视角连续可控显示器的制作方法

文档序号:13729665阅读:216来源:国知局
视角连续可控显示器的制作方法

本发明属于显示器领域,涉及一种视角连续可控显示器。



背景技术:

在信息化高度发展的今天, 用户对显示器的要求除了一般的影像与色彩外,还要提供了令人震撼的立体空间的感受,同时对于分享性资料及机密性资料还要具有不同的视觉需求,单一视角模式的显示器已经不能满足使用者的需求,对显示器在宽窄视角模式之间转换功能方面提出新的需求,当使用者需要共享信息时,打开宽视角模式;当使用者想要保护显示信息时,使用窄视角模式。因此,实现宽窄视角模式切换显示技术具有重要的研究意义。

双层液晶屏宽窄视角切换技术中下面的屏幕用于宽视角显示,上面的屏幕主要用于获得宽窄不同视角模式下的暗态,从而形成宽窄视角切换。Linghui Rao等提出用蓝相液晶盒的各向同性态实现宽视角显示,利用蓝相液晶在纵向电场下形成光轴垂直基板单轴晶体的特性,形成窄视角效果,但是方位角为0度, 90度, 180度, 270度的方向仍然为广视角。如图1和图2,分别表示宽视角模式等对比度视角分布图和窄视角模式等对比度视角分布图。当前单屏液晶显示实现宽窄视角技术很难实现宽窄视角两种模式都具有较好的显示效果,往往是两种模式显示效果都有不同程度的下降。



技术实现要素:

本发明为了弥补现有技术的不足,提供了一种结构简单、使用方便的视角连续可控显示器。

本发明是通过如下技术方案实现的:

本发明的视角连续可控显示器,其特征在于:包括依次安装的检偏器、第一四分之一波片、蓝相液晶盒、第二四分之一波片、广视角显示模组和起偏器;

检偏器与起偏器的透光轴互相垂直搭配使用;

上下两个宽带四分之一波片二者光轴相互平行,两者综合效果为折射率各向同性,且光轴与起偏器透光轴成45度。

蓝相液晶盒包括从上到下依次设置的上基板、上透明电极、蓝相液晶层、下透明电极和下基板,它们通过框胶封装在一起,上透明电极和下透明电极为整面电极。

蓝相液晶盒的上基板和下基板采用透明玻璃或透明塑料材料制成。

蓝相液晶盒既可以是上下基板都是面电极,也可以是液晶透镜的结构,同时应用在裸眼立体显示方面,形成多功能的显示器。

液晶透镜包括从上到下依次设置的上基板、上透明电极、蓝相液晶层、下透明电极和下基板,它们通过框胶封装在一起,上透明电极为单层条状电极或者双层条状电极,下透明电极采用整面电极,或者采用单层条状电极,或者采用双层条状电极;当上透明电极和/或下透明电极当采用双层条状电极时,双层条状电极之间设置绝缘层。

广视角显示模组采用具有广视角功能的LCD液晶显示器(IPS 、FFS等)。

本发明的视角连续可控显示器的控制方法,其特征在于:包括以下步骤:为解决窄视角模式在方位角为0度, 90度, 180度, 270度的方向仍然为广视角的问题,充分利用液晶所独有的视角特性,采用四分之一波长补偿膜或者其他位相延迟的补偿膜,使两者综合效果为折射率各向同性,宽视角模式下,当蓝相液晶微透镜中电场强度为零时,蓝相液晶为各向同性态,上下补偿膜的综合作用相当于各向同性体效果,因此此种模式对LCD视角分布无影响,而当蓝相液晶微透镜中的液晶在均匀电场作用下形成垂直基板的单轴晶体特性时,此时垂直液晶透镜入射的光仍然为寻常光,无位相延迟,透过蓝相液晶的光偏振方向不变,所以为较好的暗态,经过下补偿膜而倾斜方向入射到液晶透镜的光为圆偏振光或椭圆偏振光,此时经过液晶透镜时会有位相延迟,因此会形成暗态漏光,使大视角对比度降低,实现窄视角模式;

