电子发射器件、具有该器件的电子发射显示装置及其制造方法

文档序号:2936429阅读:103来源:国知局
专利名称:电子发射器件、具有该器件的电子发射显示装置及其制造方法
技术领域
本发明涉及电子发射器件、使用该电子发射器件的电子发射显示装置以及制造该电子发射器件的方法,尤其涉及具有施加于电子发射源的电压是均匀分布的结构的电子发射器件、具有可提高象素亮度均匀性的电子发射器件的电子发射显示装置,及其制造方法。
背景技术
电子发射器件通常是采用热阴极或者冷阴极作为电子发射源。使用冷阴极方法的电子发射器件包括场发射阵列(FEA)类型器件、表面传导发射(SCE)类型器件、金属-绝缘体-金属(MIM)类型器件、金属-绝缘体-半导体(MIS)类型器件、弹道电子表面发射(BSE)类型器件,等等。
场发射阵列类型的电子发射器件所采用的原理是当具有低功函数或者高β函数的材料作为电子发射源来使用时,该材料在真空中由于电势能的原因很容易发射电子。已经研发的器件有锥形尖端结构(其例如由作为主要成份的Mo、Si、诸如石墨之类的碳族材料、类金刚石碳(DLC)等制成)或者诸如纳米管、纳米线之类的纳米结构。
在表面传导发射类型的电子发射器件中,电子发射源包括在基板上面对面设置的第一和第二电极之间具有微小间隙的导电薄膜。电子发射器件所采用的原理是当电压施加于电极而在导电薄膜的表面有电流流过时,电子就从作为电子发射源的微小间隙中发射出来。
金属-绝缘体-金属类型的电子发射器件和金属-绝缘体-半导体类型的电子发射器件所采用的电子发射原理是在MIM和MIS类型电子发射器件分别形成金属-电介质层-金属(MIM类型)结构和金属-电介质层-半导体(MIS类型)结构之后,当电压施加于其间具有电介质层的两个金属或者金属和半导体上时,电子就会从具有高电子势能的金属或半导体迁移到具有低电子势能的金属。
弹道电子表面发射类型的电子发射器件包括电子发射源,其所采用的原理是当半导体的尺寸小于半导体中的电子平均自由程时,电子就可以无散射地行进。为了形成电子发射源,可在欧姆电极上形成由金属或半导体形成的电子提供层,并在电子提供层上形成绝缘层和金属薄膜。当电压施加于欧姆电极和金属薄膜之间时,电子发射源就会发射电子。
场发射阵列类型的电子发射器件可以根据阴极和栅极的位置分成上栅极器件和下栅极器件,并且还可以根据它们所包括的电极数目分类成二极管、三极管、四极管等等。
常规的电子发射显示装置包括电子发射器件和前面板,它们相互平行设置并形成真空空间;以及用于使电子发射器件和前面板之间保持间隙的垫片。
电子发射器件包括第一基板、多个栅极电极和在第一基板上与栅极电极交叉的多个阴极,以及位于栅极电极和阴极之间并使栅极电极和阴极相互电性能绝缘的绝缘层。
多个电子发射小孔形成在栅极电极和阴极交叉的区域上。电子发射源形成在各个电子发射小孔中。
前面板包括第二基板、位于第二基板下表面上的阳极以及位于阳极下表面上的多个荧光层(phosphor layer)。
使用FEA类型的电子发射器件来显示图像的显示装置经常会在象素之间出现不均匀的亮度,这是由于施加于各个电子发射源的电压变化所产生的。在象素之间亮度中的不均匀会大大地影响图像的质量,因此必须避免象素亮度中的不均匀。因此,就需要解决象素的不均匀问题。

发明内容
本发明提供了一种电子发射器件,该电子发射器件能够均匀地发射电子并能容易以较低的成本来制造,以及一种显示装置,该显示装置使用上述电子发射器件并具有改善的象素均匀亮度。
本发明还提供了以较低成本制造电子发射器件的简单方法。
