基于树形分支的N×N型硅基波导光开关

文档序号:25598832发布日期:2021-06-22 17:18阅读:86来源:国知局
基于树形分支的N×N型硅基波导光开关

本发明涉及光通信领域,具体涉及一种基于树形分支的n×n型硅基波导光开关。



背景技术:

随着互联网通信技术的发展,传统的电交换技术受限于电子器件工作速度的限制,已经不能满足高带宽和大数据传输容量的通信网络的需求。光交换技术则省去了光-电-光的转换过程,大大提高了交换单元的信息吞吐量,因而以光交换技术为基础的全光网络通信技术有着广阔的发展潜力,是未来通信领域的发展方向。光开关矩阵作为光交换技术的核心器件,新一代光网络通信技术也对其提出了更高的技术指标要求。

目前已有多种光开关被广泛地研究,主要包括mems、液晶、铌酸锂波导、硅基光波导光开关等。近年来,绝缘衬底上的硅(silicon-on-insulator,soi)的制备技术日益成熟,且其有着与互补金属氧化物半导体(complementarymetaloxidesemiconductor,cmos)的加工工艺相兼容的特性,同时硅基光波导光开关有着高速、集成性高、成本低等优点,因而以soi材料制备的硅基光波导光开关受到研究人员的广泛关注。

硅材料有着良好的热光效应和等离子色散效应,硅基光波导光开关可以通过热光或电光调制对开关单元进控制,实现光信号切换的功能。在通信网络实际应用场景中,往往需要集成大量的硅基光波导开关单元并通过网路开关拓扑结构实现大端口的n×n光开关阵列。现有的网络拓扑架构(日本电信电话株式会社:波导型光开关cn201280008701.9)波导连线复杂,光波导之间往往存在交叉状态,且阵列所需光开光数目繁多,不利于大阵列集成。



技术实现要素:

为解决现有技术存在的问题,本发明提出了一种基于树形分支的n×n型硅基波导光开关,通过树形网络分支的引入,有效减少了开关数量,对于n×n光开关阵列,仅需4n-2个开关模块,同时避免了交叉波导的出现,具有体积小、功耗低、损耗低、全固态(稳定性高)等优势。

本发明解决技术问题所采用的技术方案如下:

基于树形分支的n×n型硅基波导光开关,采用两个1×n树形网络对称分布,中间采用连接波导相连接;所述树形网络包括:与阵列输入输出端口连接的时延控制开关、各节点处的光选通开关和连接所述时延控制开关与所述光选通开关,两组所述光选通开关之间的连接波导;当光进入阵列输入端口时,所述时延控制开关打开,此束光继续向前传输信号;若同时有多束光进入阵列输入端口时,所述时延控制开关将按顺序依次打开,对不同光束添加不同时延,以防止多路光束在交换网络内部发生信号串扰;在树形网络内部,信号每到达两个分支的汇合处的节点,或即将分成两个分支的节点时,将通过此处的所述光选通开关选择下一分支继续向前传播,最后通过所述时延控制开关到达阵列输出端口,完成光信号在双树形网络分支架构任意两端口间的光路转换,实现多路互通。

优选的,所述时延控制开关与所述光选通开关采用马赫-曾德尔调制器架构。

优选的,所述时延控制开关包括:相位调制单元和设置在所述相位调制单元两侧的1×2多模干涉耦合器。

优选的,所述光选通开关包括:相位调制单元和设置在所述相位调制单元两侧的1×2多模干涉耦合器或2×2多模干涉耦合器。

优选的,所述光选通开关包括:接收输入信号的1×2多模干涉耦合器和接收输出信号的2×2多模干涉耦合器。

优选的,所述光选通开关包括:接收输入信号的2×2多模干涉耦合器和接收输出信号的1×2多模干涉耦合器。

优选的,所述1×2多模干涉耦合器由y分支替代。

优选的,所述2×2多模干涉耦合器由定向耦合器替代。

优选的,所述相位调制单元采用热光效应或电光效应进行调试。

优选的,所述两个1×n树形网络之间设有光中继放大单元。

本发明的有益效果是:本发明通过双树形网络分支架构的布局方式,减少了开关阵列所需光开关的数量,摒弃了交叉波导的结构形式,降低了光交换网络中光的传输损耗,同时该架构仅需一侧树形网络光开关的主动调制,降低了系统的整体损耗,且该架构布局简单,易于实现大端口的光交换网络。

