一种基于塔姆结构的彩色辐射降温器的制作方法

文档序号:18408286发布日期:2019-08-10 00:38阅读:503来源:国知局
一种基于塔姆结构的彩色辐射降温器的制作方法

本发明涉及辐射降温技术领域,具体为一种基于塔姆结构的彩色辐射降温器。



背景技术:

辐射降温技术由于其不需要外加能量、对环境友好、节约能源等优势在节能建筑,电子/光电器件和个人热管理等方面具有广泛的应用和前景。宇宙空间的温度约为3k,这是一个巨大的天然冷源。任何物体只要温度大于绝对零度都能向外辐射能量。根据维恩位移定律:当地球温度为300k时,黑体辐射能力最大值所对应的波长约为9.6μm,此峰值波长位于大气透明窗口(即8-13μm)内。因此,辐射降温利用这个波段的大气透明窗口,以辐射的形式穿过大气至宇宙空间实现热交换,从而达到降温效果。物体除了向外辐射能量,同时还会吸收太阳辐射和大气辐射,还有一部分非辐射能量(热传导和热对流),所以物体的净辐射表示为:向外辐射量减去吸收的太阳辐射、大气辐射及非辐射量之和。当净辐射大于零时,物体可以实现降温。一般用辐射率来衡量物体以辐射形式向外释放能量相对强弱的能力,且根据基尔霍夫定律,在热平衡状态下物体的辐射率等于其吸收率,因此辐射降温器需要满足:8-13μm高吸收;其他波段高反射。

然而,由于辐射降温器在可见光区反射较大,呈白色,外观不美观,一定程度上限制了其在装饰等美学方面的应用。因此,对同时具有颜色和降温功能的降温器的研究引起了越来越多研究人员的兴趣。要使辐射降温器同时具有颜色和降温效果不仅需要满足传统降温器的波段要求外,还需要在减色法三原色波长(即435.8,546.1和700nm)处出现反射凹峰。例如,l.zhu等人设计了一种可以在阳光下保持其颜色的辐射降温器,通过在周期性的硅纳米线阵列上放置周期性石英棒阵列,该降温器的颜色显示为淡粉色(appliedphysicsletters,2013,103(22),223902)。g.j.lee等人通过在热发射器中嵌入mim结构设计出一种显示减色法三原色(黄色、品红和青色)的辐射降温器。实验证明,最终稳态温度比环境温度低3.9℃(advancedopticalmaterials,2018,6(22),1800707)。但是这些已有的彩色辐射降温器的颜色调控复杂且与标准减色法三原色的色差较大,此外,颜色对入射角的变化较敏感。不同比例的减色法三原色(即三补色)可以组合成不同的颜色,所以三补色纯度越高,得到的颜色越多,应用更广泛。因此,需设计一种高纯度,高性能,颜色可调和对入射角度不敏感的彩色辐射降温器,其对未来彩色电子领域的发展具有极大的推动作用。



技术实现要素:

本发明的目的在于提供一种基于塔姆结构的彩色辐射降温器,以解决上述背景技术中提出的问题。

为实现上述目的,本发明提供如下技术方案:

一种基于塔姆结构的彩色辐射降温器,所述基底自下而上依次设置有金属膜层、分布式布拉格反射镜、选择性发射器;其中:所述的金属膜层和分布式布拉格反射镜组成塔姆结构;分布式布拉格反射镜的厚度d、分布式布拉格反射镜的布拉格波长λb、分布式布拉格反射镜的折射率n之间的关系满足:d=λb/4n。

进一步的方案:一种基于塔姆结构的彩色辐射降温器,包括基底,所述基底自下而上依次设置有金属膜层和电介质层a至电介质层g,其中所述金属膜层与所述电介质层a至所述电介质层d组成塔姆结构,所述电介质层a至电介质层d组成分布式布拉格反射镜,所述选择性发射器由所述电介质层e至所述电介质层g组成。

优选的,所述基底厚度为300-3000μm。

优选的,所述基底材料为sio2玻璃。

优选的,所述金属膜层的厚度为10-80nm,其最优厚度均由计算的最小色差值决定。

优选的,所述电介质层a的厚度为20-50nm,所述电介质层b的厚度为50-100nm,所述电介质层c的厚度为20-50nm,所述电介质层d的厚度为50-100nm,其最优厚度均由计算的最小色差值决定。

