过孔的制备方法、阵列基板的制备方法及阵列基板与流程

文档序号:12062497阅读:172来源:国知局
过孔的制备方法、阵列基板的制备方法及阵列基板与流程

本公开的实施例涉及一种过孔的制备方法、阵列基板的制备方法及阵列基板。



背景技术:

对于液晶显示器(Liquid Crystal Display,LCD)等平面显示装置而言,显示基板的质量十分重要,而在制备显示基板的制备方法中,需要在已经形成有薄膜晶体管的显示基板上沉积绝缘层,利用干法刻蚀技术在绝缘层上进行刻蚀,以形成过孔,然后在绝缘层上形成像素电极,像素电极可以通过该过孔与薄膜晶体管进行电连接,从而进行数据传输。

传统显示基板的制备工艺中,绝缘层具有多层绝缘子层结构,其各绝缘子层的刻蚀速率不同。最底部绝缘子层的刻蚀速率大于其相邻上方的绝缘子层的刻蚀速率,导致最底部绝缘子层刻蚀过快,过孔在绝缘层底部形成内阶梯状的倒钩角,产生底切不良,底切不良会造成像素电极与薄膜晶体管的源漏电极层之间接触跨断,从而导致显示装置显示异常或无法显示,降低显示装置的品质和良率。



技术实现要素:

本公开至少一实施例提供一种过孔的制备方法,包括:提供衬底基板;在所述衬底基板上形成绝缘层;采用第一次刻蚀工艺刻蚀所述绝缘层以在所述绝缘层中形成凹槽;对所述绝缘层的由所述凹槽暴露的部分进行离子注入,以形成离子注入区;采用第二次刻蚀工艺刻蚀所述离子注入区内的绝缘层以形成贯穿所述绝缘层的过孔。

本公开至少一实施例提供一种阵列基板的制备方法,包括上述过孔的制备方法。

本公开至少一实施例提供一种阵列基板,包括:衬底基板;设置在所述衬底基板上的绝缘层;贯穿所述绝缘层的过孔;其中,所述绝缘层包括依次设置在所述衬底基板上的第一绝缘子层和第二绝缘子层,所述第一绝缘子层包括靠近所述过孔的第一部分和远离所述过孔的第二部分,所述第一部分的密度大于所述第二部分的密度。

本公开至少一实施例提供一种过孔的制备方法、阵列基板的制备方法以及阵列基板。该过孔的制备方法利用离子注入工艺,对绝缘层进行离子注入,增大离子注入区内的绝缘层密度,从而避免其被严重侧向刻蚀而产生底切倒角,提高了过孔的质量,保证了过孔的有效性,改善或消除了利用该过孔进行电连接的像素电极与源漏电极层之间接触跨断的不良现象,提高了像素电极与源漏电极层之间电连接的稳定性,提升了产品的品质和良率。

需要理解的是本公开的上述概括说明和下面的详细说明都是示例性和解释性的,用于进一步说明所要求的发明。

附图说明

为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。

图1为一种绝缘层过孔的结构示意图;

图2为本公开一实施例提供的一种过孔的制备方法的流程图;

图3a-3f为本公开一实施例提供的一种过孔的制备方法的过程图;

图4a-4c为本公开一实施例提供的一种阵列基板的制备方法的过程图。

具体实施方式

为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。

除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。

附图中各个部件或结构并非严格按照比例绘制,为了清楚起见,可能夸大或缩小各个部件或结构的尺寸,例如增加层的厚度、电极的宽度等,但是这些不应用于限制本公开的范围。为了保持本公开实施例的以下说明清楚且简明,可省略已知功能和已知部件的详细说明。

