成像位移装置及其制造方法与流程

文档序号:19808418发布日期:2020-01-31 17:56阅读:165来源:国知局
成像位移装置及其制造方法与流程

本发明涉及一种成像位移装置及成像位移装置制造方法。



背景技术:

近年来,各种影像显示技术已广泛地应用于日常生活上。于影像显示装置中,例如可设置成像位移模组改变光线于装置内的行进光路,以提供例如提高成像解析度、改善画面品质等各种效果。习知的成像位移模组通常为包含组动件与组定件的光路调整机构,光路调整机构使光学元件产生往复的摆动以使像素影像产生轻微位移,在人眼视觉暂留的情况下提供提高影像解析度的效果。然而,习知的光路调整机构于摆动时容易产生高频噪音,元件材料在高速震动下使用寿命受限,且会受到变迁时间(transitiontime)的限制而影响到光效能。再者,一旦被动元件(例如光阀)的尺寸需求有变化,必需对应地重新设计并验证材料与结构组成,而难以简化制程及整体架构。

"背景技术"段落只是用来帮助了解本

技术实现要素:
,因此在"背景技术"段落所揭露的内容可能包括一些没有构成所属技术领域中具有通常知识者所知道的习知技术。在"背景技术"段落所揭露的内容,不代表所述内容或者本发明一个或多个实施例所要解决的问题,在本发明申请前已被所属技术领域中具有通常知识者所知晓或认知。

发明内容

本发明的其他目的和优点可以从本发明实施例所揭露的技术特征中得到进一步的了解。

本发明提供了一种成像位移装置,包括投影镜头以及可在绕射状态和非绕射状态切换的第一光栅。投影镜头设有透镜组,透镜组包含第一透镜和第二透镜,且第二透镜与第一透镜之间未设有任何透镜。第一光栅设于第一透镜远离第二透镜的一侧,第一光栅到投影镜头的光圈于投影镜头的光轴上的距离,小于第一光栅到第二透镜于投影镜头的光轴上的距离。当第一光栅轮流在绕射状态和非绕射状态切换,因人眼的视觉暂留现象,观察者可看到多一倍的像素影像,获得例如将像素解析度提高至2倍的效果。

本发明另提供了一种成像位移装置,包括投影镜头、可在绕射状态和非绕射状态切换的第一光栅、及设有反射面的光学元件。投影镜头设有透镜组,且透镜组包含第一透镜和第二透镜。第一光栅及光学元件均设于投影镜头内,且光学元件位于第一光栅的光路下游。第一透镜为最接近光学元件的透镜,且第一光栅到反射面于投影镜头的光轴上的距离,小于第一透镜到反射面于投影镜头的光轴上的距离。当第一光栅轮流在绕射状态和非绕射状态切换,因人眼的视觉暂留现象,观察者可看到多一倍的像素影像,获得例如将像素解析度提高至2倍的效果。

本发明又提供了一种成像位移装置制造方法,包括提供一镜筒;安装一第一透镜与一第二透镜于镜筒内;以及安装可在绕射状态和非绕射状态切换的第一光栅和设有反射面的光学元件于镜筒内,其中第一透镜比第二透镜更靠近反射面,第一光栅到反射面于第一透镜的光轴上的距离,小于第一透镜到反射面于光轴上的距离。

本发明的成像位移装置利用例如全息聚合物分散液晶元件构成的绕射光栅作为光路调整元件,可不需致动件即能获得像素影像位移的效果,因此可避免高速碰撞、噪音等问题且可提高元件使用寿命。再者,因液晶变迁时间较短,故能保留较多的光效能。另外,绕射光栅作为光路调整元件的结构组成较为简单,且不需随被动元件(例如光阀)的尺寸变更而修改设计。

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。

附图说明

图1a及图1b为依本发明一实施例,显示由全息聚合物分散液晶元件所构成的光栅的示意图。

图2a及图2b显示本发明一实施例的成像位移模组的示意图。

图3为依本发明一实施例,显示像素影像位移效果的示意图。

图4a至图5d显示本发明另一实施例的成像位移模组的示意图,其中图4a至图4d为成像位移模组的侧视图,图5a至图5d为分别由图4a至图4d的成像位移模组的上方向下观察的俯视图。