根据本发明的一个方面,提供了一种电子发射器件,包括第一基板;形成在第一基板上的阴极;与阴极电性能绝缘的栅极电极;形成在阴极和栅极电极之间的使阴极与栅极电极绝缘的绝缘层,栅极电极和该绝缘层具有电子发射小孔;在电子发射小孔中形成的电子发射源,通过电子发射小孔可以从电子发射源发射出电子;以及与阴极接触并且包括以半导体性(semiconductive)碳纳米管(CNT)为主要成份的电阻层。
阴极和栅极电极可以相互交叉。
电阻层可以插入在电子发射源和阴极之间。
可选地,电阻层可以与电子发射源的侧面相接触。优选地,阴极形成在第一基板的一部分上,电子发射源形成在阴极的一部分上,并且电阻层形成在第一基板上以覆盖阴极并与电子发射源的侧面相接触。
根据本发明的一个方面,提供了一种电子发射显示装置,包括第一基板;形成在该第一基板上的多个阴极;与该阴极交叉的多个栅极电极;插入在阴极和栅极电极之间以使阴极和栅极电极相互绝缘的绝缘层;设置在形成于阴极和栅极电极互相交叉区域的电子发射小孔中的电子发射源;与电子发射源和阴极接触并包括以半导体性碳纳米管为主要成份的电阻层;基本上与第一基板平行设置的第二基板;设置在第二基板上的阳极;以及设置在阳极上的荧光层。
电阻层可以插入在电子发射源和阴极之间,或者可以与电子发射源的侧面和阴极的上表面相接触。
电阻层具有103至105Ωcm的电阻率。
电子发射显示装置还可以包括覆盖栅极电极上表面的第二绝缘层,以及与栅极电极平行设置并通过第二绝缘层与栅极电极绝缘的聚焦电极。
根据本发明的一个方面,提供了一种形成电子发射器件的方法,包括形成第一基板;在第一基板上形成阴极;在阴极上形成绝缘层;在绝缘层上形成栅极电极;在栅极电极和绝缘层中形成电子发射小孔;以及形成包括作为主要成份的半导体性碳纳米管的与阴极相接触的电阻层;以及在电子发射小孔中形成电子发射源。
电子发射小孔的形成可包括使用光刻胶在栅极电极的上表面上形成具有预定厚度的掩模图形,以及使用掩模图形来刻蚀栅极电极和绝缘层。电阻层的形成和电子发射源的形成可以包括(a)制备用于形成电子发射源的包含半导体性碳纳米管和导电性碳纳米管的碳浆和制备用于形成电阻层的包含作为主要成份的半导体性碳纳米管的碳浆;(b)在电子发射小孔中涂敷用于形成电阻层的碳浆;(c)在用于形成电阻层的碳浆上涂敷用于形成电子发射源的碳浆;以及(d)硬化用于形成电子发射源的碳浆和用于形成电阻层的碳浆。
用于形成电子发射源的碳浆和用于形成电阻层的碳浆都可以包含感光材料,以及硬化碳浆可以包括在所涂敷的碳浆上掺杂光刻胶、有选择地曝光所涂敷的碳浆和去除未硬化的碳浆部分和光刻胶。
优选地,形成电子发射器件的方法包括(a)依次形成基板、阴极、绝缘层和栅极电极;(b)使用光刻胶在栅极电极的上表面上形成具有预定厚度的掩模图形;(c)通过使用掩模图形局部刻蚀栅极电极、绝缘层和阴极,来形成电子发射小孔;(d)通过使半导体性碳纳米管与导电性碳纳米管相分离,分别制备用于形成电子发射源和电阻层的半导体性碳纳米管和导电性碳纳米管;(e)在电子发射小孔中涂敷用于形成包括半导体性碳纳米管和负型感光材料的电阻层的碳浆;(f)在用于形成电阻层的碳浆上涂敷用于形成包括导电性碳纳米管和负型感光材料的电子发射源的碳浆;(g)通过有选择地曝光碳浆来硬化碳浆;以及(h)去除未硬化的碳浆部分和光刻胶。
操作(e)、(f)和(g)可以依次进行,并且操作(g)可以包括在一个曝光工艺过程中同时硬化用于形成电阻层的碳浆的一部分和硬化用于形成电子发射源的碳浆的一部分。在完成操作(e)之后,可以进行操作(g),以有选择地硬化用于形成电阻层的碳浆的一部分,并且在完成操作(f)之后,可以再次进行操作(g),以有选择地硬化用于形成电子发射源的碳浆的一部分。
