随后蚀刻沉积层以形成衍射光栅102。

图2a示出了放大xz的平面,其是由介电材料的板202形成的导光板100的截面图,其具有在板202的顶部表面上形成的与板202的材料(即电介质材料或金属)不同的衍射光栅的脊204。在其他实施例中,衍射光栅102可以形成在导光板100的底部表面中。图2b示出了放大的xz平面,导光板100的截面图,导光板100具有形成在介电材料的板206的下表面中的衍射光栅102。在该实施例中,材料的底层208覆盖衍射光栅102并且基本上填充脊之间的凹槽。底层208可以是金属、反射材料或比板206更低的折射率的介电材料。图2c示出放大xz平面,其是导光板100的截面图,导光板100具有形成在介电材料的板210的底部表面中的衍射光栅102。在该实施例中,凹槽(如凹槽212)填充有折射率低于板210的金属或介电材料。反射层214覆盖导光板100的底部表面。

图3a示出了衍射背光系统300的平面图。衍射背光系统300包括光源302和导光板100。由光源302生成的光沿着称为“光入口边缘”的边缘108耦合进导光板100中。光源302和导光板100形成衍射背光系统。例如,光源302可以是发光二极管(“led”)、有机led、聚合物led、等离子体光学发射器、荧光灯或白炽灯。从光源302输出的光可以是白光(即,包括可见光谱中的几乎所有波长)或可见光谱的窄波长带中的特定颜色。如图3a所示,沿着光入口边缘108耦合到导光板100中的光在导光板100内沿着远离光入口边缘108的方向304传播。换句话说,光沿着光入口边缘108耦合进入导光板100,使得光沿着衍射特征的特征间隔减小的大体上方向在导光板100内传播。

图3b示出了xz平面,其是在光入口边缘108附近的导光板100的横截面视图。光沿着光入口边缘108耦合进入导光板100中并且在导光板100内沿着大体上特征间隔减小的方向上。耦合进导光板100中、在由表示的角度范围内(并称为“内部反射角发散”)的光内经历全内反射,并被限制在导光板100内。例如,曲线306代表内反射发散角和方向箭头308-310表示在内反射发散角内输入到导光板100的光的光路。在来自相对的顶部和底部表面(如顶部表面312和底部表面314)的每个反射点处,光以小于临界角的角度撞击相对的表面,并且被限制在导光板100内。然而,限制在导光板100内的光的至少一部分与衍射光栅102相互作用,如沿着光路316传播的光。与衍射光栅102相互作用的光被耦合出导光板100作为一阶衍射光束。例如,可以抑制光的零阶和高阶衍射光束。例如,光318代表相对于导光板100的法线方向320以衍射角θ耦合出导光板100的一阶衍射光。

衍射光栅102的图案和特征间隔使得一阶衍射光从导光板100衍射地耦合出来,并会聚在称为“眼睛盒”(eyebox)的基本上局部的空间区域中。图4示出了衍射背光系统300的等距视图,其中由光源302生成的光被耦合进导光板100中。衍射光栅102使得输入到导光板100的至少一部分光在内反射发散角内以在金字塔形或锥形的光传输区域404内衍射地耦合出导光板100,并会聚到眼睛盒406中。方向箭头401-403表示在光传输区域404中在衍射光栅102的不同点处耦合出导光板100中并进入眼睛盒406中的一阶衍射光。在超过眼睛盒406并远离导光板100的光发散。

图5示出xz平面,其是从导光板100输出并进进入位于眼睛盒406内的观看者的眼睛502的光的侧视图。眼睛盒406的近似宽度由从导光板100到眼睛盒406的距离f与内反射发散角σ的乘积给出:

眼睛盒宽度(eyeboxwidth)=f×σ

在图5中,远离光入口边缘108的衍射特征变小的特征间隔和内反射发散角σ将从衍射光栅102耦合出来的光聚集到距离导光板100距离f处的眼睛盒406中。结果,当观看者位于眼睛盒406中时,从导光板100耦合出的至少一部分光场可以聚集在在观看者的眼睛502的视网膜上。

还应该注意的是,耦合出衍射光栅102有效地限制在光传输区域404和眼睛盒406中。结果,当观看者的眼睛502位于眼睛盒406的外部或者光传输区域404的外部时,从衍射光栅102输出的光不会进入观看者的眼睛502并且衍射光栅102看起来是黑色的。

当观看者的眼睛位于眼睛盒406中时,衍射背光系统300可以与平面光阀阵列组合以形成将图像投影到观看者的眼睛的视网膜上的显示器。图6示出了显示器600的等距视图,显示器600包括导光板100、平面光阀阵列602和光源302。光阀阵列602基本上平行于导光板100放置(即,位于xy平面内)并且与光传输区域404相交,使得耦合出衍射光栅102的光穿过光阀阵列602并聚集在眼睛盒406中。