图6为依本发明另一实施例,显示像素影像位移效果的示意图。

图7为依本发明另一实施例,显示像素影像位移效果的示意图。

图8显示本发明一实施例的成像位移装置的示意图。

图9为依本发明另一实施例,显示像素影像位移效果的示意图。

图10显示本发明另一实施例的成像位移装置的示意图。

图11为本发明一实施例的成像位移模组应用于一光学系统的示意图。

图12为本发明另一实施例的成像位移模组应用于一光学系统的示意图。

具体实施方式

有关本发明的前述及其他技术内容、特点与功效,在以下配合参考图式的实施例的详细说明中,将可清楚的呈现。以下实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附加图式的方向。因此,使用的方向用语是用来说明并非用来限制本发明。

下述实施例中的揭露内容揭示一种成像位移模组,其可运用于不同光学系统(例如显示装置、投影装置等等)以调整或变化光路俾提供例如提升成像解析度、提高影像品质(消除暗区、柔和化影像边缘)等效果而不限定,且成像位移模组于光学系统中的设置位置及配置方式完全不限定。

图1a及图1b为依本发明一实施例,显示由全息聚合物分散液晶元件所构成的光栅的示意图。于一实施例中,全息聚合物分散液晶元件(holographicpolymerdispersedliquidcrystal;hpdlc)10作为可在绕射状态和非绕射状态切换的光栅。如图1a所示,当电源供应器22例如施加电压到全息聚合物分散液晶元件10时形成非绕射状态,液晶12和聚合物14的折射率变得几乎完全相同,影像光i可在没有绕射现象下,不改变行进方向近乎直线地穿透。如图1b所示,若全息聚合物分散液晶元件10未被施加电压,液晶12与聚合物14之间的折射率差异产生光绕射现象形成绕射状态,影像光i会被全息聚合物分散液晶元件10偏折一个角度θ,使出射方向与入射方向不同。上述的切换方式并不限定,于另一实施例中,可利用具负介电异向性的液晶材料、改变感光材料材质等方式,于全息聚合物分散液晶元件10被施加电压时形成绕射状态且于未施加电压时形成非绕射状态。

图2a及图2b显示本发明一实施例的成像位移模组的示意图。如图2a及图2b所示,成像位移模组110包含第一光栅112及第二光栅114,第一光栅112及第二光栅114均可在绕射状态和非绕射状态之间切换,且第一光栅112及第二光栅114例如可并排设置。第二光栅114位于第一光栅112的光路下游,亦即影像光i先通过第一光栅112再通过第二光栅114。第一光栅112设有相对应的表面112a和表面112b,且第二光栅114设有相对应的表面114a和表面114b,第一光栅112的表面112a接收一影像光i,且影像光i从表面112b出射后由第二光栅114的表面114a接收,通过第二光栅114的表面114a的影像光i最后由表面114b出射。于本实施例中,当第一光栅112及第二光栅114均为非绕射状态时(图2a),同一影像光i可沿一实质直线方向依序通过第一光栅112及一第二光栅114并形成图3所示的像素影像p;当第一光栅112及第二光栅114均为绕射状态时(图2b),影像光i通过第一光栅112时可被往下偏折一个角度θ,接着影像光i通过第二光栅114时可往反方向向上偏折一个角度θ,因此影像光出射方向相较入射方向于一第一方向(例示为垂直方向)实质平移一距离ds,形成图3所示的像素影像q。当成像位移模组110轮流在绕射状态和非绕射状态切换,因人眼的视觉暂留现象,观察者可看到多一倍的像素影像(对应单一像素形成两个像素影像p与q),获得提高解析度(解析度为原先的两倍)的效果。再者,于本实施例中,影像光与表面112a的法线形成一入射角α,影像光i与表面114b法线形成一出射角θ,且入射角α与出射角θ可实质相同。