操作(d)可以包括将碳纳米管添加到含有硝离子(NO2+)的溶液中;通过将超声波作用于含有碳纳米管的溶液来破坏金属碳纳米管;以及通过过滤已经完成超声波处理后的溶液来获得半导体性碳纳米管。
该方法还包括通过控制在用于形成电阻层的碳浆中的半导体性碳纳米管的含量来控制电阻层的电阻率。
附图简述通过结合附图的下列详细描述,对本发明将有更为全面的评价,并且本发明许多上述以及其它性能和优点将变得更加清楚和容易理解,在附图中,相同的标号表示相同或类似的部件,附图包括

图1是用于表示电子发射器件和显示装置的结构的一般概念的局部透视图;图2是沿图1所示II-II线剖取的剖面示意图;图3是包括根据本发明一个实施例的电子发射器件的显示装置的剖面示意图;图4是图3所示IV部分的放大示意图;图5是包括根据本发明另一实施例的电子发射器件的显示装置的剖面示意图;图6是包括根据本发明另一实施例的电子发射器件的显示装置的剖面示意图;以及图7是包括根据本发明另一实施例的电子发射器件的显示装置的剖面示意图。
具体实施例方式
表示一般概念的图1和图2示出了使用场发射阵列类型电子发射器件的显示装置的一个实例。
图1是上栅极类型的电子发射显示装置100的局部透视示意图,图2是沿着图1所示II-II线剖取的剖面示意图。
参考图1和图2,电子发光显示装置100包括电子发射器件101和前面板102,两者相互平行设置并形成真空空间103;以及使电子发射器件101和前面板102之间保持间隙的垫片60。
电子发射器件101包括第一基板110、多个栅极电极140和在第一基板110上与栅极电极140相互交叉的多个阴极120,以及设置在栅极电极140和阴极120之间并使栅极电极140和阴极120相互电性能绝缘的绝缘层130。
多个电子发射小孔131形成在栅极电极140和阴极120相互交叉的区域上。电子发射源150形成在各个电子发射小孔131中。
前面板102包括第二基板90、设置在第二基板90下表面上的阳极80以及设置在阳极80下表面上的多个荧光层70。
现在将参考表示本发明示例性实施例的附图更加全面地讨论根据本发明的电子发射器件、具有该电子发射器件的显示装置,以及制造该电子发射器件的方法。
图3是包括根据本发明一个实施例的电子发射器件201的显示装置200的剖面示意图;图4是图3所示IV部分的放大示意图。
参考图3和图4,电子发射器件201包括第一基板110、阴极120、栅极电极140、第一绝缘层130、电子发射源250以及电阻层125。
第一基板110可以是具有预定厚度的板式部件,或者是由石英玻璃、含有少量诸如Na之类杂质的玻璃、平板玻璃或者涂覆SiO2、氧化铝或者陶瓷的玻璃所制成的玻璃基板。如果显示装置是柔性显示装置,则第一基板110也可以采用柔性材料来制成。
阴极120在第一基板110上以一个方向延伸。阴极120可以采用常用的导电材料来制成,例如,Al、Ti、Cr、Ni、Au、Ag、Mo、W、Pt、Cu、Pd等金属或者这类金属的合金;通过将玻璃与诸如Pd、Ag、RuO2、Pd-Ag等金属或者这类金属的金属氧化物相混合所制成的印刷导电材料;诸如In2O3,SnO2等的透明导电材料;或者诸如多晶硅之类的半导体材料等。
栅极电极140设置在阴极120上面且其间具有第一绝缘层130,并且可以由类似于上述用作阴极120的常用导电材料来制成。
第一绝缘层130插入在栅极电极140和阴极120之间以防止在栅极电极140和阴极120之间的短路。
