冷轧轧机马达损失力矩系数的测试方法与流程

文档序号:13321494阅读:755来源:国知局
冷轧轧机马达损失力矩系数的测试方法与流程

本发明涉及一种测试方法,具体涉及一种冷轧轧机马达损失力矩系数的测试方法,属于冷轧轧制技术领域。



背景技术:

在冷轧轧制过程中马达产生的力矩由三个部分组成:轧制力矩、张力力矩和损失力矩。轧制力矩由摩擦力、轧辊压扁等形成;张力力矩是由机架前后的张力偏差形成,而损失力矩是由稳态轧制过程中所产生的机械损失而形成。机械损失主要包括轧辊轴承和传动机构等设备由于摩擦产生的附加摩擦力矩以及克服轧辊和传动系统各转动部件空载时的摩擦力矩。

经典轧制理论涉及的轴承、传动摩擦力矩和空载力矩的理论计算非常复杂,需要计算每个轧辊轴承和转动部件所需的力矩,现场难以应用。另一种测量方法是马达在空载压靠转动时,通过实测马达输出功率推算出损失力矩。因为此时状态的轧制力矩和张力力矩为零,冷轧马达的输出功率即为损失功率。在实际稳态轧制过程中,由于轧制力、轧制速度是不断变化的,轧制过程的损失扭矩并非固定值,如何选取合适的自变量建立一套可靠的回归模型是非常重要的。

中国发明专利“一种冷轧轧制过程中电机功率的预测方法”(发明专利号:201510367889.1授权公告号:cn104998913a)公开了一种冷轧轧制过程中电机功率的预测方法。该方法进行冷轧电机功率损耗测试,得到冷轧电机机械功率损耗与轧制力、轧制速度之间的关系,并计算冷轧电机机械功率损耗;将计算得到的轧制功率、冷轧电机机械功率损耗求和得到冷轧轧制过程中电机功率预测结果。

上述现有技术方案给出的马达机械功率损耗回归模型,给出的自变量为工作辊轧辊转速和轧制力,模型计算公式较简单,缺乏理论公式的支撑。以下理论公式为轧制时消耗的功与轧制力矩之间的关系式。

式中,a为轧制时消耗的功;q为轧件通过轧辊期间轧辊的转角;v为轧辊速度;r为轧辊半径;t为时间。

上式表明轧制时消耗的功与轧辊速度、轧辊半径均相关。而现有技术方案给出回归模型的自变量缺少轧辊半径这个关键因子。在实际轧制过程中,每一换辊周期后的轧辊半径均不相同,且随着轧辊的磨削轧辊半径逐渐变小,直至报废。这对于马达损失力矩的计算是非常重要的。



技术实现要素:

本发明正是针对现有技术中存在的技术问题,提供一种冷轧轧机马达损失力矩系数的测试方法,该方法精确的测出马达损失力矩系数。

为了实现上述目的,本发明的技术方案如下,一种冷轧轧机马达损失力矩系数的测试方法,其特征在于,所述方法包括以下步骤:

步骤1、获取轧机交流马达设计参数,包括额定功率、额定电压、额度电流、额定转速、最高转速、齿轮速比;

步骤2、已知额定功率、额定电压、额度电流,根据公式,计算马达的功率因数乘以效率值cosα×η;

式中:v为额定电压,v;i为额定电流,a;cosα为功率因数,η为效率值;kw为额定功率,kw;

步骤3、测试前轧机工况条件的确认,包括以下条件的确认:

1)为保证测试状态更接近正常轧制状态,需要保证轧辊处于热状态下;

2)轧辊应该选取有代表性的尺寸,因轧辊直径有一定的使用范围,避免使用轧辊直径接近下限的轧辊;

3)弯辊力功能的切除,测试过程中弯辊力的投入使用会对轧制力产生影响,从而影响轧制力数据的准确性;

4)确保轧制力、轧制速度、辊缝调节的功能运行正常;