蓝相液晶被驱动成垂直基板的排列的单轴晶体时,随着上下电极间电压差的增大,液晶的折射率各项异性△n随之增大,结合上下四分之一波片的作用,视角变化逐渐变窄。

本发明的有益效果是:本发明对于上下基板都是面电极的蓝相液晶盒可以较好的实现宽窄视角两种显示模式的切换,对于液晶透镜式的蓝相液晶盒既可实现裸眼立体显示,又可实现宽窄视角切换显示,在液晶透镜式裸眼立体显示基础上利用液晶独特的视角特性,借助蓝相液晶以及补偿膜实现宽窄视角模式快速切换的功能,且窄视角模式下视角连续可调,增加用户多重体验。窄视角与宽视角可实现具有相同的穿透率与对比度。控制液晶透镜的形貌具有实现宽窄视角功能的同时可实现2D/3D显示切换以及2D增亮显示功能。液晶透镜的液晶tilt angle可通过调整液晶透镜电极电压可以调试到最优的观察效果。

本发明利用蓝相液晶独特的光学特性与优点结合补偿膜,实现宽窄视角切换以及视角可调,同时宽视角模式与窄视角模式的电光特性、对比度视角分布互不影响。可实现宽窄视角两种显示的中心对比度与电光特性一致。蓝相液晶响应速度快,亚毫秒级,实现视角快速切换,制备工艺简单,且能很好保护人们的隐私。

附图说明

图1表示宽视角模式等对比度视角分布图,图2表示窄视角模式等对比度视角分布图。图3宽窄视角可切换模组结构示意图。图4 蓝相液晶盒的简易架构截面示意图。图5 电压差为△V1等对比度视角分布仿真(电压差分别为△V1=0)。图6 电压差为△V2等对比度视角分布仿真。图7 电压差为△V3等对比度视角分布仿真。图8 电压差为△V4等对比度视角分布仿真。图9 电压差为△V5等对比度视角分布仿真。图10 克尔效应的工作原理示意图。图11 液晶透镜工作在均匀电场的结构示意图。

图3中,1检偏器,2第一四分之一波片,3蓝相液晶盒,4第二四分之一波片、5广视角显示模组,6起偏器。

图4中,7上基板、8上透明电极、9蓝相液晶层、10下透明电极、11下基板、12框胶。此图中,上透明电极和下透明电极都采用整面电极。

图11中,7上基板、8上透明电极、9蓝相液晶层、10下透明电极、11下基板、12框胶、13绝缘层。此图中,上透明电极采用条形电极,下透明电极采用整面电极。

具体实施方式

附图为本发明的一种具体实施例。

本发明的视角连续可控显示器,包括依次安装的检偏器1、第一四分之一波片2、蓝相液晶盒3、第二四分之一波片4、广视角显示模组5和起偏器6;

检偏器与起偏器的透光轴互相垂直搭配使用;

上下两个宽带四分之一波片二者光轴相互平行,两者综合效果为折射率各向同性,且光轴与起偏器透光轴成45度。

蓝相液晶盒包括从上到下依次设置的上基板7、上透明电极8、蓝相液晶层9、下透明电极10和下基板11,它们通过框胶12封装在一起,上透明电极和下透明电极为整面电极。

蓝相液晶盒的上基板和下基板采用透明玻璃或透明塑料材料制成。

蓝相液晶盒既可以是上下基板都是面电极,也可以是液晶透镜的结构,同时应用在裸眼立体显示方面,形成多功能的显示器。

液晶透镜包括从上到下依次设置的上基板7、上透明电极8、蓝相液晶层9、下透明电极10和下基板11,它们通过框胶12封装在一起,上透明电极可以为单层条状电极或者双层条状电极,下透明电极为整面电极,也可以为单层条状电极或者双层条状电极。当上透明电极和/或下透明电极当采用双层条状电极时,双层条状电极之间设置绝缘层13。

