聚焦带电粒子成像系统的制作方法

文档序号:2851963阅读:165来源:国知局
聚焦带电粒子成像系统的制作方法
【专利摘要】带电粒子束聚焦设备(200)包括带电粒子束发生器(202),所述带电粒子束发生器(202)被配置以同时将至少一个非像散带电粒子束和至少一个像散带电粒子束投射到样品表面的位置(217)上,从而使得释放电子从所述位置发射出。所述设备还包括成像检测器(31),所述成像检测器(31)被配置以从所述位置接收释放电子且根据释放电子形成所述位置的图像。处理器(32)分析由至少一个像散带电粒子束产生的图像,且响应于所述图像以调整至少一个非像散带电粒子束的焦点。
【专利说明】聚焦带电粒子成像系统
[0001]相关申请
[0002]本申请要求在2011年2月18日提交的美国临时专利申请61/444,506的优先权,并且本申请通过引用并入所述美国临时专利申请。
【技术领域】
[0003]本发明通常涉及聚焦系统,且具体地涉及聚焦带电粒子束。
【背景技术】
[0004]诸如在聚焦离子束或扫描电子显微镜中使用的带电粒子束通常通过在具有锋利边缘的样品上扫描光束来聚焦。入射带电光束产生样品的扫描图像,且所述光束通过最大化扫描图像的对比度来聚焦。然而,所述聚焦系统需要具有锋利特征的图案化样品。
[0005]扫描和最大化被扫描图像中的对比度的相同方法也可用在用于电子束检查和平版印刷术的广域粒子束系统中。在这些系统中,除了对图案化样品的要求之外,所述聚焦方法中断正常的广域操作,且在样品上的光束扫描可引入充电伪像(artifact)。
[0006]在本领域中已知用于聚焦电子束的其他方法。例如,Giedt等的公开内容通过引用并入本文的美国专利5,483,036描述了一种用于通过决定光束大小自动聚焦电子束的方法。光束扫过一些狭缝,且当光束扫过时产生的电流轮廓用以发现光束大小,且将光束聚焦到最佳位置。
[0007]Azad等的公开内容通过引用并入本文的美国专利5,726,919描述了一种用于测量电子束有效聚焦的系统。电子束产生照射目标的温度轮廓,且光学地测量所述温度轮廓。光束聚焦操作参数变化,直到测量的温度轮廓和有效聚焦的预测轮廓之间的误差小于预定值为止。
[0008]在带电粒子系统中,将像散视为一种问题,且已经耗费许多努力来减少所述问题。例如,Tsuneta等的公开内容通过弓I用并入本文的美国专利申请2003/0201393涉及改进电子显微镜的性能。所述公开内容描述了用作像散差的补偿器的消像散器(stigmator),通过所述消像散器的电流被调节以将电子显微镜的像散减少到零。
[0009]Muraki的公开内容通过引用并入本文的美国专利6,559,456描述了一种电子束系统。所述系统通过在两个正交方向上将聚焦光束的模糊调整至相等,使用在入射光束路径中的动态消像散(stigmatic)线圈来将照射电子束的像散设置为大体上等于零。
[0010]Archie等的公开内容通过引用并入本文的美国专利6,025, 600以及Almogy等的公开内容通过引用并入本文的PCT申请W003/041109描述了带电粒子束系统。

【发明内容】

[0011 ] 在本发明的一个实施例中,带电粒子束发生器(通常为在电子显微镜中操作的电子束发生器)同时产生两种类型的光束。第一种类型的光束具有并入光束的像散,且第一种类型的光束在本文中被称为像散带电粒子束。第二种类型的光束大体上无像差,且第二种类型的光束不具有并入光束的像散。第二种类型在本文中被称为非像散带电粒子束。发生器通过照射系统同时将每一类型的光束中的一个或多个光束投射到被检查的样品表面上,所述样品通常是半导体晶片。在表面上的入射光束使得释放电子从表面被光束照射到的位置处发射出。
[0012]释放电子由成像检测器接收,所述成像检测器藉由电子形成位置的图像。由像散带电粒子束照射的位置一般为椭圆形。处理器分析由像散带电粒子束照射的位置的椭圆图像以决定聚焦度量,且处理器使用所述度量以调整非像散带电粒子束的焦点。由后一步骤产生的图像通常由处理器在检查样品时使用。通过同时使用两种类型的光束且通过投射所述光束穿过通用照射系统,检查样品的光束聚焦在不将像差引入到检查光束中的情况下完成。此外,即使在照射系统假性变化存在的情况下、以及在被检查的表面上的局部充电存在的情况下,也可实现聚焦。
[0013]在本发明的一些实施例中,由像散带电粒子束产生的图像选择来自于具有特征的表面区域,所述特征具有与由表面上的像散带电粒子束形成的椭圆的轴线中的一个轴线相同的方向。通过使用这些特征,增强了聚焦度量。