电子发射源250与阴极120电连接,并且设置在栅极电极140之下。电子发射源250可以由任何具有低功函数和高β函数的材料所制成。特别是,电子发射源250可以由碳基材料所制成,例如,碳纳米管(CNT)、石墨、金刚石、类金刚石碳等。特别是,由于碳纳米管具有高的电子发射特性,所以碳纳米管容易以低电压来驱动。因此,碳纳米管十分适用于大屏幕显示装置。
电阻层125与电子发射源250和阴极120两者相连接。特别是,电阻层125可以插入在电子发射源250和阴极120之间,这就可以简化制造工艺并且允许电压均匀地施加于电子发射源250。也就是说,电阻层125减小了施加于电子发射源250的电压。因此,可以在电子发射源250的整个范围内施加具有较小偏差的电压。此外,施加于各个电子发射源250的电压也可以具有很小的偏差。
电阻层125包括作为主要成份的半导体性碳纳米管。一般来说,通过使用金属催化剂来合成的碳纳米管包括具有半导体特性的碳纳米管(半导体性碳纳米管)和具有导电特性的碳纳米管(导电性碳纳米管)。碳纳米管应该控制为所包括的半导体性碳纳米管多于导电性碳纳米管。对于所合成的碳纳米管来说,半导体性碳纳米管被分离出来并且用作电阻层125的主要原料。优选地,电阻层125基本上是由半导体性碳纳米管所组成的。下文中将讨论获得半导体性碳纳米管的方法。
电阻层125可以具有在1,000Ωcm和100,000Ωcm之间的电阻率。当电阻率小于1,000Ωcm时,就不能够通过利用电阻层125在阴极120上施加均匀电压,从各个电子发射源250获得均匀的电子发射。因此,就不能防止图像中的黑点,并且也不能够获得均匀的光发射。如果电阻层125的电阻率超过100,000Ωcm,电阻层的功率消耗就会过高,而亮度均匀性并不能得到相应的改善。
电阻层125的电阻率可以通过控制在电阻层125中的半导体性碳纳米管的含量来控制。电阻层125的电阻率也可以通过在一部分半导体性碳纳米管内掺杂掺杂剂来控制。
为了使电子发射器件201工作,将负电压施加于阴极120而将正电压施加于栅极电极140。
电子发射器件201可以用于通过产生可见光来实现图像的显示装置。显示装置200还包括与电子发射器件201的第一基板110相平行的第二基板90、设置在第二基板90上的阳极80,以及设置在阳极80上的荧光层70。
为了显示图像而不是仅仅作为产生可见光的灯来使用,阴极120和栅极电极140可以相互交叉。
电子发射小孔131形成在栅极电极140和阴极120相互交叉的区域中,并且电子发射源250设置在电子发射小孔131中。
包括第一基板110的电子发射器件201和包括第二基板90的前面板102以预定的距离相隔并互相面对以形成光发射空间103。多个垫片60形成在电子发射器件201和前面板102之间,以使两者之间保持间隙。垫片60可以由绝缘材料来制成。
同样,为了在光发射空间103中形成真空,使用玻璃料来密封光发射空间103的四周,并且使光发射空间103中空气排空。
现在将讨论电子发射显示装置200的工作。
为了诱发设置在阴极120上的电子发射源250发射电子,将负电压施加于阴极120并将正电压施加于栅极电极140。同时,也将高的正电压施加于阳极80,以使电子加速向阳极80行进。当如上所述将电压施加于电极时,由电子发射源250所发射出的电子就向栅极电极140行进并向阳极80加速行进。所加速的电子通过与设置在阳极80上的荧光层70相撞击就会产生可见光。
由于施加于构成象素的电子发射源的电压通过用于电子发射器件201的电阻层125而均匀分布,因此改善了显示装置200的象素亮度的均匀性以及图像质量。