图4a至图5d显示本发明另一实施例的成像位移模组的示意图,其中图4a至图4d为成像位移模组的侧视图,图5a至图5d为分别由图4a至图4d的成像位移模组的上方向下观察的俯视图。于本实施例中,成像位移模组120包含可在绕射状态和非绕射状态切换的第一光栅122、第二光栅124、第三光栅132及第四光栅134。第二光栅124可位于第一光栅122的光路下游,第三光栅132可位于第二光栅122的光路下游,第四光栅134可位于第三光栅132的光路下游,且各个光栅例如可并排设置。第一光栅122及第二光栅124构成第一组平移单元,使像素影像可沿一维度平移,第三光栅132及第四光栅134构成第二组平移单元,使像素影像可沿另一维度平移。因此,当第二组平移单元的光栅排列方式与第一组平移单元的光栅排列方式不同时,像素影像能在二维的方向上移动,获得将像素解析度提高至4倍的效果。如图4a至图5d所示,第一光栅122设有相对应的表面122a和表面122b,表面122a接收影像光i,且影像光i从表面122b出射,第二光栅124设有相对应的表面124a和表面124b,表面124a接收影像光i且影像光i从表面124b出射,第三光栅132设有相对应的表面132a和表面132b,表面132a接收影像光i且影像光i从表面132b出射,第四光栅134设有相对应的表面134a和表面134b,表面134a接收影像光i且影像光i从表面134b出射。于本实施例中,当第一组平移单元(光栅122、124)与第二组平移单元(光栅132、134)均为非绕射状态时(图4a、5a),影像光i可依一实质直线方向依序通过所有光栅并形成图6所示的像素影像p,当第一组平移单元(光栅122、124)为绕射状态且第二组平移单元(光栅132、134)为非绕射状态时(图4b、5b),影像光i通过第一组平移单元(光栅122、124)时会使影像光出射方向相较入射方向于一第一方向(例示为垂直方向)实质平移一距离s1(如图4b所示),并形成图6所示的像素影像q。当第一组平移单元(光栅122、124)为非绕射状态且第二组平移单元(光栅132、134)为绕射状态时(图4b、5b),因第二组平移单元的光栅排列方式与第一组平移单元的光栅排列方式不同,当影像光i通过第二组平移单元(光栅132、134)时会使影像光出射方向相较入射方向于另一第二方向(例示为水平方向)实质平移一距离s2(如图5c所示),并形成图6所示的像素影像r。因此,若第一组平移单元(光栅122、124)与第二组平移单元(光栅132、134)均为绕射状态时(图4d、5d),影像光i可同时于垂直方向及水平方向均实质平移一距离(分别如图4d及5d所示),并形成图6所示的像素影像s。因此,藉由两组的平移单元可形成两个维度上的双轴调整,获得将像素解析度提高至4倍的效果。再者,于本实施例中,影像光i与表面124b的法线形成的出射角,可与表面122a的法线形成的入射角实质相同,且影像光i与表面134b的法线形成的出射角,可与表面132a的法线形成的入射角实质相同。因此,于一实施例中,影像光i与表面122a的法线形成的入射角,可与影像光i与表面134b的法线形成的出射角实质相同。

再者,第二组平移单元(光栅132、134)的光栅排列方式与第一组平移单元(光栅122、124)的光栅排列方式仅需不同即可获得两个维度上的双轴调整效果,因此仅需调整出不同的光栅排列方式,可如图7所示形成非直角的平行四边形影像轨迹,以配合不同的光路调整需求。另外,第一光栅122、第二光栅124、第三光栅132及第四光栅134的配置仅需获得两个维度上的位移调整效果即可,其绕射状态切换方式、排列顺序及光栅排列方式设置方式完全不限定。举例而言,于另一实施例中,第一光栅122及第三光栅132可同时为绕射状态或同时为非绕射状态,且第二光栅124及第四光栅134可同时为绕射状态或同时为非绕射状态。于另一实施例中,第一光栅122及第三光栅132可具有相同的第一光栅排列方式,第二光栅124及第四光栅134可具有相同的第二光栅排列方式,且第一光栅排列方式与第二光栅排列方式不同。