[0014]通常,检查光束以光束阵列的形式产生,且一个或多个像散带电粒子束围绕所述阵列。通过使所述像散带电粒子束在阵列之外,由像散带电粒子束引入的任何充电伪像都在感兴趣的区域(即,由检查光束调查的区域)之外。
[0015]结合附图和附图后的简要描述,根据本发明的实施例的以下详细描述将更加充分地理解本发明。
【专利附图】

【附图说明】
[0016]图1是根据本发明的一个实施例的带电粒子束聚焦系统的示意图;
[0017]图2是根据本发明的一个实施例的将像散引入到从图1的系统释放电子的成像路径中的效应的不意图;
[0018]图3是根据本发明的一个实施例的用在图1的系统中的像差元件的示意图;
[0019]图4是根据本发明的替代实施例的用在图1的系统中的像差元件的示意图;
[0020]图5图示根据本发明的一个实施例的由图1的系统中的成像器形成的图像的示意图;
[0021]图6是根据本发明的一个实施例的位置平台的位移相对于误差信号的示意图;
[0022]图7是根据本发明的一个实施例的替代图5的图像的实例;
[0023]图8是图示根据本发明的一个实施例在用于将带电粒子束聚焦到表面上的过程中涉及的步骤的流程图;
[0024]图9是根据本发明的替代实施例的带电粒子束聚焦系统的示意图;
[0025]图1OA是根据本发明的一个实施例的多孔阵列元件的示意图;
[0026]图1OB是根据本发明的一个实施例的由来自图1OA的元件的孔的光束形成的电子束截面的示意图;
[0027]图11图示根据本发明的一个实施例的在样品表面上成像的阵列的示意图;
[0028]图12是图示根据本发明的一个实施例的成像器的区域的示意图;
[0029]图13是图示根据本发明的一个实施例的在聚焦光束时由图9的系统中的处理器遵循的步骤的流程图;
[0030]图14是根据本发明的一个实施例的绘制聚焦度量相对于样品表面的z位置的值的不意图;
[0031]图15图示根据本发明的一个实施例的用于决定在成像器的区域上产生的图像的椭圆度和定向的方法;
[0032]图16是根据本发明的进一步替代实施例的带电粒子束聚焦系统的示意图;
[0033]图17图示可根据本发明的实施例使用的多孔阵列的替代实例;
[0034]图18图示根据本发明的一个实施例的在照射路径中使用透镜的场曲率以提供用于获得像散信息的静态散焦光束;
[0035]图19A和图19B图示适合于结合图18中所示的系统使用的多孔阵列和预置多孔阵列的实例;以及
[0036]图20图示根据本发明的一个实施例的用于获得像散信息的使用动态散焦光束的系统的部分。
【具体实施方式】
[0037]现参考图1,图1是根据本发明的一个实施例的带电粒子束聚焦系统10的示意图。系统10包括带电粒子束发生器22。作为实例,假定发生器22从点栅阵列(spot gridarray; SGA) 44平行地产生多个带电粒子束41,且在下文中,假定所述多个带电粒子束包含由带电粒子枪12产生的多个电子束,假定所述带电粒子枪在本文中为多电子束枪。作为实例,除非另外说明,否则假定阵列44是与水平轴和垂直轴对准的大致矩形阵列。然而,应将理解,本发明的范围并不限于SGA44的特定类型或对准,且本发明的范围包括这些阵列的大体上所有类型和对准。
[0038]还应将理解,本发明的范围并不限于聚焦特定类型的带电粒子,且本发明的范围包括大体上所有类型的带电粒子,包括诸如镓或其他金属离子之类的离子。此外,虽然下文的描述作为实例涉及多个源带电粒子系统,但是应当理解,本发明的原理适用于来自单个源的聚焦带电粒子。
[0039]发生器22包含一个或多个照明透镜14、分束器16和物镜18。通常,一个或多个透镜14以及分束器16磁性地操作,尽管透镜和/或分束器也可并入其他类型的操作,诸如静电操作。例如,分束器16可包含维恩滤波器(Wien filter)。物镜18可有利地为减速透镜,所述减速透镜由磁性部分19和静电部分20组成。
[0040]粒子枪12从各个大体上环形源43产生SGA44的多个电子束,每个光束遵循照射路径42通过发生器22到样品39的表面38,样品39安装在可动平台36上。为清楚起见,在图1中图示来自仅一个源43的照射路径42,但是应当理解,通常类似的照射路径42由来自SGA44的其他来源43的电子束所遵循。一个或多个透镜14、分束器16、以及物镜18形成各个一般圆形的图像45,所述图像45在下文中被称为表面38上的源43的光斑45。各个光斑45被包含在阵列49之内,所述阵列49是在表面38上形成的SGA44的图像。