现在讨论根据本发明一个实施例的制造电子发射器件的方法。此处所述方法仅仅只是一个实例,并且本发明并不局限于此。
第一基板110、阴极120、绝缘层130和栅极电极140采用用于各个单元的材料依次层叠至预定的厚度。该层叠可以使用诸如丝网印刷工艺来进行。
接着,在栅极电极140的上表面上形成具有预定厚度的掩模图形。该掩模图形将用于形成电子发射小孔131,其可以通过光刻工艺来形成,即,在栅极电极140的上表面上涂敷光刻胶(PR)之后,利用UV射线或者E束来形成掩模图形。
接着,通过使用掩模图形来刻蚀栅极电极140、绝缘层130和阴极120来形成电子发射小孔131。根据栅极电极140、绝缘层130和阴极120的材料组分和厚度的情况,刻蚀工艺可以是使用刻蚀溶液的湿法刻蚀、使用腐蚀性气体的干法刻蚀或使用离子束的微细加工。
接着,形成包括碳材料的碳浆。用于形成电阻层125的碳浆和用于形成电子发射源250的碳浆分别制备。用于形成电阻层125的碳浆包括半导体性碳纳米管。用于形成电子发射源250的碳浆包括碳纳米管粉末,在该粉末中混合了半导体性碳纳米管和导电性碳纳米管两者。采用用于形成电阻层125的碳浆来涂敷电子发射小孔131。接着,在用于形成电阻层125的碳浆上涂敷用于形成电子发射源250的碳浆。该涂敷工艺可以采用丝网印刷工艺来进行。
接着,分别进行用于形成电阻层125的碳浆部分的硬化工艺和用于形成电子发射源250的碳浆部分的硬化工艺。
包含感光树脂的碳浆的硬化不同于不包含感光树脂的碳浆的硬化。当碳浆包含感光树脂时,使用曝光工艺。例如,当碳浆包含负型感光树脂时,由于负型感光树脂在曝光时硬化,因此就可以使用光刻工艺,以光刻胶来涂敷负型感光树脂。随后,通过使光有选择地幅射而仅硬化碳浆需要的部分,从而可形成电阻层125和电子发射源250。
接着,在曝光之后,通过显影得到的产品以去除碳浆和光刻胶所剩余的未硬化的部分,从而完成电子发射器件201的制造。
另一方面,当碳浆不包含感光树脂时,就可以通过使用其它的光刻胶图形的光刻工艺来形成电子发射源250和电阻层125。也就是说,在使用光刻胶薄膜形成光刻胶图形之后,碳浆可使用光刻胶图形来印刷。
在氧气的氛围或者在包含1000ppm或者更低(例如10ppm-500ppm的氧气)的氮气氛围下烘焙所印刷的碳浆。通过在氧气氛围下的烘焙处理,碳浆的碳纳米管与基板的粘结力就会提高,载体(vehicle)被蒸发掉,并且诸如无机粘合剂的其它材料会融化和固化,从而有利于电子发射源250的持续工作。
烘焙温度可以根据碳浆所包含的载体的蒸发温度和蒸发时间来确定。例如,烘焙温度可以设置在350和500℃之间,较佳的是450℃。当烘焙温度低于350℃时,载体就不能充分的蒸发。当烘焙温度超过500℃时,就会增加制造的成本并且基板变形的可能性很高。
如果需要,还可以进行适用于烘焙产品的激活工艺。在激活工艺的一实施例中,在通过烘焙处理能够硬化成薄膜的溶液(例如,包含聚酰亚胺族聚合物的电子发射源表面处理剂的溶液)涂敷在烘焙后的产品上之后,再次烘焙涂敷溶液的烘焙产品。之后,通过烘焙工艺所形成的薄膜就会脱落,使得碳纳米管向上竖立着。在激活工艺的另一实施例中,在由预定驱动力所驱动的滚筒表面上形成粘结单元,并激活所烘焙的产品,以预定的压力使用粘结单元来挤压烘焙产品的表面。通过激活工艺的处理,纳米尺寸的无机材料就会从电子发射源的表面向上竖立。
碳浆还可包括除碳纳米管之外的载体,用于控制其适印性和粘性。载体可以包含树脂成份和溶剂成份。