附图说明

图1本发明基于树形分支的n×n型硅基波导光开关阵列图。

图2基于马赫-曾德尔结构的时延控制开关。

图3基于马赫-曾德尔结构的光选通开关。

图4带有光中继放大单元的波导光开关阵列图。

图中:1、阵列输入端口,2、时延控制开关,2-1、1×2输入端口,2-2、多模干涉区,2-3、相位调制单元,2-4、1×2输出端口,3、连接波导,3-1、2×2输入端口,4、光选通开关,5、阵列输出端口,6、光中继放大单元。

具体实施方式

下面结合附图和实施例对本发明做进一步详细说明。

如图1所示,基于树形分支的8×8型硅基波导光开关,采用两个1×8树形网络对称分布,中间采用连接波导3相连接;所述树形网络包括:与阵列输入输出端口连接的时延控制开关2、各节点处的光选通开关4和连接所述时延控制开关2与所述光选通开关4,两组所述光选通开关4之间的连接波导;当光进入阵列输入端口1时,所述时延控制开关2打开,此束光继续向前传输信号;若同时有多束光进入阵列输入端口1时,所述时延控制开关2将按顺序依次打开,对不同光束添加不同时延,以防止多路光束在交换网络内部发生信号串扰;在树形网络内部,信号每到达两个分支的汇合处的节点,或即将分成两个分支的节点时,将通过此处的所述光选通开关4选择下一分支继续向前传播,最后通过所述时延控制开关2到达阵列输出端口,完成光信号在双树形网络分支架构任意两端口间的光路转换,实现多路互通。同时,对于输入端口的同侧树形网络,光在各分支汇合处的传播不涉及光路的选择,此处光开关无需主动调控,即只需控制输出侧汇合处光开关的选通就可实现n×n光交换网络,降低了系统的整体功耗。

其中,所述时延控制开关2与所述光选通开关4采用马赫-曾德尔调制器架构。如图2所示,所述时延控制开关2包括:相位调制单元2-3和设置在所述相位调制单元两侧的1×2多模干涉耦合器2-2。光信号通过时延控制开关2的1×2输入端口进入,有1×2多模干涉耦合器2-2将光信号分成两路,通过相位调制单元2-3对进入的光信号进行调制,添加额外的时延,控制该端口的开关状态及光信号的通过顺序,使光信号沿1×2输出端口输出。所述相位调制单元2-3采用硅材料制备,硅材料的热光系数较高,同时具有等离子色散效应,因而在相位调制单元可通过热光效应或者电光效应进行调制。

所述光选通开关4包括:相位调制单元2-3和设置在所述相位调制单元两侧的1×2多模干涉耦合器2-2或2×2多模干涉耦合器3-1。如图3所示,左侧为2×2多模干涉耦合器3-2,右侧1×2多模干涉耦合器2-2。阵列输入端口1同侧的树形网络内,光信号在光选通开关4内部最终汇合到1×2多模干涉耦合器2-2的单根输出波导处,无需进行额外的相位调制选择下一分支路径,降低了系统的整体功耗。在阵列输出端口5一侧的树形网络内,光信号在光选通开关4内部最终经由2×2多模干涉耦合器3-1输出,需通过相位调制单元2-3从两个输出端口中选择输出。

所述1×2多模干涉耦合器2-2由y分支替代。所述2×2多模干涉耦合器3-1由定向耦合器替代。所述相位调制单元2-3采用热光效应或电光效应进行调试。

发明采用双树形网络分支架构,布局较为简单,易于实现大端口的光交换网络,随着网络端口的增加,树形分支级次随之增多,光开关数量明显增加。光在光交换网络两个端口之间进行转换时,需经过转换路径上的马赫-曾德尔光开关,此时光开关造成的耦合损耗无法避免,随着光的传输,光开关造成的损耗递增,导致光损耗较大,因此可在两树形网络分支的连接波导中设置一光中继放大单元6,以解决光传输损耗较大的问题。光中继放大器6可采用具有集成化发展前景的平面光波导放大器,例如:掺铒平面光波导放大器(edwa:er-dopedwaveguideamplifier),edwa可实现铒离子在基质材料中的高浓度掺杂,通过较短的波导就能获得较高的增益,将波导刻蚀成环绕式,可进一步缩小edwa的尺寸。因而,在两个树形网络分支的连接波导处设置一光中继放大器单元可在较小的尺寸下实现高信号增益,弥补光传输信号在各级光开关中的耦合损耗。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1