[0041]每一光斑45产生反射电子、次级电子和/或反散射电子,且在本说明书和在权利要求书中通过物镜18和分束器16的这些电子也被称为释放电子(released electrons)。来自每一光斑45的释放电子经由成像透镜24和像差元件26沿着成像路径46前进到电子检测器28。为清楚起见,在图1中图示来自仅一个光斑45的成像路径46,但是应当理解,通常类似的成像路径46由来自另一光斑45的释放电子所遵循。
[0042]由闪烁物晶体或粒化闪烁物粉末组成的通常为荧光屏的电子检测器28将释放电子转换为光辐射,所述光辐射通过诸如电荷耦合检测器(CCD)阵列之类的成像器30成像。检测器28和成像器30通常组合为一个单元,且充当释放电子的成像检测器31。或者,成像检测器31可包含雪崩光电二极管阵列,所述雪崩光电二极管阵列在不转换到光的情况下直接检测释放电子。典型地,成像器30的轴线与阵列44的轴线对准。透镜18和透镜24、分束器16、像差元件26、以及成像检测器31包含系统10的成像系统47。由成像系统47产生的图像被传递到处理器32,所述处理器32分析所述图像。如下文更详细的描述,响应于所述分析,处理器32调整光斑45的焦点为最佳。
[0043]处理器32被耦合到枪12、透镜14、分束器16、物镜18、成像透镜24、像差元件26、以及成像检测器31,以便控制所述装置的操作,且充当系统10的总控制器。例如,处理器32可调整透镜18的磁性部分19的激发,和/或来自发生器22的光束输出的能量。典型地,处理器32经由用户界面40从系统的操作人员接收操作参数,所述用户界面40使操作人员能够调整如上所述的系统元件的设置、以及如下所述的系统10的其他部件的设置。处理器32也耦合到位置控制器34且操作位置控制器34。在处理器的命令之下,控制器34能够在垂直方向上调整平台36。
[0044]像差元件26将像差引入到由成像系统47产生的光斑45的图像中,所述变形的图像典型地在元件之后形成在区域48中。像差典型地包含像散,使得每一光斑45在正交于电子路径的两个不同焦平面中成像,每一平面包含释放电子所聚焦到的不同椭圆。
[0045]图2是根据本发明的一个实施例的将像散引入到释放电子的成像路径46中的效应的示意图。为清楚起见,像差元件26和检测器28两者均不在图2中图示,图2图示在区域48中形成的图像、以及来自光斑45之一的区域中的图像的各个位置。像差元件26将释放电子聚焦到第一焦平面50,在所述平面中形成第一椭圆图像52,所述图像在路径46中的位置S处。电子继续至第二焦平面54,在所述平面中,释放电子形成第二椭圆图像56。平面54在路径46中的位置T处。两个椭圆图像具有彼此正交的长轴,且所述长轴在本文中假定为通常垂直和水平。距离ST提供通过元件26引入到系统10中的像差的度量,且可用来量化像差大小的其他度量对本领域技术人员将是显而易见的。在平面50和平面54之间,成像系统47将释放电子成像至一般圆形图像58,所述图像58在与平面50和平面54平行的平面60中产生且所述图像58位于S和T之间的位置Q处。
[0046]图3是根据本发明的一个实施例的像差元件26的示意图。元件26由四极透镜70构成,所述四极透镜70由串联连接的四个通常类似的磁性线圈72构造而成,以便流经所述透镜的电流I产生横跨中心点74而面对的四个类似磁极(四个北极或四个南极)。诸如透镜70之类的四极透镜用在电子显微镜领域中,作为用于校正存在于电子显微镜中的轴向像散的消像散器。在系统10中,线圈72通常围绕成像路径46对称地定位,且处理器32改变流经所述线圈的电流I。电流I的增加增加了由透镜70产生的像差。
[0047]图4是根据本发明的替代实施例的像差元件26的示意图。在像差元件26的所述替代实例中,所述元件由电容器75构成。通常,电容器75由平行板77构成,所述平行板77被对准以便成像路径46与电容器的对称面形成非零角。由电容器75引入的像差典型地与通过板77之间的电压V产生的电场成比例,所述电场可由处理器32调整。
[0048]应当理解,透镜70和电容器75是可用作像差元件26的像差元件的实例,且用于产生像差的其他系统对本领域技术人员将是显而易见的。这些系统包括,但不限于,多个四极透镜和/或电容器、一个或多个静电透镜、除了四极透镜以外的一个或多个磁性透镜、电气装置、磁性装置和电磁装置、以及这些透镜和装置的组合和子组合。假定所有这些系统被包括在本发明的范围内。
[0049]图5图示根据本发明的一个实施例的由成像器30形成的图像的示意图。成像器30形成图像阵列,每个图像在本文中统称为图像80。每一图像80对应于各自的源43,且每一图像80对应于光斑45之一。每一图像80的形状尤其取决于由元件26引入的像差量、以及取决于在成像路径46中的检测器28的位置。典型地,对于检测器的任何特定位置,每一图像80通常具有相同的形状。