优选的,所述金属膜层的材料为ag,且所述电介质层a至所述电介质层d的材料分别为sic、mgf2、sic与mgf2,材料满足在太阳波段的消光系数小,避免寄生吸热,且在大气透明窗口波段表现出辅助的热辐射特性,保证了系统的整体冷却效果。

优选的,所述选择性发射器中的所述电介质层e的厚度为52nm,所述选择性发射器中所述电介质层f的厚度为900nm,所述选择性发射器中的所述电介质层g的厚度为85nm,其最优厚度均由遗传算法优化得到。

优选的,所述选择性发射器中的所述电介质层e至所述电介质层g的材料分别为sio2、sin和sio2,材料满足在可见光区高透射且这两种材料都存在共振使其在8-13μm的辐射率明显提高。

一种基于塔姆结构的黄色辐射降温器,制备方法如下:

s1)选取一块经过离子束清洗后的sio2玻璃基底层,运用电子束蒸发技术,沉积ag金属膜层,其厚度为24nm;

s2)然后使用射频磁控反应溅射技术在金属膜层上沉积厚度为30nm的sic电介质层a,薄膜沉积前先进行15min预溅射,然后在室温下沉积sic薄膜,最后进行高温退火处理;

s3)使用电子束蒸发技术在电介质层a上沉积厚度为56nm的mgf2电介质层b,蒸发本底真空度为2×10-4pa;

s4)接着使用射频磁控反应溅射技术在电介质层b上沉积厚度为30nm的sic电介质层c,溅射方法同s2;

s5)使用电子束蒸发技术在电介质层c上沉积厚度为56nm的mgf2电介质层d,蒸发方法同s3;

s6)使用射频磁控反应溅射技术在电介质膜层d上沉积厚度为52nm的sio2电介质层e,实验中用氩气作为溅射气体,氧气为反应气体,镀膜前先用氩气预溅射,然后再进行溅射;

s7)使用射频磁控反应溅射技术在电介质膜层e上沉积厚度为900nm的sin电介质层f,溅射气体和反应气体分别为高纯度的ar气和n2气,每次实验之前先用ar气进行预溅射10min,去除靶表面的氧化物等杂质,然后再进行溅射;

s8)使用射频磁控反应溅射技术在电介质膜层f上沉积厚度为85nm的sio2电介质层g,蒸发方法同s6。

工作原理:选择性发射器需要满足在主要大气透明窗口(8-13μm)高辐射,同时需保证可见光尽可能无损耗的穿过发射器以保证显色的纯度,另外其他波段高反射以减少寄生热。用于显色的塔姆结构由分布式布拉格反射镜和金属膜层组成,利用塔姆结构能够在分布式布拉格反射镜与金属膜层界面处激发光学塔姆态(即ots)出现反射凹峰来实现显色功能,通过调控分布式布拉格反射镜和金属膜层的厚度可以得到不同的颜色,并计算随着分布式布拉格反射镜和金属膜层的厚度变化的色差(参考颜色为标准三补色),得到色差最小值(即所设计的高纯度的三补色)所对应的塔姆结构参数。通过对材料和结构的光学、热学和颜色机理的理解,本设计最终表明塔姆结构的引入不仅使传统的辐射降温器显示高纯度的三补色,而且其对入射角度不敏感,最重要的是增加了器件总体的辐射率,保证了辐射降温的效果。

方案中的电介质层a至电介质层g中的字母只是为了区分不同的电介质层而给出的编号,并不限定特定型号的电介质层,电介质层a至电介质层g对应也可替换为第一电介质层至第七电介质层。电介质层a至电介质层d组成显色的塔姆结构中的分布式布拉格反射镜。

有益效果

1.与传统的辐射降温器相比,显色的辐射降温器不仅具有较好的降温性能,而且带有颜色使其在美学和装饰性等方面具有广泛应用。

2.利用塔姆结构作为显色器件,对偏振不敏感,不需要特殊的入射角和色散调节元件就能够激发光学tamm态(激发更容易),使其出现反射凹峰。并且由于塔姆结构的光谱相对较宽,所以其对角度的变化不敏感。