图1为一种绝缘层过孔的结构示意图。

目前,在阵列基板的生产制作的过程中,需要在薄膜晶体管上沉积一层绝缘层,然后利用干法刻蚀技术在绝缘层上形成过孔,最后在绝缘层表面形成像素电极,像素电极通过该过孔与薄膜晶体管的源极或漏极进行电连接。如图1所示,在衬底基板60上依次有绝缘层设置和像素电极66,绝缘层包括贯穿该绝缘层的过孔73,像素电极66可以通过该过孔73与设置在衬底基板60上的源漏电极层(未示出)进行电连接。在垂直于衬底基板60的方向上,绝缘层可以包括过渡层70、主体层71和顶层72,一般情况下过渡层70的刻蚀速率要高于主体层71和顶层72,当刻蚀到过渡层70时,由于其刻蚀速率大于主体层71,过渡层70会产生侧向刻蚀,从而导致过孔73在过渡层70底部形成内阶梯状的倒钩角75,产生底切不良,底切不良会使像素电极66在倒钩角75处产生断裂,造成像素电极66与源漏电极层之间接触跨断,导致显示异常或无法显示,降低产品良率和品质。

本公开至少一实施例提供一种过孔的制备方法、阵列基板的制备方法以及阵列基板。该过孔的制备方法包括:提供衬底基板;在所述衬底基板上形成绝缘层;采用第一次刻蚀工艺刻蚀所述绝缘层以在所述绝缘层中形成凹槽;对所述绝缘层的由所述凹槽暴露的部分进行离子注入,以形成离子注入区;采用第二次刻蚀工艺刻蚀所述离子注入区内的绝缘层以形成贯穿所述绝缘层的过孔。

该过孔的制备方法利用离子注入工艺,对绝缘层进行离子注入,增大离子注入区内的绝缘层密度,从而避免其被严重侧向刻蚀而产生底切倒角,提高了过孔的质量,保证了过孔的有效性,改善或消除了利用该过孔进行电连接的像素电极与源漏电极层之间接触跨断的不良现象,提高了像素电极与源漏电极层之间电连接的稳定性,提升了产品良率和品质。

下面对本公开的几个实施例进行详细说明,但是本公开并不限于这些具体的实施例。

实施例一

本实施例提供一种过孔的制备方法。图2示出了本实施例提供的过孔的制备方法的流程图,图3a-3f示出了本实施例提供的过孔的制备方法的过程图。图3a-3f仅示出相关结构的一部分以便更清楚地说明。

例如,如图2所示,本实施例提供的过孔的制备方法包括如下步骤:

S01:提供衬底基板;

S02:在衬底基板上形成绝缘层;

S03:采用第一次刻蚀工艺刻蚀绝缘层以在绝缘层中形成凹槽;

S04:对绝缘层的由凹槽暴露的部分进行离子注入,以形成离子注入区;

S05:采用第二次刻蚀工艺刻蚀离子注入区的绝缘层以形成贯穿绝缘层的过孔。

该过孔的制备方法利用离子注入工艺,对绝缘层由凹槽暴露的部分进行离子注入,增大离子注入区内绝缘层的密度,从而避免其被严重侧向刻蚀而产生底切倒角,提高了过孔的质量,保证了过孔的有效性。

下面将结合图3a至图3f对本实施例的过孔的制备方法的过程进行详细说明。

例如,如图3a所示,提供一衬底基板10,在衬底基板10上沉积绝缘层,在绝缘层上涂覆一层光刻胶32。

例如,沉积绝缘层可以包括依次在衬底基板10上沉积第一绝缘子层21、第二绝缘子层22和第三绝缘子层23。例如,可以控制沉积绝缘层的沉积工艺参数,从而使第一绝缘子层21、第二绝缘子层22和第三绝缘子层23具有不同密度,沉积工艺参数例如可以包括功率、沉积时间或气体流量大小等。例如,当功率和气体流量较小,且沉积时间较短,则形成的绝缘层的密度也较小。第一绝缘子层21的密度例如可以小于第二绝缘子层22的密度。

例如,该衬底基板10可以为金属基板或非金属基板。非金属基板例如可以为玻璃基板、石英基板、陶瓷基板、塑料基板或硅胶基板等,又例如可以为形成有功能部件的面板,例如液晶显示面板、OLED显示面板等,金属基板例如可以为电镀锌钢板、热浸锌钢板、镀铝锌钢板或紫铜板等。