图7示出了xz平面,其是显示器600的侧视图,其中光阀阵列602放置在距离眼睛盒406为d处。如图7所示,光阀阵列602定向为与导光板100基本上平行以与光传输区域404相交。光阀阵列602包括分别操作的光阀(如光阀702)的阵列。光阀阵列602可以由液晶光阀阵列形成,液晶光阀阵列中的每一个可以单独地作为调整通过光阀的光量的像素来操作。光阀702可以在不透明和透明之间切换,以便控制通过光阀702的光量。光阀可以是用以创建全彩色图像彩色光阀,如红色、绿色和蓝色光阀。通过光阀阵列602的每个光阀的光可以被选择性地调整以创建用于在眼睛盒406中观看的全彩色或黑白图像。

图8示出了提供眼睛适应的近眼的基于衍射光栅的背光显示器800。近眼的基于衍射光栅的背光显示器800类似于近眼的基于衍射光栅的背光显示器700,除了显示器800包括第二平面光阀阵列802,第二平面光阀阵列802定向为基本平行于导光板100并且位于第一光阀阵列702和眼睛盒406之间。在图8中,第二光阀阵列802位于距眼睛盒406距离d1处,并且第一光阀阵列702位于距眼睛盒406距离d2处,并且在第二光阀阵列802和导光板100之间。光通过第一光阀阵列602中的光阀和第二光阀阵列802中的光阀。第一和第二光阀阵列602和802可以操作以提供眼睛容纳。例如,第一和第二光阀阵列602、802可以以乘法的方式操作(例如,以实现因子的光场合成)以获得帮助眼睛适应的图像。例如,观看者的眼睛集中于根据两个光阀阵列602、802的传输特征的乘法创建的虚拟景深,通过第一光阀阵列602和第二光阀阵列802的操作的组合操作而创建的图像

图9示出了提供眼睛适应的近眼的基于衍射光栅的背光显示器900。使用布置在观看者眼睛502上的像素化的接触镜902的形式的第二光阀阵列来操作近眼的基于衍射光栅的背光显示器900。像素化的接触镜902包括多个单独操作的像素,其配置成当观看者的眼睛位于眼睛盒中时控制进入观看者眼睛的光量。例如,像素化的接触镜902可以包括每个瞳孔区域的2-9个光阀(即,像素)的阵列,并且可以通过一次单独地“开启”仅一个光阀(即,透明)而剩余的光阀被“关闭”(即,不透明)。例如,像素化的接触镜902可以是具有独立控制的光阀的仿生镜片。像素化的接触镜902可以包括液晶光阀,其调整通过镜头接触镜902并进入观看者眼睛502的光量。第一光阀阵列602和像素化的合同镜头接触镜902中的光阀可以独立地调整以控制光进入观看者的眼睛502以便于眼睛适应。例如,通过一次只“打开”一个光阀,改变进入观看者眼睛的光的方向,这使得通过第一光阀阵列702显示的不同图像能够从不同的方向进入观看者的眼睛,这可以触发观看者的眼睛502的聚焦响应,创建在不同的图像中以及在与观看者不同的距离处显示的对象的效果。例如,观看者的眼睛的适应响应时间可以是大约0.3秒,这可以降低为了支持适应响应可能需要的第一光阀阵列602的有效刷新率。

在其他实施例中,导光板可以包括对应于衍射光栅102的不同区域并且由未图案化的间隔分开的多个衍射光栅片段。例如,多个衍射光栅片段可以是二维的衍射光栅片段。尽管衍射光栅片段对应于衍射光栅102的不同区域并且被未图案化的空间分开,但衍射光栅片段以与衍射光栅102相同的方式共同地耦合出光并聚集光。

图10a-10c示出了包括对应于衍射光栅102的不同区域的衍射光栅片段的导光板。图10a示出了与上述导光板100类似的导光板1002,但是导光板1002包括五个衍射光栅片段1004-1008,其对应于在一维中由未图案化的间隔1010-1013分开的衍射光栅102的不同区域。图10b示出了与上述导光板100类似的导光板1020,但是衍射光栅片段(例如衍射光栅片段1022)由二维中未图案化的空间分开(即,衍射光栅片段是二维的)。衍射光栅片段的衍射光栅图案也对应于衍射光栅102的不同区域。在其他实施例中,衍射光栅片段可以包括直的特征。图10c示出了与上述导光板1020类似的导光板1024,但是导光板1022包括由直的特征形成的二十五个衍射光栅片段,如衍射光栅片段1026。由于衍射光栅片段之间的间隔所占据的表面面积,所以导光板1002、1020和1024耦合出比导光板100少的光。

应该注意,由对应于衍射光栅102的不同区域的衍射光栅片段形成的导光板不限于如图10a-10c中示出的矩形衍射光栅片段。在其他实施例中,导光板可以配置成对应于衍射光栅102的不同区域的圆形、椭圆形、三角形或不规则形状的衍射光栅片段,并且由未图案化的空间分开。