步骤4、施加给定数值的轧制力,保持辊缝固定,让轧辊在不同转速下运转,待轧制力、轧辊转速恒定时,采集该速度点下的轧制力、轧辊速度、马达电压和马达电流。采集频率一般为0.5秒,采集速度点可达10组,选取的最高转速要达到设计的最高转速,同时分散于不同的速度区间;

步骤5、因高频采集的数据量较大,需要筛选合适的数据,选取每个速度点下连续十组的采集参数,取其平均值,作为用于回归分析的一组数据;

步骤6、对筛选后的10组数据计算损失力矩;

步骤7、通过以下公式回归得到轧机马达损失力矩系数gl0-gl4;

式中:p为轧制力,吨;v为轧辊速度,mpm;r为轧辊半径,mm;gl0为马达损失力矩系数常数项;gl1-gl3为与轧辊速度、轧辊半径相关的马达损失力矩系数;gl4为与轧制力相关的马达损失力矩系数;

步骤8、将回归得到的gl0-gl4保存到内存常数表中,确定最终的冷轧马达损失功率回归模型,即当前机架的冷轧马达损失功率与工作辊轧辊速度、工作辊轧辊半径、轧制力之间的函数关系。

作为本发明的一种改进,所述步骤6、对筛选后的10组数据计算损失力矩,具体步骤如下:

步骤6-1、因马达运转的效能有损耗,没有全部作用在轧辊速度上,需要通过实测轧辊速度计算马达实际转速;

式中:nr为马达转速,rpm;v为轧辊速度,mpm;r为工作辊半径,mm;gr为齿轮比。

步骤6-2、计算马达损失功率kl,cosα×η已在步骤2中求出;

式中:vl为实际电压,v;il为实际电流,a;kl为损失功率,kw。

步骤6-3、计算马达损失力矩gl;

式中:r为工作辊半径,mm;v为轧辊速度,mpm;gl为损失力矩,kg·mm。

相对于现有技术,本发明提供的马达损失力矩系数的测试方法接近实际轧制工况条件,通过实测轧制力、轧辊速度、马达电压、马达电流等参数,并考虑马达运转效能损耗,计算的马达损失力矩更精确。用来确定马达损失力矩系数的理论回归模型,选取的自变量和多项式结构更为合理,保证马达损失力矩的在线预测精度偏差率在10%以内。本发明可广泛应用于单机架或多机架冷连轧机的马达损失力矩计算中,具有一定的推广使用价值。

附图说明

图1为本发明轧机马达损失力矩系数测试方法流程图。

图2为本发明实测一个机架高频数据绘制的曲线图。

图3为本发明一个机架马达损失力矩拟合值和实测值的对比图。

具体实施方式:

为了加深对本发明的理解,下面结合附图对本实施例做详细的说明。

实施例1:参见图1,一种冷轧轧机马达损失力矩系数的测试方法,其特征在于,所述方法包括以下步骤:

步骤1、获取轧机交流马达设计参数,包括额定功率、额定电压、额度电流、额定转速、最高转速、齿轮速比;

步骤2、已知额定功率、额定电压、额度电流,根据公式,计算马达的功率因数乘以效率值cosα×η;

式中:v为额定电压,v;i为额定电流,a;cosα为功率因数,η为效率值;kw为额定功率,kw;

步骤3、测试前轧机工况条件的确认,包括轧辊处于热状态下;轧辊选取有代表性的尺寸;不加弯辊力;已经完成轧制力、轧制速度、辊缝调节的功能测试;

步骤4、施加给定数值的轧制力,保持辊缝固定,让轧辊在不同转速下运转,待轧制力、轧辊转速恒定时,采集该速度点下的轧制力、轧辊速度、马达电压和马达电流。采集频率为0.5秒,采集速度点可达10组,选取的最高转速要达到设计的最高转速,同时分散于不同的速度区间;