[0050]图82、图84和图86图示在各个位置S、Q和T (图2)中的形成在成像器30上的阵列49的各个图像83、85和87,且为了实例的目的,假定位置Q是图像80的最小像差发生的位置。在诸如位置S和T之类的其他位置处发生的像差可通过使用图84的图像的边界88作为基线、以及在没有通过所述边界定界的其他位置处发现图像区域来量化。也已在图82和图86上绘制基线边界88。图90图示成像器30的区域A、区域B、区域C和区域D的布置91,所述区域产生各个信号S(A)、S(B)、S(C)和S(D)。在图82中,信号S(A)和S(C)大于S⑶和S⑶;在图86中,信号S (A)和S (C)小于S⑶和S⑶。
[0051]使用成像器30的区域A、区域B、区域C和区域D的由处理器32产生的误差信号的表达式由公式(I)给出:
[0052]a.ERR=S(A) +S(C)-S(B)-S(D) (I)
[0053]b.其中ERR表示由处理器32产生的聚焦误差信号的值,且S(A)、S(B)、S(C)和S(D)分别从区域A、区域B、区域C和区域D产生。
[0054]通过检查ERR将公式(I)应用到图82、图84和图86分别为正的、大致为零、或者为负的。还应将理解,在ERR的幅值和符号、在成像检测器31处产生的像差、以及光斑45是“欠聚焦”、“聚焦”还是“过聚焦”之间存在直接关系。
[0055]返回图1,处理器32使用ERR的值来最佳化光斑45的聚焦。典型地,处理器32使用控制器34调整平台36的垂直位移。替代地或另外地,处理器例如通过改变施加到枪12的电位、和/或通过改变经过一个或多个透镜14的电流来调整进入的带电光束。处理器32使用ERR的幅值和符号来进行调整,以最小化ERR的绝对值。
[0056]图6是根据本发明的一个实施例的平台36的垂直位移z相对于ERR的示意图100。如果处理器通过使用平台36对光斑45的焦点进行调整,图100则图示通过处理器32实施的垂直位移z。典型地,z与ERR之间的关系近似呈线性,且两个参数大致直接成正比。对应于图100的z和ERR的实际值可在应用于系统10的校准阶段中决定。在应用于样品39的生产阶段期间,处理器32随后使用来自校准阶段的值来充当位置控制器34的反馈控制以最佳地聚焦光斑45,S卩,使ERR成为等于或接近于零的值。典型地,处理器32通过迭代地启动控制器34来获得最佳聚焦。或者,处理器32可被配置以在不事先决定对应于图100的z和ERR的值的情况下充当控制器34的迭代反馈控制。
[0057]应将理解,像差元件26可被配置以将像差引入到由系统10产生的图像中,所述像差包含除了上文例示的像差以外的像差,诸如第三阶场变形。如上所述,加以必要的变更,结合处理器32的成像检测器31产生所引入像差的测量,且处理器32使用所述测量来调整光斑45的焦点。因此,本发明的范围包括所有像差元件和像差,所述像差元件和像差能够提供用于调整光斑45的焦点的所引入像差的测量。
[0058]回到图5,可根据由元件26产生的像差的类型来调整在成像器30上的区域A、区域B、区域C和区域D的形状和/或位置,如由以下相对于图7的描述所例示。
[0059]图7是根据本发明的一个实施例的区域A、区域B、区域C和区域D的替代布置110的实例。如果图像83、图像85和图像87的轴与水平和垂直方向呈现45°、和/或如果如上参考图2所述产生的椭圆的轴与水平和垂直方向呈45°,那么可有利地使用在成像器30上的区域的布置110。在这些情况下,应将理解,公式(I)仍然适用。
[0060]不同于现有技术的聚焦系统,本发明的实施例与系统的正常操作并行工作,所述实施例在所述系统之内操作。例如,当用于扫描电子显微镜(SEM)时,不需要通过进行“聚焦斜面”或者通过搜索SEM中的最佳对比度来中断SEM的操作。因为不需要任何样品对比度,所以本发明的实施例甚至可作用于裸晶片。此外,因为不使用扫描,所以不产生充电伪像。
[0061 ] 虽然上述实例已假定像差元件26位于成像路径46中,但是应将理解,所述元件可位于检测器31之前的大体上任何位置。本领域技术人员将能够对系统10的操作进行必要的调整以适应元件26的其他位置。例如,元件26可位于照射路径42上,且所述元件的操作可引起表面38上的聚焦光斑尺寸的增大。这种增大的效应可通过本领域中已知的方法(诸如表面38的重复扫描或者对透镜18的调整)来补偿。因此,在检测器31之前的元件26的所有位置都假定为包括在本发明的范围内。
[0062]图8是图示根据本发明的一个实施例的在用于将带电粒子束41聚焦到表面38上(图1)的过程120中涉及的步骤的流程图。虽然流程图按照顺序图示所述步骤,但是应当理解,在所述步骤之间没有时间关系,且所有步骤的动作通常大体上同时地发生。