配置有与衍射光栅102的不同区域对应的衍射光栅片段的导光板以与上面参考图5和6所述的导光板100相同的方式将光聚集到局部空间区域中。图11示出了xz平面,其是具有衍射光栅片段1104-1108的导光板1102的侧视图,该衍射光栅段1104-1108配置成将光聚集到位于距导光板1102距离f处的眼睛盒1110中。光在内反射发散角σ内沿着光入射边缘1112进入导光板1102。一部分光从衍射光栅片段1104-1108耦合出来并聚集在眼睛盒1110中。因为光不通过未图案化的间隔1116-1119耦合出,所以聚集在眼睛盒1110中的光比由导光板100创建并聚集在眼睛盒406中的光更少。例如,光传输区域1114(用虚线表示)可以产生自通过衍射光栅片段1104-1108的聚集的光以及没有通过未图案化的间隔耦合出的光的组合。在一些实施例中,导光板1102可以有上述近眼的衍射背光系统300中的导光板100代替,以形成部分的近眼的衍射背光系统。

图12示出了在局部空间区域中显示图像的方法的流程图。在方框1201中,如上面参照图3a和3b所描述的,光耦合进导光板中。如以上参考图1a-1c和10a-10c所述,导光板配置成具有二维衍射光栅。在框1202中,在导光板中传播的一部分光通过衍射光栅衍射地耦合出导光板,并聚集在称为“眼睛盒”的局部空间区域中,如上参考图4和图5所描述的。在方框1203中,使用一个或多个光阀阵列调整耦合输出的光的部分,以在眼睛盒中形成可观看的图像,如上面参考图6-9所述。当观看者的眼睛位于眼睛盒中时,图像聚集在观看者的视网膜上,使得观看者能够看到图像。

上述显示器中的任何一个可包括在头戴式显示器(“hmd”)中以显示虚拟或增强现实图像。图13示出了用以显示增强现实图像的hmd1300的示例。hmd1300包括框架1302、显示器1304和显示控制器1306。显示器1304包括导光板1308和光阀阵列1310。导光板1308可以是透明的,如如上参照图1b所述的导光板100。如上参考图3a-3b所述的,导光板1308和光阀阵列1310连接到显示控制器1306,显示控制器1306包括沿着光入口边缘1312将光耦合进导光板1308中的光源(未示出),以形成显示器1304的衍射背光系统。光阀阵列1310连接到显示控制器1306。显示控制器1306发送调整光阀阵列1310的光阀的信号。如图13所示,显示器1304和显示控制器1306从框架1302悬挂,使得显示器1304将位于佩戴hmd1300的人的右眼的视场中。显示控制器1306可以包括无线通信单元,该无线通信单元将显示控制器1306无线地连接到能够向无线通信单元发送信号的广播设备,如移动电话。显示控制器1306通过将显示在光阀阵列1310上的图像聚集在佩戴hmd1300的人的右眼中来创建增强现实观看体验。例如,可以通过显示拨打佩戴hmd1300的人的移动电话的人的电话号码使用显示器1304以创建增强现实观看体验。因为导光板1308是透明的,所以佩戴hmd1300的人仍然能够在不关注显示在显示器1304上的图像时观看他们的周围。

图14示出了用于显示虚拟现实图像的护目镜形式的hmd1400的示例。hmd1400包括眼罩1402和带1404。眼罩1402包围佩戴hmd1400的人的双眼,并且带1404将眼罩1402固定到人的头部。眼罩1402包括可以位于眼罩1402内的左眼显示器1406、右眼显示器1408和显示控制器(未示出)。显示器1406和1408中的每一个包括导光板,如导光板1410和光阀阵列1412。导光板可以配置成如上面参考图1b和图2a-2c所描述。导光板和光阀阵列连接到显示控制器,该显示控制器包括至少一个将光耦合到导光板的光入口边缘的光源(未示出),如上面参考图3a-如图3b所描述的,以形成用于显示器1408和1406中的每一个的衍射背光系统。显示器的光阀阵列还连接到显示器控制器并接收调整光阀阵列的光阀的控制信号。如图14所示,显示器1406和1408完全位于眼罩1402内以及佩戴hmd1400的人的双眼的视场内。显示控制器可以通过在显示器1406和1408的光阀阵列中生成图像来创建二维和三维的虚拟现实的观看体验,并且显示器1406和1408的导光板将图像聚集在佩戴hmd1400的人的双眼上。在其他实施例中,左眼显示器1406和右眼显示器1408每个都可以包括第二光阀阵列,如上面参考图8所描述的,以创建眼睛适应的观看体验。在其他实施例中,佩戴hmd1400的人可以佩戴如上面参照图9所述的仿生接触镜,以创建眼睛适应的观看体验。

应该理解的是,提供了所公开实施例的先前描述以使得本领域的任何技术人员能够制作或使用本公开。对于本领域技术人员而言,对这些实施例的各种修改将是显而易见的,并且在不脱离本公开的精神或范围的情况下,可将本文定义的一般原理应用于其他实施例。因此,本公开不旨在限制于本文所示的实施例,而是被赋予与本文公开的原理和新颖特征一致的最广泛的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1