例如,光刻胶32的涂覆可以采用旋涂、刮涂或者辊涂等方式。

例如,沉积绝缘层可以采用化学气相沉积(CVD),如等离子体增强化学气相沉积法(PECVD)、低压力化学气相沉积(LPCVD)等,亦可以为物理气相沉积(PVD)等。

例如,绝缘层的材料可以为氮化硅(SiNx)或其他合适的材料。

例如,如图3b所示,对涂覆在绝缘层上的光刻胶32进行曝光和显影以形成光刻胶图案33。

例如,如图3c所示,利用光刻胶图案33作为刻蚀掩模,对绝缘层进行第一次刻蚀工艺以在绝缘层中形成凹槽30。

例如,第一次刻蚀工艺可以采用干法刻蚀。例如,干法刻蚀可以采用反应离子刻蚀(Reaction Ion Etch,RIE)、离子束刻蚀(Ion Bean Etch,IBE)以及感应耦合等离子体(Inductively Couple Plasma,ICP)刻蚀等方法。例如,第一刻蚀工艺可以采用ICP刻蚀技术进行刻蚀,ICP刻蚀具有直流偏移(DC Bias)损伤小,刻蚀速率高,离子密度和离子能量可控等特点,从而可以缩短刻蚀时间,还可以精确控制刻蚀形貌。

例如,第一次刻蚀工艺可以采用ICP刻蚀技术且以SF6和O2的混合气体为刻蚀气体进行刻蚀。SF6和O2的刻蚀速率较快,可以缩短生产时间;另外SF6和O2可以与绝缘层反应生成可挥发性气体被真空系统及时排出,从而可以及时清除刻蚀过程中产生的残余异物,防止残余异物对后续刻蚀造成影响,同时也可以保证绝缘层不被残余异物污染。例如,可以通过调整刻蚀参数,使得凹槽30的侧壁光滑、坡度平缓,刻蚀参数例如可以为ICP刻蚀设备的工作压力、功率、刻蚀气体流量以及刻蚀气体组成比例等。

例如,第一次刻蚀工艺可以采用传统刻蚀工艺中的刻蚀参数。例如,其上电极功率可以为7200-8800W,下电极功率可以为1800-2200W,压力值可以为900-1100mT,SF6气体流量可以为1000-1400Sccm,O2气体流量可以为1200-1700Sccm。例如,本实施例中的刻蚀参数可以为:上电极功率为8000W,下电极功率为2000W,压力值可以为1000mT,SF6气体流量为1200sccm,O2气体流量为1500sccm。

例如,第三绝缘子层23的密度也可以小于第二绝缘子层22的密度,从而当采用活性等离子体进行刻蚀时,较疏松的第三绝缘子层23比较容易使等离子体进入,达到刻蚀的目的;另一方面,第三绝缘子层23还可以作为刻蚀的缓冲层,由于第三绝缘子层23的密度小于第二绝缘子层22的密度,从而第三绝缘子层23的刻蚀速率大于第二绝缘子层22的刻蚀速率,第三绝缘子层23的侧向刻蚀比第二绝缘子层22的侧向刻蚀快,在垂直于衬底基板10的方向上,凹槽30可以形成倒梯形状,从而使凹槽30具有一定的平缓坡度角。

例如,采用第一次刻蚀工艺刻蚀绝缘层时,依次对第三绝缘子层23和第二绝缘子层22进行刻蚀,并且在刻蚀到第一绝缘子层21时停止刻蚀,从而形成贯穿第二绝缘子层22和第三绝缘子层23的凹槽30,且该凹槽30可以暴露出第一绝缘子层21。