[0063]在初始步骤122中,将带电粒子束41投射到表面38上的一个位置上,从而使得典型地为次级电子的电荷从所述位置发射出。
[0064]在第二步骤124中,接收从所述位置发射出的电荷以便形成所述位置的图像。所述电荷通常在诸如成像器30之类的成像器中被接收到。
[0065]在第三步骤126中,已定位像差元件26以便例如通过位于成像路径46中而在图
像中广生像差。
[0066]在过程120的最终步骤128中,处理器响应于像差调整带电粒子束的焦点。所述调整通常可通过调整形成光束41的发生器和表面38的位置中的至少一个来进行。
[0067]包括像差元件26并不是获得保持一个光斑或光斑阵列对焦同时扫描样品的本发明目标的唯一方式。替代方式涉及在照射路径中使用额外、像散的(例如,非旋转对称的)光斑以评估焦点。通过有意地使用将在样品的平面中散焦且与成像阵列的消像散光斑一起扫描的这些光斑,成像光束的焦点可在不必有意地散焦那些光束的情况下被保持。
[0068]图9是根据本发明的所述替代实施例配置的带电粒子束聚焦系统200的示意图。除如下所述的差异之外,系统200的操作通常类似于系统10 (图1)的操作,且在系统10和系统200两者中由相同附图标记指示的元件通常在结构和操作中类似。不同于系统10,系统200不包含像差元件26。相反,如下文更加详细地所述,像差藉由使用带电粒子枪202引入系统200,所述带电粒子枪202替代系统10的枪12。在下文中,作为实例,假定枪202包含电子束枪,但是应当理解,枪202可被实施为产生其他带电粒子。
[0069]枪202包含单个电子源204,所述电子源204通常发射几十或几百微安的数量级的高电子流。由电子源产生的电子通过聚光透镜206准直,且被准直的光束然后通过具有孔212的平面多孔阵列元件208被分成多个单独的光束。在多孔阵列元件208的孔212之下和/或之上的电场(未详细地图示在图9中)产生静电透镜阵列,所述静电透镜阵列将带电粒子束41的阵列聚焦。孔212被细分成两种类型的孔:一个或多个非像差形成孔212N(圆孔),以及一个或多个像差形成孔212A (非圆孔)。通常,孔212A围绕孔212N。作为实例且为了在以下描述中清楚起见,假定元件208为具有定义局部X轴和I轴的两侧的矩形,但是应将理解,元件208可以是任何适当的形状。同样地,作为实例,假定元件208包含四个像差形成孔212A和二十五个非像差形成孔212N。在下文中参照图1OA更详细地描述了元件208 和孔 212A、212N。
[0070]每一孔212A产生各自光束213A,且每一孔212N产生各自光束213N。如果孔212A围绕孔212N,那么光束213A围绕光束213N。在本文中,光束213A和光束213N也被共同地称为光束213。每一光束213大致地聚焦到平行于元件208的平面215上的各自区域,但是具有下文参考图1OB所述的在光束213A和光束213N之间的差异。平面215在元件208之前大致IOOmm处。每个光束遵循来自孔212的各自照射路径216,所述路径通常类似于来自源43 (图1)的光束所述的路径42。就系统10而目,为清楚起见,在图9中图不来自仅一个孔212的照射路径216,但是应当理解,通常类似的照射路径216由来自多孔阵列208的其他来源孔212的电子束213所遵循。
[0071]来自多孔阵列208的多个光束213通过一个或多个透镜14、分束器16、以及物镜18聚焦到在表面38上的光斑217A、217N的阵列214。光斑217A由光束213A构成,且光斑217N由光束213N构成。光斑217A和217N还在本文中被共同地称为光斑217。对于围绕孔212N的孔212A,光斑217A围绕光斑217N,以便由光斑217A引入的任何充电伪像都在包含光斑217N的感兴趣区域之外。透镜14、分束器16、透镜18与枪202 —起构成照射系统203。根据阵列在表面38上是焦点对准还是失焦,阵列214中的变化在下文中参照图11描述。当焦点对准时,围绕阵列214的区域210也焦点对准,以便在区域210之内,除了阵列214的那些像差之外,将要形成的光斑的像差是可接受地小,或者对应于已知且可校正的聚焦效应,所述聚焦效应诸如发生在已知场曲率的情况下的聚焦效应。
[0072]除了系统221不包括元件26之外,大概类似于成像系统47的成像系统221使用释放电子以在成像器30上形成光斑217的图像集。因此,就系统10的光斑45而言,每一光斑217产生释放电子,所述释放电子遵循经由物镜18、分束器16和成像透镜24到检测器28的成像路径219。为清楚起见,在图9中图示来自仅一个光斑217的成像路径219,但是应当理解,通常类似的成像路径219由来自另一光斑217的释放电子所遵循。