图8显示本发明一实施例的成像位移装置的示意图。如图8所示,成像位移装置200包含投影镜头210、光栅220及光学元件230,光栅220可在绕射状态和非绕射状态切换,光学元件230设有反射面230a且位于光栅220的光路下游,投影镜头210设有复数透镜(例如透镜212、214、216、218)构成的透镜组,且光栅220与光学元件230可位于投影镜头210的透镜组内。于本实施例中,复数透镜中最靠近反射面230a(例如以相对反射面的几何中心的直线距离为基准)的透镜为透镜212,且光栅220到反射面230a的距离d1小于最靠近反射面230a的透镜212到反射面230a的距离d2(d1<d2)。上述光栅220、反射面230a及透镜212之间的距离例如可为光栅220、反射面230a及透镜214各自的几何中心的直线距离。当光栅220为非绕射状态时,影像光i可直接入射至反射面230a,再被反射面230a反射形成影像光i1,当光栅220为绕射状态时,影像光i会被光栅220绕射偏折形成影像光i2,由光栅220出射的影像光i2跟被反射面230a反射的影像光i1两者的行进方向不同(即与反射面230a的法线形成不同夹角)。于本实施例中,当光栅220设于迭合或邻近投影镜头210的光圈位置处时,影像光i1与影像光i2可分别形成图9所示间隔一距离的像素影像p及q,因此当成像位移装置200轮流在绕射状态和非绕射状态切换,同样可产生像素影像位移的效果。再者,若同时使用两个光栅(具不同的光栅排列方式),可产生与前述实施例相同的于两个维度上调整获得将像素解析度提高至4倍的效果。

图10显示本发明另一实施例的成像位移装置250的示意图。如图10所示,成像位移装置250包含投影镜头260及光栅270。光栅270可在绕射状态和非绕射状态切换,投影镜头260设有复数透镜(例如第一透镜262、第二透镜264及第三透镜266)所构成的透镜组,且光栅270例如可设于投影镜头260内。于本实施例中,第一透镜262与第二透镜264之间未设有任何其他透镜,光栅270设于第一透镜262远离第二透镜264的一侧,且光栅270可设于重合或邻近投影镜头260的光圈268位置处。于一实施例中,光栅270到投影镜头260的光圈268在投影镜头光轴上的距离d1,可小于光栅270到第二透镜264在光轴上的距离d2(d1<d2)。上述光栅270、光圈268及第二透镜264之间的距离例如可为光栅270、光圈268及第二透镜264各自的几何中心的直线距离。光栅270例如可为全息聚合物分散液晶元件(h-pdlc),当光栅270为非绕射状态时,影像光i可沿实质直线方向直接穿透光栅270并形成影像光i1,当光栅270为绕射状态时,影像光i会被光栅220绕射偏折形成影像光i2,且影像光i2跟影像光i1由光栅220出射的出射方向不同。因此当成像位移装置250轮流在绕射状态和非绕射状态切换,像素pl经由投影镜头260形成彼此间隔一距离的像素影像pi1及像素影像pi2,因此观察者可看到多一倍的像素影像,获得将像素解析度提高至2倍的效果。再者,若同时使用两个光栅(具不同的光栅排列方式),可产生与前述实施例相同的于两个维度上调整获得将像素解析度提高至4倍的效果。

图11为本发明一实施例的成像位移模组应用于一光学系统的示意图。请参照图11,光学装置400包括照明系统310、光阀320、投影镜头260以及成像位移模组110。其中,照明系统310具有光源312,其适于提供光束314,且光阀320配置光束314的传递路径上。此光阀320适于将光束314转换为多数个子影像314a。此外,投影镜头260配置于这些子影像314a的传递路径上,且光阀320位于照明系统310与投影镜头260之间。另外,成像位移模组110可配置于光阀320与投影镜头260之间或投影镜头260内,例如可以在光阀320和内部全反射棱镜319之间或是可以在内部全反射棱镜319和投影镜头260之间,且位于这些子影像314a的传递路径上。上述的光学装置400中,光源312例如可包括红光发光二极体312r、绿光发光二极体312g、及蓝光发光二极体312b,各个发光二极体发出的色光经由合光装置316合光后形成光束314,光束314会依序经过蝇眼透镜阵列(fly-eyelensarray)317、光学元件组318及内部全反射棱镜(tirprism)319。的后,内部全反射棱镜319会将光束314反射至光阀320。此时,光阀320会将光束314转换成多数个子影像314a,而这些子影像314a会依序通过内部全反射棱镜319及成像位移模组110,并经由投影镜头260将这些子影像314a投影于屏幕350上。于本实施例中,当这些子影像314a经过成像位移模组210时,成像位移模组110会改变部分这些子影像314a的传递路径。也就是说,通过此成像位移模组110的这些子影像314a会投影在屏幕350上的第一位置(未绘示),另一部份时间内通过此成像位移模组210的这些子影像314a则会投影在屏幕350上的第二位置(未绘示),其中第一位置与第二位置在水平方向(x轴)或/且垂直方向(z轴)上相差一固定距离。于本实施例中,由于成像位移模组110能使这些子影像314a的成像位置在水平方向或/且垂直方向上移动一固定距离,因此能提高影像的水平解析度或/且垂直解析度。当然,上述实施例仅为例示,本发明实施例的成像位移模组可运用于不同光学系统以获得不同效果,且成像位移模组于光学系统中的设置位置及配置方式完全不限定。例如图12所示,亦可将可在绕射状态和非绕射状态切换的光栅220设于光学装置410的投影镜头210内。