例如,可以利用ICP设备中的刻蚀终点检测器(EPD)实时监控刻蚀进程,当第三绝缘子层23和第二绝缘子层22被全部刻蚀完后,由刻蚀终点检测器(EPD)自动控制ICP设备停止刻蚀。例如,刻蚀终点检测器(EPD)可以检测绝缘层的折射率等参数。由于第一绝缘子层21、第二绝缘子层22和第三绝缘子层23具有不同的密度,从而其折射率也各不相同,例如,在刻蚀前,可以在刻蚀终点检测器(EPD)中预先录入第一绝缘子层21的折射率,当刻蚀终点检测器(EPD)检测到被刻蚀材料的折射率与第一绝缘子层21的折射率相同时,则自动控制ICP设备停止刻蚀。需要说明的是,还可以通过其他方法(例如通过检测刻蚀的深度)监控刻蚀终点,从而控制ICP设备停止刻蚀,本公开对此不做限制。

例如,如图3d-3e所示,利用光刻胶图案33作为掩模,对第一绝缘子层21的由凹槽30暴露的部分进行离子24注入,以形成离子注入区。

例如,如图3f所示,继续利用光刻胶图案33作为刻蚀掩模,对形成有离子注入区的绝缘层进行第二次刻蚀工艺,然后利用剥离工艺去除剩余的光刻胶以在绝缘层中形成贯穿绝缘层的过孔31。

例如,进行离子24注入后,第一绝缘子层21可以包括在离子注入区内的第一部分210和离子注入区外的第二部分211,且进行离子24注入后,第一部分210的密度可以大于第二部分211的密度,由于第一部分210的密度增大,绝缘层变得更致密,可以减慢第一部分210的刻蚀速率,从而避免或减小第一部分210与活性氟(F)离子过度反应而向两侧产生过度的缩进,形成底切倒角;另一方面,第一部分210密度增大,可以使过孔31在第二绝缘子层22和第一绝缘子层21交界处形成平缓的坡度。

例如,进行离子24注入后,第一部分210的密度还可以大于第二绝缘子层22的密度。从而使第一部分210的刻蚀速率小于第二绝缘子层22的刻蚀速率,进一步防止第一部分210产生侧向刻蚀,提高过孔31的质量,保证过孔31的有效性。

例如,进行离子24注入后,第一部分210的密度增大,刻蚀速率减慢,从而在进行第二次刻蚀工艺时,第一部分210例如可以不被完全刻蚀,在形成过孔31后,第一部分210可以被部分保留。

例如,离子24可以为氮离子、氧离子或其他合适的离子。当离子24为氮离子时,在等离子条件下,对暴露出来的第一绝缘子层21的表面通入氮气(N2),以得到N离子,控制N离子与第一绝缘子层21直接接触,在高温高压下将N离子注入到第一绝缘子层21层中,使N离子取代部分硅(Si)离子,或者使N离子与部分自由的Si离子结合,形成Si-N键,使原来富含硅的氮化硅中残留的Si-Si键部分或全部被Si-N键所取代,由于Si-N键比Si-Si键的键长短,键能高,Si-N键含量的增加能促进第一绝缘子层21更加紧密,提高第一绝缘子层21的致密度,并且因为氮化硅中的Si-Si键是导致氮化硅薄膜缺陷的主要因素之一,因此通过向由凹槽30暴露的第一绝缘子层21中注入N离子可以在一定程度上提高离子注入区内的第一绝缘子层21的密度,提升离子注入区内的第一绝缘子层21的耐氟(F)离子刻蚀性,使刻蚀速率减慢,从而避免第一绝缘子层21被严重侧向刻蚀而产生底切倒角。N离子注入到绝缘层后,由凹槽30暴露的第一绝缘子层21变成密度更高的第一部分210,而没有注入N离子的第二部分211的密度不变。

例如,第二次刻蚀工艺可以采用与第一次刻蚀工艺相同的刻蚀技术和相同的刻蚀参数进行刻蚀。例如,第二次刻蚀工艺也采用ICP刻蚀技术进行刻蚀。第二次刻蚀工艺还可以采用与第一次刻蚀工艺不同的刻蚀技术和不同的刻蚀参数进行刻蚀。例如,第二次刻蚀工艺可以采用IBE刻蚀技术进行刻蚀。