3.颜色的调控更简单,只需要改变dbr和金属的厚度就能得到不同色调和纯度的颜色,提供了一种简化的色差计算方法来寻找与三补色最接近的三种颜色,设计颜色纯度较高,使其组合能得到更多的颜色,应用更广泛。并且由于器件的降温效果主要与选择性发射器相关,所以颜色的调控对降温效果影响不大,显色和降温不冲突。

附图说明

图1为本发明的彩色辐射降温器结构示意图。

图2为本发明的彩色辐射降温器随着dbr厚度(λb)变化的反射光谱示意图,其中dbr的厚度表示为:d=λb/4n,其中λb为布拉格波长,n为dbr的折射率。

图3为本发明的彩色辐射降温器随着金属厚度(dag)变化的反射光谱示意图。

附图标记

1-基底,2-金属膜层,3-电介质层a,4-电介质层b,5-电介质层c,6-电介质层d,7-电介质层e,8-电介质层f,9-电介质层g。

具体实施方式

以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。

实施例1

一种基于塔姆结构的黄色辐射降温器,制备方法如下:

s1)选取一块经过离子束清洗后的sio2玻璃基底层,运用电子束蒸发技术,沉积ag金属膜层,其厚度为24nm;

s2)然后使用射频磁控反应溅射技术在金属膜层上沉积厚度为30nm的sic电介质层a,薄膜沉积前先进行15min预溅射,然后在室温下沉积sic薄膜,最后进行高温退火处理;

s3)使用电子束蒸发技术在电介质层a上沉积厚度为56nm的mgf2电介质层b,蒸发本底真空度为2×10-4pa;

s4)接着使用射频磁控反应溅射技术在电介质层b上沉积厚度为30nm的sic电介质层c,溅射方法同s2;

s5)使用电子束蒸发技术在电介质层c上沉积厚度为56nm的mgf2电介质层d,蒸发方法同s3;

s6)使用射频磁控反应溅射技术在电介质膜层d上沉积厚度为52nm的sio2电介质层e,实验中用氩气作为溅射气体,氧气为反应气体,镀膜前先用氩气预溅射,然后再进行溅射;

s7)使用射频磁控反应溅射技术在电介质膜层e上沉积厚度为900nm的sin电介质层f,溅射气体和反应气体分别为高纯度的ar气和n2气,每次实验之前先用ar气进行预溅射10min,去除靶表面的氧化物等杂质,然后再进行溅射;

s8)使用射频磁控反应溅射技术在电介质膜层f上沉积厚度为85nm的sio2电介质层g,蒸发方法同s6。

实施例2

一种基于塔姆结构的品红色辐射降温器,制备方法如下:

s1)选取一块经过离子束清洗后的sio2玻璃基底层,运用电子束蒸发技术,沉积ag金属膜层,其厚度为22nm;

s2)然后使用射频磁控反应溅射技术在金属膜层上沉积厚度为38nm的sic电介质层a。薄膜沉积前先进行15min预溅射,然后在室温下沉积sic薄膜,最后进行高温退火处理;

s3)使用电子束蒸发技术在电介质层a上沉积厚度为72nm的mgf2电介质层b,蒸发本底真空度为2×10-4pa;

s4)接着使用射频磁控反应溅射技术在电介质层b上沉积厚度为38nm的sic电介质层c,溅射方法同s2;

s5)使用电子束蒸发技术在电介质层c上沉积厚度为72nm的mgf2电介质层d,蒸发方法同s3;

s6)使用射频磁控反应溅射技术在电介质膜层d上沉积厚度为52nm的sio2电介质层e,实验中用氩气作为溅射气体,氧气为反应气体,镀膜前先用氩气预溅射,然后再进行溅射;

s7)使用射频磁控反应溅射技术在电介质膜层e上沉积厚度为900nm的sin电介质层f,溅射气体和反应气体分别为高纯度的ar气和n2气,每次实验之前先用ar气进行预溅射10min,去除靶表面的氧化物等杂质,然后再进行溅射;