再者,本发明一实施例提供一种成像位移模组制造方法,其包括如下步骤。首先提供壳体并安装可在绕射状态和非绕射状态切换的第一光栅、及可在绕射状态和非绕射状态切换的第二光栅于壳体内。第一光栅设有相对应的第一表面和第二表面,第一表面接收一影像光,且影像光从第二表面出射。第二光栅位于第一光栅的光路下游且设有相对应的第三表面和第四表面,第三表面接收影像光,且影像光从第四表面出射。影像光入射至第一光栅的入射方向与由第二光栅出射的出射方向在第一方向实质平移一距离。本发明另一实施例提供一种成像位移装置制造方法,其包括如下步骤。首先提供镜筒,并安装第一透镜与第二透镜于镜筒内,且安装可在绕射状态和非绕射状态切换的光栅和设有反射面的光学元件于镜筒内。第一透镜比第二透镜更靠近反射面,第一光栅到反射面于第一透镜的光轴上的距离,小于第一透镜到反射面于第一透镜的光轴上的距离。

藉由上述各个实施例的设计,利用例如全息聚合物分散液晶元件构成的绕射光栅作为光路调整元件,可不需致动件即能获得像素影像位移的效果,因此可避免高速碰撞、噪音等问题且可提高元件使用寿命。再者,因液晶变迁时间较短,故能保留较多的光效能。另外,绕射光栅作为光路调整元件的结构组成较为简单,且不需随被动元件(例如光阀)的尺寸变更而修改设计。

本发明的"光学元件"用语,指元件具有光反射特性的材质所构成,通常包括玻璃或塑胶所组成。举例来说,光学元件可以是反射镜(reflectivemirror)、全反射棱镜(tirprism)、反向全反射棱镜组(rtirprism)等。

本发明的"光阀"用语,在此产业中大多可用来指一种空间光调变器(spatiallightmodulator,slm)中的一些独立光学单元。所谓空间光调变器,含有许多独立单元(独立光学单元),这些独立单元在空间上排列成一维或二维阵列。每个单元都可独立地接受光学信号或电学信号的控制,利用各种物理效应(泡克尔斯效应、克尔效应、声光效应、磁光效应、半导体的自电光效应或光折变效应等)改变自身的光学特性,从而对照明在复数个独立单元的照明光束进行调制,并输出影像光束。独立单元可为微型反射镜或液晶单元等光学元件。亦即,光阀可以是数字微镜元件(digitalmicro-mirrordevice,dmd)、硅基液晶面板(liquid-crystal-on-siliconpanel,lcospanel)或是穿透式液晶面板等。

投影机是利用光学投影方式将影像投射至屏幕上的装置,在投影机产业中,一般依内部所使用的光阀的不同,将投影机分为阴极射线管(cathoderaytube)式投影机、液晶显示器(liquidcrystaldisplay,lcd)式投影机、数字光投影机(digitallightprojector,dlp)以及液晶覆硅(liquidcrystalonsilicon,lcos)投影机因投影机运作时光线会透过lcd面板作为光阀,所以属于穿透式投影机,而使用lcos、dlp等光阀的投影机,则是靠光线反射的原理显像,所以称为反射式投影机。而于本实施例中,投影机为数字光投影机,而光阀320为数字微镜元件(dmd)。

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1