[0073]处理器32使用光斑217A的图像子集以最佳化在表面38上的光斑217N的焦点,所述处理器通常通过改变表面38的z轴位置和/或聚焦透镜14和/或聚焦物镜18来调整焦点。作为实例,在下文中,假定光斑217N的聚焦通过改变表面38的z轴位置来实施。
[0074]通常,除调整表面38上的阵列214的焦点之外,处理器32在整个表面上扫描阵列。所述扫描可通过在X轴和I轴方向上扫描光束或通过使用I轴运动平台(未图示在图9中)在局部I轴方向上平移表面38、以及通过使用扫描线圈(也未图示在图9中)在局部X轴方向上扫描阵列214来完成,所述扫描线圈在系统200中位于兀件208和表面38之间。作为实例,假定在表面38上的位置205包含平行于局部X轴方向的线的优势,且假定在表面38上的位置207包含平行于局部I轴方向的线的优势。在本发明的一些实施例中,来自诸如位置205和207之类的位置的图像可用于聚焦光斑217N,如下文参照图13所述。
[0075]图1OA是根据本发明的一个实施例的多孔阵列元件208的示意图。元件208包含孔212,孔212又包含两种类型的孔:非像差形成孔212N和像差形成孔212A。非像差形成孔212N大体上是圆形的且从而不将诸如像散之类的像差引入到横贯所述孔的光束213N中。光束213N在本文中也称为非像散带电粒子束213N。作为实例,元件208包含布置一般为矩形阵列的二十五个孔212N、以及围绕所述阵列的四个孔212A。在本发明的一些实施例中,孔212A比孔212N大2.5倍或更多倍。所述倍数值可取决于诸如库仑效应之类的参数和/或可被引入到光束213中的其他像差。
[0076]像差形成孔212A是非圆形孔,且像差形成孔212A将像差引入到横贯所述孔的光束213A中。虽然孔212A可包含任何适当的非圆形形状,例如卵形、六边形或矩形,但是在下文中的像差形成孔212A被认为包含椭圆形,所述椭圆形在电子束中产生双重像散作为像差。其他非圆形孔可用以产生其他类型的像差,诸如三重像散,且所有这些孔和相关联类型的像差被假定为在本发明的范围之内。光束213A在本文中也称为像散带电粒子束213A。像差形成孔212A在元件208中形成,以便围绕非像差形成孔212N的阵列。
[0077]由对应于在电子束的径向焦点和切向焦点之间的距离的给定椭圆产生的像散量,是椭圆的椭圆度的函数。由给定椭圆产生的像散的方向取决于椭圆定向。在元件208中,孔212A包含孔222和228以及孔224和226,所述孔222和228是具有与局部y轴平行的长轴的椭圆,所述孔224和226是具有与局部X轴平行的长轴的椭圆。椭圆通常具有大约1%或以上数量级的椭圆度。椭圆的椭圆度由以下公式(2)所定义。
[0078]
【权利要求】
1.一种设备,包含: 带电粒子束发生器,所述带电粒子束发生器被配置以同时将至少一个消像散带电粒子束和至少一个像散带电粒子束投射到样品表面的位置上,从而使得释放电子从所述位置发射出; 成像检测器,所述成像检测器被配置以从所述位置接收所述释放电子且根据所述释放电子形成所述位置的图像; 以及 处理器,处理器耦合至所述成像检测器,所述成像检测器被配置以分析所述图像的子集,所述子集由所述至少一个像散带电粒子束产生,且响应于所述子集以调整所述至少一个非像散带电粒子束的焦点。
2.如权利要求1所述的设备,其中所述位置中的一个位置包含平行于给定方向的线,且其中所述带电粒子束发生器被配置以在所述位置中的一个位置上投射给定像散光束呈椭圆,所述给定像散光束被包含在所述至少一个像散带电粒子束中,使得所述椭圆的长轴和短轴中的一个平行于所述给定方向。
3.如权利要求2所述的设备,其中分析所述子集包含:分析所述位置中的所述一个位置的图像且决定聚焦误差度量,以响应于所述椭圆的椭圆度和所述线的集中度。
4.如权利要求1所述的设备,进一步包含在所述带电粒子束发生器和所述表面之间的照射系统,其中所述带电粒子发生器被配置以经由所述照射系统投射所述至少一个消像散带电粒子束和所述至少一个像散带电粒子束。
5.如权利要求1所述的设备,其中所述带电粒子束发生器被配置以投射所述至少一个消像散带电粒子束作为消像散带电粒子束阵列。
6.如权利要求1所述的设备,其中所述带电粒子束发生器被配置以投射所述至少一个像散带电粒子束作为多个像散带电粒子束。
7.如权利要求6所述的设备,其中所述带电粒子束发生器被配置以投射所述至少一个消像散带电粒子束作为消像散带电粒子束阵列,且其中所述多个像散带电粒子束围绕所述阵列。