需要说明的是,第一次刻蚀工艺和第二次刻蚀工艺还可以采用其他合适的刻蚀设备和其他合适的刻蚀气体(例如采用CF4和O2的混合气体作为刻蚀气体),本公开对此不做限制。

实施例二

图4a-4c示出了本实施例提供的阵列基板的制备方法的过程图。图4a-4c仍仅示出相关结构的一部分以便更清楚地说明。

本实施例提供一种阵列基板的制备方法,本实施例的阵列基板的制备方法可以包括实施例一中的过孔的制备方法。

例如,如图4a所示,提供一衬底基板100,并且在衬底基板100上利用构图工艺依次形成栅极12、栅极绝缘层16、有源层15、源漏电极层、钝化层17和公共电极18。

例如,衬底基板100可以为透明绝缘基板。例如,衬底基板100可以为玻璃基板、石英基板、塑料基板或其他合适的基板。

例如,源漏电极层可以包括第一电极13和第二电极14。第一电极13例如可以为源极或漏极,相应地第二电极14可以为漏极或源极。例如,第一电极13、有源层15、第二电极14、栅极12以及栅极绝缘层16总地构成了薄膜晶体管,该薄膜晶体管可以作为该阵列基板的像素区域的开关元件。

例如,第一电极13和第二电极14的材料的示例可以包括铜基金属、铝基金属、镍基金属等。例如,该铜基金属可以为铜(Cu)、铜锌合金(CuZn)、铜镍合金(CuNi)或铜锌镍合金(CuZnNi)等性能稳定的铜基金属合金。铜基金属具有电阻率低、导电性好的特点,因而可以提高源极、漏极的信号传输速率,提高显示质量。

例如,栅极12的材料可以为铜(Cu)、铜钼合金(Cu/Mo),也可以为铬基金属,例如铬钼合金(Cr/Mo)、铬钛合金(Cr/Ti),还可以为铝、铝合金或其他合适的材料。

例如,有源层15可以为非晶硅层、多晶硅层或金属氧化物半导体层。例如,多晶硅可以为高温多晶硅或低温多晶硅,氧化物半导体可以为氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化锌(ZnO)或氧化镓锌(GZO)等。

例如,公共电极18的材料可以为透明导电材料、金属材料或其他合适的材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)或碳纳米管等。例如,公共电极18可以为板状电极,也可以为狭缝电极。

例如,栅极绝缘层16和钝化层17的材料的示例可以包括氮化硅(SiNx)、氧化硅(SiOx)、氮氧化硅(SiNxOy)或其他合适的材料,例如有机树脂材料等。例如,该栅极绝缘层16和钝化层17可以为由上述材料中一种或几种构成的单层结构或多层结构。

例如,如图4b所示,在公共电极18上沉积绝缘层,然后利用构图工艺形成贯穿绝缘层的过孔31,公共电极18与绝缘层直接接触。

例如,沉积绝缘层包括依次在公共电极18上沉积第一绝缘子层21、第二绝缘子层22和第三绝缘子层23,公共电极18例如可以与第一绝缘子层21直接接触。

例如,通过控制沉积工艺参数,使第一绝缘子层21的密度小于第二绝缘子层22的密度。密度较大的第二绝缘子层22富含硅烷,从而第二绝缘子层22中的氢(H+)自由基的浓度较高,氢(H+)自由基容易使公共电极18中的金属离子产生还原反应形成不透明的金属或金属复合物,从而在公共电极18中形成黑点;另一方面,高浓度的氢(H+)自由基还对公共电极18中的氧离子具有较强的俘获能力,从而影响公共电极18的性质,减低显示质量。第一绝缘子层21可以避免密度较大的第二绝缘子层22与公共电极18直接接触,从而减少或消除金属黑点,提高显示质量。

例如,过孔31可以采用实施例一所述的过孔的制备方法进行制备,从而该过孔31不会产生底切倒角,提高了过孔31的质量,保证了过孔31的有效性。在进行第二次刻蚀工艺之后,第一部分210例如可以被部分保留。