树脂成份例如可以包括下列至少一种树脂诸如乙基纤维素、硝化纤维等的纤维素类树脂;诸如聚酯丙烯酸脂、环氧丙烯酸脂、氨基丙烯酸脂等的压克力类树脂;以及诸如多乙酸乙烯酯、聚乙烯醇丁缩醛、聚乙烯醚等的乙烯基类树脂,但是本发明并不局限于此。一些上述树脂成份可以同时用作感光树脂。
溶剂成份可以包括香油脑、二甘醇一丁醚(BC)、丁基二甘醇乙酸脂(BCA)、甲苯、酯醇(texanol),但较佳的是香油脑。
当溶剂成份的量太小或太大时,都会降低碳浆的适印性和流动性。特别是,当溶剂的量过分大时,碳浆的干燥时间就会过长。
碳浆还可以根据需要包括感光树脂、光引发剂(photo initiator)和填充剂中的一种。
感光树脂例如可以是,丙烯酸脂类单体、苯甲酮类单体、苯乙酮类单体、噻吨酮类单体等,并且尤其是,环氧丙烯酸脂、聚酯丙烯酸脂、2,4-二乙烷基氧杂蒽酮(2,4-diethyloxanthone)、2,2二甲氧基-2-苯基苯乙酮(2,2-dimethoxi-2-phenylacetophenon)等,但是本发明并不局限于此。
当感光树脂曝光于UV时,光引发剂引发与感光树脂的交联。光引发剂的非限制性实例是苯甲酮。
当纳米尺寸的无机材料与基板的粘结力不足时,填充剂可以增加传导性,并且填充剂的非限制型实例是Ag、Al等。
已经讨论了利用碳浆制造电子发射源250和电阻层125的方法,然而,电子发射源250可以使用化学气相沉积(CVD)生长的方法来形成。但是,使用CVD生长的方法可能难以形成包含半导体性碳纳米管的电阻层125。因此,即使使用CVD生长方法来形成电子发射源250,电阻层125最好还是在制备碳浆之后采用印刷碳浆的方法来形成。在制备碳浆之后采用印刷碳浆的方法来形成电子发射源250和电阻层125有利于简化制造工艺。
现在讨论一种获得作为电阻层125主要成份的半导体性碳纳米管的方法。
首先,将NO2SbF6和NO2BF4添加到四亚甲基砜(TMS)/氯仿溶液中。在(TMS)/氯仿溶液中呈现出硝离子(NO2+)。
接着,将混合半导体材料和导电材料的碳纳米管粉末添加到所制备的溶液中。搅拌含有碳纳米管粉末的溶液,或者使超声波作用于溶液。在这一处理过程中,金属碳纳米管被破坏,从而去除导电性碳纳米管。接着,通过过滤溶液来获得半导体性碳纳米管。
使用以这种方式所获得的碳纳米管来形成碳浆,并且除了碳浆之外,也形成具有半导体材料和导电材料相混合的常规碳浆。
图5是包括根据本发明另一实施例的电子发射器件的显示装置的剖面示意图。
参考图5,本实施例的电子发射器件200除了图4所示的电子发射器件200的部件之外,还包括第二绝缘层135和聚焦电极145。
聚焦电极145通过第二绝缘层135与栅极电极140电性能绝缘。同样,聚焦电极145使得从电子发射源250发射的电子沿着直线路径向图3所示的前面板102的阳极80行进。聚焦电极145采用形成阴极120和栅极电极140的高导电性类材料形成。当电子发射器件200还包括聚焦电极145并且电子发射器件200包括半导体性碳纳米管所形成的电阻层125时,施加于电子发射源250的电压就能够均匀分布,从而使得电子发射源250能均匀发射电子。同样,采用电子发射器件200的显示装置可以通过聚焦电极145所聚焦电子的一致性和电阻层125所获得均匀电压来进一步提高象素的亮度均匀性。可以在制造过程中通过控制在用于形成电阻层125的碳浆中的半导体性碳纳米管的含量来控制电阻层125的电阻率。
图6和图7是包括根据本发明其他实施例的电子发射器件的显示装置的剖面示意图。