8.如权利要求1所述的设备,其中所述带电粒子束发生器包含多透镜阵列,所述多透镜阵列由具有非像差形成孔阵列和多个像差形成孔的多孔阵列元件组成,且其中所述带电粒子束发生器被配置以通过经由所述非像差形成孔阵列投射带电粒子束来形成所述至少一个消像散带电粒子束作为消像散带电粒子束,且被配置以通过经由所述多个像差形成孔投射所述带电粒子束来形成所述至少一个像散光束作为像散带电粒子束。
9.如权利要求8所述的设备,其中所述多个像差形成孔围绕所述非像差形成孔阵列。
10.如权利要求8所述的设备,其中所述非像差形成孔包含圆孔。
11.如权利要求8所述的设备,其中所述像差形成孔中的一个像差形成孔的尺寸比所述非像差形成孔中的一个非像差形成孔的尺寸大至少2.5倍。
12.如权利要求8所述的设备,其中所述像差形成孔包含至少椭圆形孔。
13.如权利要求12所述的设备,其中所述至少椭圆形孔包含具有不同定向的两个椭圆形孔。
14.如权利要求13所述的设备,其中所述两个椭圆形孔彼此正交定向。
15.如权利要求1所述的设备,其中所述带电粒子束发生器被配置以投射所述至少一个消像散带电粒子束和所述至少一个像散带电粒子束作为电子束。
16.如权利要求1所述的设备,其中所述带电粒子束发生器被配置以投射所述至少一个像散带电粒子束,以在所述位置中的对应的至少一个位置上形成对应的至少一个椭圆。
17.如权利要求16所述的设备,其中分析所述子集包含:分析所述位置中的所述至少一个位置的图像且决定聚焦误差度量,以;响应于所述至少一个椭圆的椭圆度。
18.如权利要求17所述的设备,其中所述至少一个非像散带电粒子束的所述焦点和所述聚焦误差度量线性相关。
19.如权利要求1所述的设备,其中所述至少一个像散带电粒子束包含从双重像散和三重像散中选择的像散。
20.—种设备,包含: 带电粒子束发生器,所述带电粒子束发生器被配置以同时将至少一个消像散带电粒子束和至少一个像散带电粒子束投射到样品表面的位置上,从而使得释放电子从所述位置发射出; 成像检测器,所述成像检测器被配置以从所述位置接收所述释放电子且根据所述释放电子形成所述位置的图像; 像差元件,所述像差元 件被定位在所述成像检测器之前且被配置以在所述图像中产生像差;以及 处理器,所述处理器耦合至所述成像检测器,所述处理器被配置以响应于元素组的至少一个元素调整所述至少一个非像散带电粒子束的焦点,所述元素组包含所述像差和所述图像的子集,所述子集由所述至少一个像散带电粒子束产生。
21.一种用于聚焦光束的方法,包含: 同时将至少一个非像散带电粒子束和至少一个像散带电粒子束投射到样品表面的位置上,从而使得释放电子从所述位置发射出; 从所述位置接收所述释放电子; 根据所述释放电子形成所述位置的图像;以及 分析所述图像的子集,所述子集由所述至少一个像散带电粒子束产生,且响应于所述子集以调整所述至少一个非像散带电粒子束的焦点。
22.如权利要求21所述的方法,其中所述位置中的一个位置包含平行于给定方向的线,且所述方法进一步包含:在所述位置中的一个位置上投射给定像散光束呈椭圆,所述给定像散光束被包含在所述至少一个像散带电粒子束中,使得所述椭圆的长轴和短轴中的一个平行于所述给定方向。
23.如权利要求22所述的方法,其中分析所述子集包含:分析所述位置中的所述一个位置的图像;以及响应于所述椭圆的椭圆度和所述线的集中度决定聚焦误差度量。
24.如权利要求21所述的方法,其中所述至少一个非像散带电粒子束包含非像散带电粒子束阵列。
25.如权利要求21所述的方法,其中所述至少一个像散带电粒子束包含多个像散带电粒子束。
26.如权利要求25所述的方法,其中所述至少一个非像散带电粒子束包含非像散带电粒子束阵列,且其中所述多个像散带电粒子束围绕所述阵列。
27.如权利要求21所述的方法,其中所述至少一个非像散带电粒子束包含非像散带电粒子束,其中所述至少一个像散带电粒子束包含像散带电粒子束,所述方法进一步包含: 提供多孔阵列元件,所述多孔阵列元件具有非像差形成孔阵列和多个像差形成孔; 通过经由所述非像差形成孔阵列投射带电粒子束来形成所述非像散带电粒子束;以及 通过经由所述多个像差形成孔投射所述带电粒子束来形成所述像散带电粒子束。
28.如权利要求27所述的方法,其中所述多个像差形成孔围绕所述非像差形成孔阵列。
29.如权利要求27所述的方法,其中所述非像差形成孔包含圆孔。
30.如权利要求27所述的方法,其中所述像差形成孔中的一个像差形成孔的尺寸比所述非像差形成孔中的一个非像差形成孔的尺寸大至少2.5倍。
31.如权利要求27所述的方法,其中所述像差形成孔包含椭圆形孔。