例如,过孔31可以暴露源漏电极层中的第一电极13或第二电极14。

例如,在本实施例中,绝缘层的材料可以为氮化硅,第一绝缘子层21、第二绝缘子层22和第三绝缘子层23由密度各不相同的氮化硅形成。氮化硅具有优良的隔离离子的能力,在绝缘的同时,还可以有效防止空气中的氧气、水汽等离子进入阵列基板内影响薄膜晶体管的性能,从而可以提升阵列基板的品质,提高阵列基板的产品良率。

例如,如图4c所示,在形成有过孔31的绝缘层上利用构图工艺形成像素电极19。

例如,像素电极19可以经由过孔31与第一电极13或第二电极14电连接,从而接收通过薄膜晶体管传递的数据信号。

例如,像素电极19的材料可以包括透明导电材料、金属材料或其他合适的材料,例如,该像素电极19的材料可以为氧化铟锡(ITO)、氧化铟锌(IZO)等。

例如,像素电极19可以为板状电极,也可以为狭缝电极。例如,如图4c所示,可以利用构图工艺形成多个彼此平行且相互间隔的分支,从而形成狭缝状的像素电极10。

例如,第三绝缘子层23的密度也可以小于第二绝缘子层22的密度,从而第三绝缘子层23的刻蚀速率可以大于第二绝缘子层22的刻蚀速率,进而在刻蚀过孔31时可以使过孔31形成一定的平缓坡度角,像素电极19可以与绝缘层的侧壁平缓衔接,防止像素电极19在第三绝缘子层23表面上过孔31形成的台阶处产生断裂,提高显示质量,提升产品良率。

需要说明的是,本实施例阵列基板的制备方法以底栅型薄膜晶体管为例进行说明,本实施例阵列基板的制备方法还可以适用于顶栅型薄膜晶体管。

实施例三

本实施例提供一种阵列基板。

例如,如图4c所示,本实施例的阵列基板包括:衬底基板100,设置在衬底基板100上的绝缘层,该绝缘层包括一过孔31。

例如,绝缘层可以包括依次设置在衬底基板100上的第一绝缘子层21和第二绝缘子层22,第一绝缘子层21可以包括靠近过孔31的第一部分210和远离过孔31的第二部分211,且第一部分210的密度大于第二部分211的密度。该密度较大的第一部分210可以保证过孔31不形成内阶梯状的倒钩角,提高过孔31的质量,保证过孔31的有效性。

例如,第一部分210的密度还可以大于第二绝缘子层22的密度。

例如,绝缘层还可以包括设置在第二绝缘子层22上的第三绝缘层23,且第三绝缘层23的密度可以小于第二绝缘子层22的密度。

例如,如图4c所示,该阵列基板还包括依次设置在衬底基板100和绝缘层之间的栅极12、栅极绝缘层16、有源层15、源漏电极层(例如可以包括第一电极13和第二电极14)、钝化层17和公共电极18。

例如,公共电极18可以与第一绝缘子层21直接接触。

例如,该阵列基板还包括设置在绝缘层上的像素电极19,该像素电极19可以经由过孔31与第一电极13或第二电极14电连接,该过孔31具有平缓的坡度角,且没有内阶梯状的倒钩角,从而可以改善或消除了像素电极19与源漏电极层之间接触跨断的不良现象,提高了像素电极19与源漏电极层之间电连接的稳定性,提升了产品良率,提高了产品质量。

例如,在本实施例中,像素电极19和公共电极18形成在不同层上,从而该阵列基板例如可以用于高级超维场转换技术(Advanced Super DimensionSwitch,简称ADS)型液晶面板。需要说明的是,像素电极19和公共电极18还可以形成在同一层上,本实施例对此不做限制。

例如,该阵列基板可以应用于液晶面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。

对于本公开,还有以下几点需要说明:

(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。

(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。

(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。

以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1