一种耐高温选择性发射红外隐身材料及其制备方法与流程

文档序号:20915064发布日期:2020-05-29 13:24阅读:869来源:国知局
一种耐高温选择性发射红外隐身材料及其制备方法与流程

本发明属于新材料领域,尤其涉及一种耐高温选择性发射红外隐身材料及其制备方法。



背景技术:

隐身技术作为尖端军事技术之一,受到了研究人员的广泛关注。红外隐身在各种隐身技术中占据着十分重要的地位。红外隐身,主要是指消除或减小目标与背景间中远红外波段两个大气窗口(3.0μm~5.0μm,8.0μm~14.0μm)辐射特性的差别。具有光谱选择性发射特点的材料可以从降低目标发射率和辐射降温两个方面出发,实现目标的红外隐身。与传统低发射率红外隐身材料相比,选择性发射材料可以有效避免传统材料因辐射效率低造成的温度升高,由此增加目标暴露的可能性这一风险,具有更优异的红外隐身效果。需要指出的是,由于具有辐射降温的能力,选择性发射材料对高温目标的红外隐身具有更为重要的意义。

目前,选择性发射红外隐身材料的研究已经成为了隐身领域的热点。目前,研究人员利用多层膜系或超材料结构,设计并制备得到了具有选择性发射特点的红外隐身材料。但是,目前所得到的选择性发射材料大多结构复杂,不利于大面积的制备与应用。同时,由于结构的复杂性,导致材料在高温环境下结构容易被破坏;某些红外隐身材料在高温环境下无法表现出预期的选择性发射特性,这些均限制了其在高温环境下的使用。另外,选择性发射材料在红外隐身技术领域的应用同样不成熟,相关的应用报道仍旧比较少见。因而,研制出一种结构简单、具有光谱选择性发射特点、且适用于高温环境的选择性发射红外隐身材料对高温军事目标的红外隐身具有重要价值。



技术实现要素:

本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提供一种结构简单、易于制备、可用于高温红外隐身的选择性发射材料及其制备方法。

为解决上述技术问题,本发明提出的技术方案为:

一种耐高温选择性发射红外隐身材料,所述红外隐身材料为层状结构,依次包括基底层、金属层和氮化硅层;所述金属层的材料为铝、不锈钢、钨和铜中的任一种。本发明优选的金属层和氮化硅的结合力较好,应力匹配性较强,在高温下不易脱落。

上述的红外隐身材料,优选的,所述金属层的厚度为50nm-1000nm;所述氮化硅层的厚度为1.2μm-1.8μm。本发明对金属层和氮化硅层厚度的改变均有可能使得本发明中得到的材料的光谱特性偏离本发明预设的目标,控制金属层和氮化硅层厚度控制在上述范围内,可以得到效果更好的选择性发射材料。

上述的红外隐身材料,优选的,所述基底层的材料为硅、玻璃、金属(如铝、不锈钢、合金等)中的任一种。

作为一个总的发明构思,本发明还提供一种上述的红外隐身材料的制备方法,包括以下步骤:

(1)将基底材料清洗、干燥;

(2)采用磁控溅射法、化学气相沉积法或原子层沉积法将金属材料沉积在基底上,形成金属层;

(3)再采用磁控溅射法或化学气相沉积法将氮化硅沉积在金属层表面,完成红外隐身材料的制备。

上述的制备方法,优选的,所述步骤(1)中,清洗是指先使用去离子水清洗,再浸泡在无水乙醇中超声清洗。

本发明的耐高温选择性发射红外隐身材料结构中的金属层是红外反射层,使整个结构不透红外电磁波;再借助氮化硅层的本征红外光学特性(反射率和发射率)和薄膜的物理光学原理,可以保证本发明的红外隐身材料实现3-5μm低发射率、5-20μm高发射率。本发明的红外隐身材料中对氮化硅层厚度范围有严格要求,只有1.2μm-1.8μm厚度范围内的氮化硅层,才能实现预期的光谱选择性(光谱选择性就是指:3-5μm低发射率,5-20μm高发射率),否则可能会使高发射率和低发射率波段偏离预期设计。

与现有技术相比,本发明的优点在于:

(1)本发明的选择性发射红外隐身材料,通过对金属层和氮化硅层的厚度优化,可以保证该红外隐身材料在室温至1000℃范围内,3.0μm~5.0μm红外窗口波段低发射率,其发射率在0.20以下,在5.0μm~20.0μm非窗口波段实现高发射率,发射率可达0.70以上;该红外隐身材实现了红外选择性发射,兼顾了低发射率与辐射散热的要求,对更好的实现红外隐身具有重要的意义。

(2)本发明的耐高温选择性发射红外隐身材料的结构简单,便于大面积制备与应用。

(3)本发明的耐高温选择性发射红外隐身材料制备工艺简单可行、重复性好、设备要求低。

附图说明

图1为本发明实施例1中的选择性发射红外隐身材料结构示意图。

图2为本发明实施例1中的选择性发射红外隐身材料在3.0μm~20.0μm波段的理论发射率谱图。

图3为本发明实施例2中的选择性发射红外隐身材料在热处理前的照片。

图4为本发明实施例2中的选择性发射红外隐身材料在热处理前的照片。

图例说明:

1、基底;2、铝层;3、氮化硅层。

具体实施方式

为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。

除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。

除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。

实施例1:

一种耐高温选择性发射红外隐身材料,如图1所示,该选择性发射材料为可对红外光谱的发射特征进行调控的材料,该材料以不锈钢为基底1,基底1表面依次涂覆有铝层2和氮化硅层3;铝层2的厚度为200nm,氮化硅层3的厚度为1.5μm。

本实施例中的耐高温选择性发射红外隐身材料的制备方法,包括以下步骤:

(1)将不锈钢材料先使用去离子水清洗,再浸泡在无水乙醇中超声清洗清洗,干燥,作为基底;

(2)采用磁控溅射法(直流溅射;功率200w,沉积温度:室温,沉积气压:0.5pa)将铝沉积在基底上,形成一层厚度为200nm的铝层;

(3)再采用化学气相沉积法将氮化硅沉积在铝层表面,氮化硅层的厚度为1.5μm,完成红外隐身材料的制备。

本实施例的选择性发射红外隐身材料在3.0μm~20.0μm波段的理论发射率谱图见图2所示,由图2可以看出,本实施例的耐高温选择性发射材料,在3.0μm~5.0μm红外窗口波段发射率为0.08,而在非窗口波段5.0μm~20.0μm发射率约为0.70。

测试本实施例的选择性发射红外隐身材料在室温至1000℃范围内的发射率曲线图,不同温度的曲线与室温下的发射率曲线基本重合,即3.0μm~5.0μm红外窗口波段低发射率,其发射率在0.20以下,在5.0μm~20.0μm非窗口波段实现高发射率,发射率可达0.70以上。

实施例2:

一种耐高温选择性发射红外隐身材料,该选择性发射材料为可对红外光谱的发射特征进行调控的材料,该材料以硅片为基底,基底表面依次涂覆有钨层和氮化硅层;钨层的厚度为500nm,氮化硅层的厚度为1.7μm。

本实施例中的耐高温选择性发射红外隐身材料的制备方法,包括以下步骤:

(1)将硅片先使用去离子水清洗,再浸泡在无水乙醇中超声清洗清洗,干燥,作为基底;

(2)采用磁控溅射法(直流溅射;功率200w,沉积温度:室温;沉积气压:0.3pa)将钨沉积在基底上,形成一层厚度为500nm的钨层;

(3)再采用磁控溅射法(射频溅射;功率200w,沉积温度:室温;沉积气压:0.6pa)将氮化硅沉积在钨层表面,氮化硅层的厚度为1.7μm,完成红外隐身材料的制备。

本实施例最终的耐高温选择性发射材料,在3.0μm~5.0μm红外窗口波段发射率为0.16,而在非窗口波段5.0μm~20.0μm发射率约为0.73。

将本实施例最终制备的耐高温选择性发射材料在1000℃的空气环境中热处理4小时,处理前后的照片分别见图3和图4所示,从图中可以看出,本发明的耐高温选择性发射材料在高温环境下结构保存完好,不易被破坏。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1