32.如权利要求31所述的方法,其中所述椭圆形孔包含具有不同定向的两个椭圆形孔。
33.如权利要求32所述的方法,其中所述两个椭圆形孔彼此正交定向。
34.如权利要求21所述的方法,所述方法包含:投射所述至少一个像散带电粒子束以在所述位置中的对应的至少一个位置上形成对应的至少一个椭圆。
35.如权利要求34所述的方法,其中分析所述子集包含:分析所述位置中的所述至少一个位置的图像且决定聚焦误差度量;以响应于所述至少一个椭圆的椭圆度。
36.如权利要求35所述的方法,其中所述至少一个非像散带电粒子束的所述焦点和所述聚焦误差度量线性相关。
37.如权利要求21所述的方法,其中所述至少一个像散带电粒子束包含从双重像散和三重像散中选择的像散。
38.一种用于聚焦光束的方法,包含: 同时将至少一个非像散带电粒子束和至少一个像散带电粒子束投射到样品表面的位置上,从而使得释放电子从所述位置发射出; 从所述位置接收所述释放电子; 根据所述释放电子形成所述位置的图像; 在所述图像中产生像差;以及 响应于元素组的至少一个元素调整所述至少一个非像散带电粒子束的焦点,所述元素组包含所述像差和所述图像的子集,所述子集由所述至少一个像散带电粒子束产生。
39.一种用于成像系统的光束源,包含: 带电粒子源;以及 多孔阵列,所述多孔阵列被定位以接收由所述带电粒子源产生的多个带电粒子束且从所述带电粒子源产生多个照射光束以及一个或多个自动聚焦光束,所述照射光束将用于成像样品且界定所述成像系统的光轴, 其中用于产生所述自动聚焦光束的所述多孔阵列中的孔比用于产生所述照射光束的所述多孔阵列中的孔更远离所述光轴定位。
40.如权利要求39所述的用于成像系统的光束源, 其中所述带电粒子源包含带电粒子枪。
41.如权利要求39所述的用于成像系统的光束源,其中用于产生所述自动聚焦光束的所述多孔阵列中的所述孔被定位在第一径向距离处,所述第一径向距离比用于产生所述照射光束的所述多孔阵列中的至少一些孔的径向距离更远离所述光轴2至3倍。
42.如权利要求39所述的用于成像系统的光束源,其中用于产生所述自动聚焦光束的所述多孔阵列中的所述孔比用于产生所述照射光束的所述多孔阵列中的所述孔大。
43.如权利要求42所述的用于成像系统的光束源,进一步包含预置多孔阵列元件,所述预置多孔阵列元件被定位在所述带电粒子源和所述多孔阵列之间,所述预置多孔阵列元件具有与所述多孔阵列中的所述孔一致但比所述孔小的孔,所述多孔阵列中的所述孔用于产生所述自动聚焦光束。
44.如权利要求43所述的用于成像系统的光束源,其中所述预置多孔阵列元件进一步包括与所述多孔阵列中的所述孔一致但比所述孔小的孔,所述多孔阵列中的所述孔用于产生所述成像光束。
45.一种用于成像系统的光束源,包含: 带电粒子源; 动态散焦多孔阵列;以及 多孔阵列,所述多孔阵列被定位以接收由所述带电粒子源产生的多个带电粒子束且从所述带电粒子源产生多个照射光束以及一个或多个自动聚焦光束,所述照射光束将用于成像样品且界定所述成像系统的光轴, 其中所述动态散焦多孔阵列位于所述带电粒子束源和所述多孔阵列之间,且保持在与所述多孔阵列的电位不同的电位。
46.如权利要求45所述的用`于成像系统的光束源,其中所述动态散焦多孔阵列具备在控制器的控制下可变的电位。
47.如权利要求45所述的用于成像系统的光束源,进一步包括位于所述动态散焦多孔阵列和所述带电粒子源之间的保护孔,所述保护孔维持在与所述动态散焦多孔阵列的电位不同的电位。
48.如权利要求45所述的用于成像系统的光束源,其中所述带电粒子源包含带电粒子枪。
49.如权利要求45所述的用于成像系统的光束源,进一步包含预置多孔阵列元件,所述预置多孔阵列元件被定位在所述带电粒子源和所述动态散焦多孔阵列之间,所述预置多孔阵列元件具有与所述多孔阵列中的相应孔一致但比所述相应孔小的孔。
50.如权利要求49所述的用于成像系统的光束源,进一步包括位于所述动态散焦多孔阵列和所述预置多孔阵列之间的保护孔,所述保护孔维持在与所述动态散焦多孔阵列的电位不同的电位。
51.如权利要求50所述的用于成像系统的光束源,其中所述保护孔维持在与所述多孔阵列和/或所述预置多孔阵列相同的电位。
【文档编号】H01J37/22GK103688333SQ201280019242
【公开日】2014年3月26日 申请日期:2012年2月17日 优先权日:2011年2月18日
【发明者】S·R·罗杰斯, R·K·克尼佩迈尔, T·凯门, S·舒伯特, N·埃尔马利阿 申请人:应用材料以色列公司, 卡尔蔡司Smt有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1