参考图6和图7,图6和图7所示的根据本实施例的电子发射器件与图4和图5所示的电子发射器件的不同之处在于电阻层225不是插入在电子发射源150和阴极120之间的,而是接触阴极120的上表面和电子发射源150的侧表面。尽管电阻层225接触阴极120的上表面和电子发射源150的侧表面,但是施加于阴极120的电压仍旧能均匀地施加于各个电子发射源150。同样。该电阻层225可以在制备了包含半导体性碳纳米管的碳浆之后通过印刷用于形成电阻层225的碳浆来形成,并且该电阻层225的电阻率可以通过控制用于形成电阻层225的碳浆中的半导体性碳纳米管的含量来控制。
正如以上所讨论的那样,根据本发明,施加于电子发射源的电压均匀地分布在电子发射源上,从而使得电子发射源均匀地发射出电子,并且采用该电子发射源的显示装置可以获得均匀的像素亮度。
通过增加聚焦电极和形成包含半导体性碳纳米管的电阻层能够进一步增强均匀电子发射的效果。
同样,因为电阻层是由半导体性碳纳米管所形成的,从而简化了制造工艺,因此电阻层也可以使用形成电子发射源的常规工艺来形成。
同样,由于用于形成常规电子发射源的工艺和用于形成电阻层的工艺可以同时进行,所以可以在制造工艺没有明显改变的条件下获得上述效果。
虽然参考示例性实施例具体呈现和讨论了本发明,但是本领域内普通技术人员应该意识到,可以在不偏离下列权利要求所定义的本发明精神和范围的前提下,在形式和细节上作出各种变化。
权利要求
1.一种电子发射器件,包括第一基板;形成在所述第一基板上的阴极;与所述阴极电性能绝缘的栅极电极;形成在所述阴极和所述栅极电极之间以使所述阴极与所述栅极电极绝缘的绝缘层,栅极电极和绝缘层具有电子发射小孔;形成在所述电子发射小孔中的电子发射源,所述电子发射源发射出的电子通过所述电子发射小孔行进;以及与所述阴极相接触的电阻层,所述电阻层包含作为主要成份的半导体性碳纳米管。
2.如权利要求1所述的电子发射器件,其特征在于,所述电阻层具有103-105Ωcm的电阻率。
3.如权利要求1所述的电子发射器件,其特征在于,所述电阻层插入在所述电子发射源和所述阴极之间。
4.如权利要求1所述的电子发射器件,其特征在于,所述电阻层与所述电子发射源的侧面相接触。
5.如权利要求4所述的电子发射器件,其特征在于,所述阴极形成在所述第一基板的一部分上,所述电子发射源形成在所述阴极的一部分上,以及所述电阻层形成在所述第一基板上以覆盖所述阴极并且与所述电子发射源的侧面相接触。
6.如权利要求1所述的电子发射器件,其特征在于,还包括覆盖所述栅极电极上表面的第二绝缘层;以及与所述栅极电极平行设置且通过所述第二绝缘层与所述栅极电极绝缘的聚焦电极。
7.如权利要求1所述的电子发射器件,其特征在于,所述阴极和栅极电极相互交叉。
8.一种电子发射显示装置,包括第一基板;形成在所述第一基板上的多个阴极;与所述阴极相互交叉的多个栅极电极;插入在所述阴极和所述栅极电极之间以使所述阴极与所述栅极电极绝缘的绝缘层;设置在所述阴极电极和所述栅极电极相互交叉区域内所形成的电子发射小孔中的电子发射源;与所述电子发射源和所述阴极相接触的电阻层,该电阻层包含作为主要成份的半导体性碳纳米管;设置成基本平行于所述第一基板的第二基板;设置在所述第二基板上的阳极;以及,设置在所述阳极上的荧光层。
9.如权利要求8所述的电子发射显示装置,其特征在于,所述电阻层具有103-105Ωcm的电阻率。
10.如权利要求8所述的电子发射显示装置,其特征在于,所述电阻层插入在所述电子发射源和所述阴极之间。
11.如权利要求8所述的电子发射显示装置,其特征在于,所述电阻层与所述电子发射源的侧面相接触。