广视角显示模组采用具有广视角功能的LCD液晶显示器(IPS 、FFS等)。

本发明的视角连续可控显示器的控制方法,包括以下步骤:为解决窄视角模式在方位角为0度, 90度, 180度, 270度的方向仍然为广视角的问题,充分利用液晶所独有的视角特性,采用四分之一波长补偿膜或者其他位相延迟的补偿膜,使两者综合效果为折射率各向同性,宽视角模式下,当蓝相液晶微透镜中电场强度为零时,蓝相液晶为各向同性态,上下补偿膜的综合作用相当于各向同性体效果,因此此种模式对LCD视角分布无影响,而当蓝相液晶微透镜中的液晶在均匀电场作用下形成垂直基板的单轴晶体特性时,此时垂直液晶透镜入射的光仍然为寻常光,无位相延迟,透过蓝相液晶的光偏振方向不变,所以为较好的暗态,经过下补偿膜而倾斜方向入射到液晶透镜的光为圆偏振光或椭圆偏振光,此时经过液晶透镜时会有位相延迟,因此会形成暗态漏光,使大视角对比度降低,实现窄视角模式。蓝相液晶被驱动成垂直基板的排列的单轴晶体时,随着上下电极间电压差的增大,液晶的折射率各项异性△n随之增大,结合上下四分之一波片的作用,视角变化逐渐变窄。

本发明采用光学补偿膜的方式,宽窄视角可切换模组组成简易结构如图3所示,蓝相液晶盒担任连续视角控制视角的角色。当使用者需要共享信息时,打开宽视角模式;当使用者想要保护显示信息时,使用窄视角模式。

1、检偏器与起偏器的透光轴互相垂直搭配使用,如检偏器透光轴方位角为0度与起偏器的透光轴方位角为90度,或者检偏器透光轴方位角为90度与起偏器的透光轴方位角为0度。

2、广视角显示模组可为液晶显示器与补偿膜搭配形成的广视角模组。

3、蓝相液晶盒内部结构可根据需要设计成不同的结构,如液晶透镜等。

4、上下两个宽带四分之一波片二者光轴相互平行,且光轴与起偏器透光轴成45度,且要求两者综合效果为折射率各向同性,例如如一四分之一波片no=1.55,ne=1.65,另一个四分之一波片片no=1.55,ne=1.45。

设下偏光片的透过轴为0度,上偏光片的透过轴为90度,垂直纸面向里为y轴方向,水平向右为x轴方向,水平向上为z轴方向,采用四分之一波长补偿膜或者其他位相延迟的补偿膜,下补偿膜光轴方位角为45度,上补偿膜光轴方位角为45度,两者综合效果为折射率各向同性,宽视角模式下,当蓝相液晶微透镜中电场强度为零时,蓝相液晶为各向同性态,上下补偿膜的综合作用相当于各向同性体效果,因此此种模式对LCD视角分布无影响,而当蓝相液晶微透镜中的液晶在均匀电场作用下形成垂直基板的单轴晶体特性时,此时垂直液晶透镜入射的光仍然为寻常光,无位相延迟,透过蓝相液晶的光偏振方向不变,所以为较好的暗态,经过下补偿膜而倾斜方向入射到液晶透镜的光为圆偏振光或椭圆偏振光,此时经过液晶透镜时会有位相延迟,因此会形成暗态漏光,大视角对比度下降,实现窄视角模式。

液晶盒的简易架构如图4所示,其中上下基板电极为整面电极,蓝相液晶被驱动成垂直基板的排列的单轴晶体时,随着上下电极间电压差的增大,液晶的折射率各项异性△n随之增大,结合四分之一波片的作用,视角变化如图5-9所示,电压差分别为△V1, △V2, △V3, △V4, △V5,且△V1<△V2<△V3<△V4<△V5.

蓝相液晶的工作原理是基于克尔效应(Kerr effect ),蓝相液晶表现为各向同性态的特性,如果将蓝相液晶置于两平行电极板之间就构成一个克尔盒,外加电场通过平行电极板作用在蓝相液晶上,在外电场作用下,蓝相液晶就变为光学上的单轴晶体,根据蓝相液晶中主体液晶的是正性液晶(△ε>0)还是负性液晶(△ε<0)的不同,其光轴方向与电场方向的关系有所不同,克尔效应的工作原理示意图如图10所示, 蓝相液晶的主体液晶为正性液晶,施加如图所示的电场时,如图b所示,光轴与电场平行,蓝相液晶的主体液晶为负性液晶,施加如图所示的电场时,如图c所示,光轴与电场垂直。

图3中液晶盒的结构也可为液晶透镜的结构,如图11所示,其中V1-V11优化电极电压形成均匀电场。这样可以充分利用液晶透镜形成既具有裸眼立体显示功能又能实现宽窄视角切换的功能。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1