步骤5、因高频采集的数据量较大,需要筛选合适的数据,选取每个速度点下连续十组的采集参数,取其平均值,作为用于回归分析的一组数据;

步骤6、对筛选后的10组数据计算损失力矩,

步骤7、通过以下公式回归得到轧机马达损失力矩系数gl0-gl4;

式中:p为轧制力,吨;v为轧辊速度,mpm;r为轧辊半径,mm;gl0为马达损失力矩系数常数项;gl1-gl3为与轧辊速度、轧辊半径相关的马达损失力矩系数;gl4为与轧制力相关的马达损失力矩系数;

步骤8、将回归得到的gl0-gl4保存到内存常数表中,确定最终的冷轧马达损失功率回归模型,即当前机架的冷轧马达损失功率与工作辊轧辊速度、工作辊轧辊半径、轧制力之间的函数关系。

作为本发明的一种改进,所述步骤6、对筛选后的10组数据计算损失力矩,具体步骤如下:

步骤6-1、因马达运转的效能有损耗,没有全部作用在轧辊速度上,需要通过实测轧辊速度计算马达实际转速;

式中:nr为马达转速,rpm;v为轧辊速度,mpm;r为工作辊半径,mm;gr为齿轮比。

步骤6-2、计算马达损失功率kl,cosα×η已在步骤2中求出;

式中:vl为实际电压,v;il为实际电流,a;kl为损失功率,kw。

步骤6-3、计算马达损失力矩gl;

式中:r为工作辊半径,mm;v为轧辊速度,mpm;gl为损失力矩,kg·mm。

应用实施例:本实施方式是针对某1420mm五机架冷连轧机组的六辊ucm轧机进行测试,各个机架均采用了相同方法测试回归了马达损失力矩系数。

首先获取轧机交流马达设计参数,包括额定功率、额定电压、额度电流、额定转速、最高转速、齿轮速比,计算了马达的功率因数乘以效率值cosα×η,如表1所示。

表1轧机交流马达设计参数表及cosα×η计算值

开始测试前的准备工作。测试前使轧辊以低速度空转,使得轧辊和电机均处于热状态下,保证测试状态和正常轧制时的状态基本相同。在切除弯辊力前提下施加轧制力至700吨左右,分别以120rpm、240rpm、360rpm、480rpm、600rpm、720rpm、840rpm、960rpm、1080rpm、1200rpm逐步增加轧辊转速,每个转速恒定30秒以上,同时采集5个机架的轧辊速度、轧制力、马达电压、马达电流数据。

图2所示为一个机架高频实测数据绘制的曲线图,需要对采集的高频数据进行处理,剔除加减速过程中采集的数据,选取每个速度点下连续十组的数据,取轧制力、马达电压、马达电流的平均值,作为回归分析的一组数据。同样方法完成十个速度点的十组数据。处理结果如表2。

表2一个机架损失力矩系数测试数据

根据马达损失力矩计算公式,计算和轧制力p一起作为自变量,损失力矩作为因变量,回归分析得到轧机马达损失力矩系数gl0-gl4,见表3所示。

gl0=-931024,gl1=857038,gl2=-211086,gl3=4495.184,gl4=961.8449。

表3一个机架损失力矩系数回归分析数据

将回归得到的gl0-gl4保存到内存常数表中,确定最终的冷轧马达损失功率回归模型,即当前机架的冷轧马达功率损耗与工作辊轧辊转速、轧制力、工作辊轧辊半径之间的函数关系。

从配置文件中读取该机架的冷轧马达损失力矩系数,计算马达损失力矩拟合值,如表4、图3所示,可见损失力矩预测精度偏差率在10%以内,满足在线预测精度要求。

表4一个机架马达损失力矩拟合值与精度偏差率

需要说明的是上述实施例,并非用来限定本发明的保护范围,在上述技术方案的基础上所作出的等同变换或替代均落入本发明权利要求所保护的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1