12.如权利要求11所述的电子发射器件,其特征在于,所述阴极形成在所述第一基板的一部分上,所述电子发射源形成在所述阴极的一部分上,以及所述电阻层形成在所述第一基板上以覆盖所述阴极并且与所述电子发射源的侧面相接触。
13.如权利要求8所述的电子发射显示装置,其特征在于,还包括覆盖所述栅极电极上表面的第二绝缘层;以及,与所述栅极电极平行设置且通过所述第二绝缘层与所述栅极电极绝缘的聚焦电极。
14.一种制造电子发射器件的方法,包括形成第一基板;在所述第一基板上形成阴极;在所述阴极上形成绝缘层;在所述绝缘层上形成栅极电极;在所述栅极电极和所述绝缘层中形成电子发射小孔;以及形成包含作为主要成份的半导体性碳纳米管以与所述阴极相接触的电阻层,以及在所述电子发射小孔中形成电子发射源。
15.如权利要求14所述的方法,其特征在于,所述电子发射小孔的形成包括使用光刻胶在所述栅极电极的上表面上形成具有预定厚度的掩模图形,并且使用所述掩模图形来刻蚀所述栅极电极和所述绝缘层;以及所述电阻层的形成和所述电子发射源的形成包括(a)制备包含用于形成所述电子发射源的半导体性碳纳米管和导电性碳纳米管的碳浆并制备用于形成所述电阻层的包含作为主要成份的所述半导体性碳纳米管的碳浆;(b)在所述电子发射小孔中涂敷用于形成所述电阻层的碳浆;(c)在用于形成所述电阻层的碳浆上涂敷用于形成所述电子发射源的碳浆;以及(d)硬化用于形成所述电子发射源的碳浆和用于形成所述电阻层的碳浆。
16.如权利要求15所述的方法,其特征在于,所述用于形成所述电子发射源的碳浆和用于形成所述电阻层的碳浆各自包括感光材料,以及硬化所述碳浆包括在所涂敷的碳浆上掺杂光刻胶,有选择地曝光所涂敷的碳浆,和去除所述碳浆和所述光刻胶中没有硬化的部分。
17.如权利要求15所述的方法,其特征在于,所述操作(b)、(c)和(d)可依次进行,并且操作(d)包括可在一个曝光工艺过程中同时硬化用于形成所述电阻层的碳浆的一部分和硬化用于形成所述电子发射源的碳浆的一部分。
18.如权利要求15所述的方法,其特征在于,在进行了操作(b)之后进行操作(d),以有选择地硬化用于形成所述电阻层的碳浆的一部分;以及,在进行了操作(c)之后再次进行操作(d),以有选择地硬化用于形成所述电子发射源的碳浆的一部分。
19.如权利要求15所述的方法,其特征在于,所述制备包含半导体性碳纳米管的碳浆包括将碳纳米管添加到含有硝离子(NO2+)的溶液中;通过使超声波作为于含有所述碳纳米管的溶液来破坏金属碳纳米管;以及,通过过滤已经作用超声波的溶液来获得所述半导体性碳纳米管。
20.如权利要求15所述的方法,其特征在于,还包括通过控制在用于形成所述电阻层的碳浆中的半导体性碳纳米管的含量来控制电阻层的电阻率。
全文摘要
一种能够均匀发射电子且具有较低制造成本的电子发射器件,一种使用该电子发射器件来改善象素均匀性的显示装置,以及一种制造该电子发射器件的方法,其中,电子发射器件包括第一基板、阴极和设置在第一基板上的电子发射源、与阴极电性能绝缘的栅极电极、插入在阴极和栅极电极之间用于使阴极和栅极电极绝缘的绝缘层以及接触阴极并包含半导体性碳纳米管(CNTs)的电阻层。
文档编号H01J29/04GK1945783SQ20061013210
公开日2007年4月11日 申请日期2006年9月29日 优先权日2005年10月4日
发明者崔荣喆, 朴钟换, 崔德铉 申请人:三星Sdi株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1