s8)使用射频磁控反应溅射技术在电介质膜层f上沉积厚度为85nm的sio2电介质层g,蒸发方法同s6。

实施例3

一种基于塔姆结构的青色辐射降温器,制备方法如下:

s1)选取一块经过离子束清洗后的sio2玻璃基底层,运用电子束蒸发技术,沉积ag金属膜层,其厚度为23nm;

s2)然后使用射频磁控反应溅射技术在金属膜层上沉积厚度为47nm的sic电介质层a。薄膜沉积前先进行15min预溅射,然后在室温下沉积sic薄膜,最后进行高温退火处理;

s3)使用电子束蒸发技术在电介质层a上沉积厚度为88nm的mgf2电介质层b,蒸发本底真空度为2×10-4pa;

s4)接着使用射频磁控反应溅射技术在电介质层b上沉积厚度为47nm的sic电介质层c,溅射方法同s2;

s5)使用电子束蒸发技术在电介质层c上沉积厚度为88nm的mgf2电介质层d,蒸发方法同s3;

s6)使用射频磁控反应溅射技术在电介质膜层d上沉积厚度为52nm的sio2电介质层e,实验中用氩气作为溅射气体,氧气为反应气体,镀膜前先用氩气预溅射,然后再进行溅射;

s7)使用射频磁控反应溅射技术在电介质膜层e上沉积厚度为900nm的sin电介质层f,溅射气体和反应气体分别为高纯度的ar气和n2气,每次实验之前先用ar气进行预溅射10min,去除靶表面的氧化物等杂质,然后再进行溅射;

s8)使用射频磁控反应溅射技术在电介质膜层f上沉积厚度为85nm的sio2电介质层g,蒸发方法同s6。

在上述沉积过程中使用石英晶体监测器监测厚度。在可见光和近红外区利用分光光度计对彩色辐射降温器的反射率进行表征,该分光光度计具有非偏振光源和校准的高镜面反射率标准;在红外区,采用具有非偏振光光源并以金膜作为反射率标准的傅里叶变换红外光谱仪,对彩色辐射降温器的反射率进行表征。在该降温器背面装有电阻温度检测传感器,并与数据记录器相连接,测量该降温器的温度;使用日射强度计测量入射到降温器表面的太阳辐射照度并用数据记录器记录,其中日射强度计与彩色辐射降温器放置在同一平台上;周围环境温度使用电阻温度传感器测量,其探头需在样品附近的空气流动自由区域(样品周围的气穴除外)测量。

结合图1所示,本发明提供的这种彩色的辐射降温器,其由选择性发射器和塔姆结构组成,选择性发射器由电介质层e、f、g组成,其结构参数通过遗传算法优化得到,塔姆结构由电介质层a、b、c、d和金属膜层组成,其结构参数通过计算的最小色差值得到。

结合图2和图3彩色辐射降温器,分别随dbr(λb)和金属层厚度(dag)变化的反射光谱所示,随着dbr厚度的增加,峰值波长向右移动,从而可以通过dbr厚度的调控,得到不同色调的颜色;随着金属层厚度的增加,峰值波长移动不大,峰值波长处对应的反射率减小,颜色变浅,从而可以通过金属层厚度的调控,得到不同纯度的颜色。因此首先固定ag的厚度,计算随着dbr厚度的变化与标准黄色的色差值,找到最小色差值所对应的dbr厚度,然后在dbr厚度确定的基础上再计算,随着ag厚度的变化与标准黄色的色差值,找到最小色差值对应的ag的厚度。综上所述最优化后显示黄色的辐射降温器基底层采用500μm厚的sio2玻璃基底层,在sio2玻璃基底层自下而上依次沉积24nm厚的ag金属膜层、30nm厚的sic电介质层a、56nm厚的mgf2电介质层b、30nm厚的sic电介质层c、56nm厚的mgf2电介质层d、52nm厚的sio2电介质层e、900nm厚的sin电介质层f以及85nm厚的sio2电介质层g。同理可得到显示品红色以及青色的辐射降温器。

最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明性的保护范围之内的发明内容。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1