一种全管体均匀变形的双金属复合管的制造方法

文档序号:10561161阅读:423来源:国知局
一种全管体均匀变形的双金属复合管的制造方法
【专利摘要】本发明公开了一种全管体均匀变形的双金属复合管的制造方法,包括:一、将装配好的基管和衬管夹持于模具中;二、计算双金属复合管水压复合成形的第一阶段理论成形压力Pi和第二阶段理论成形压力P′i;三、将夹持于模具中的基管的两端与衬管之间采用密封圈密封,然后向衬管内充水排气;四、向衬管内部打压,待压力上升至第一阶段压力设定值P1后保压2min~10min;五、继续升压至第二阶段压力设定值P2后保压10s~240s;六、卸压排水,下料,得到双金属复合管。该方法能够保证衬管在复合过程中环向和轴向发生充分变形,因此采用该方法制造的双金属复合管的基/衬接触面积大、沿轴向和环向的结合强度均匀性好。
【专利说明】
一种全管体均匀变形的双金属复合管的制造方法
技术领域
[0001] 本发明属于复合材料加工技术领域,具体涉及一种全管体均匀变形的双金属复合 管的制造方法。
【背景技术】
[0002] 随着油气资源开采、输送经验的不断丰富,双金属复合管以其耐蚀性能和力学性 能达到设计要求的同时,成本远低于纯不锈钢管的优点,得到越来越多的应用。目前国内生 产双金属复合管的方式较多,以液压复合技术制造双金属复合管的方法较常见,但该技术 生产的双金属复合管存在以下两个方面的缺陷。
[0003] -方面,目前国内和国际常用的液压复合方法,会在衬管变形前对基衬管管端进 行约束(比如封焊),使内衬管在变形阶段形成较大的环向残余应力和轴向残余应力,这其 中环向残余应力是复合管基衬紧密贴合的保障,但轴向残余应力会对基衬间的剪切强度产 生削弱作用,特别是在环向残余应力减少到无法束缚轴向残余应力时,轴向残余应力会对 基衬间的焊接部分(封焊或堆焊)造成应力集中效果,使基衬焊接部分更容易遭到破坏。
[0004] 另一方面,国内的液压复合方法,受制于材料、设备、工艺限制,在复合压力设计上 均为保守计算,将导致液压复合管整管各位置贴合强度不均,贴合力小于预期,或者管体发 生不受约束的塑性变形,产生危险或使产品尺寸超出规范要求。目前国内无缝钢管受制造 工艺影响,存在管体壁厚、力学性能的不均现象,目前钢管制造厂可接受的无缝钢管壁厚最 小偏差为± 8 % (标准允许壁厚有± 12.5 %的偏差),而市场上常见的钢管,其管体各处的屈 服强度偏差在50MPa左右,甚至更高。这将导致如果按照某个测量值来设计复合压力,很可 能会出现管体局部由于壁厚偏薄、屈服强度偏小,在该压力下首先发生塑性变形,该变形在 不受约束的情况下,是非常危险的。国内目前的液压复合工艺为解决该问题采用保守计算 法,按安全系数或一个固定数值减少理论计算值。该方法会使局部基衬管发生弹性变形得 到较好的贴合强度,但也会使壁厚偏厚、屈服强度偏高的局部没有得到合适的变形力而不 能得到理想的贴合强度。

【发明内容】

[0005] 本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种全管体均匀 变形的双金属复合管的制造方法。该方法将水压过程分阶段设定压力,第一阶段压力为衬 管开始发生塑性变形的压力,在该阶段进行保压,能够确保衬管发生充分变形,直径变大的 同时长度变短,即衬管在环向上,外壁与基管内壁贴紧,衬管在轴向上,两端不受约束,自由 收缩,长度变短,使复合管基衬间接触的同时无明显轴向残余应力;第二阶段压力大于等于 基衬管同时发生塑性变形所需水压值的临界点,在该阶段进行保压,基衬管内部承受高于 基衬管发生同步弹性变形的力,并将额外的力通过基管外壁传递给模具内腔,由模具内腔 给基衬管外壁一个反作用力,约束其继续发生变形,全管体受模具夹持约束发生均匀变形。 采用该方法制造的双金属复合管的尺寸、椭圆度及直线度均能精确保证。
[0006] 为解决上述技术问题,本发明采用的技术方案是:一种全管体均匀变形的双金属 复合管的制造方法,其特征在于,包括以下步骤:
[0007] 步骤一、将装配好的基管和衬管夹持于模具中;所述衬管的长度大于基管的长度;
[0008] 步骤二、按照以下公式计算双金属复合管水压复合成形的第一阶段理论成形压力 P1和第二阶段理论成形压力K i;
[0012] P7i = InKo7 o+lnko7! (4);
[0013]其中d。为衬管的外径,单位为Him5Cl1为衬管的内径,单位为mmj为基管和衬管的单 边间隙,单位为πιπι;δ'为基管和模具之间的单边间隙,单位为mm;D。为基管的外径,单位为 mm;〇sl为衬管的屈服强度,单位为MPa5E71为衬管的强化模量,单位为MPad'。为基管的强化 模量,单位为MPa;K为基管的外径与内径之比,无量纲;k为衬管的外径与内径之比,无量纲; 〇s。为基管的屈服强度,单位为MPa;(/ i为衬管的流动应力,单位为MPa;(/。为基管的流动应 力,单位为MPa;
[0014] 步骤三、将步骤一中夹持于模具中的基管的两端与衬管之间采用密封圈密封,然 后向衬管内充水排气;
[0015] 步骤四、步骤三中所述排气完成后向衬管内部打压,待压力上升至第一阶段压力 设定值P1后保压2min~lOmin,所述第一阶段压力设定值P 1为第一阶段理论成形压力 0.8 ~2.0 倍;
[0016] 步骤五、待步骤四中保压完成后继续升压至第二阶段压力设定值?2后保压IOs~ 240s,所述第二阶段压力设定值P 2 = P' i+Pm,其中PmSO~IOOMPa;
[0017]步骤六、待步骤五中保压完成后卸压排水,下料,得到双金属复合管。
[0018] 上述的一种全管体均匀变形的双金属复合管的制造方法,其特征在于,步骤一中 所述衬管两端穿出基管的长度L不小于70mm。
[0019] 上述的一种全管体均匀变形的双金属复合管的制造方法,其特征在于,步骤二中 所述基管和衬管的单边间隙δ不大于2mm。
[0020] 上述的一种全管体均匀变形的双金属复合管的制造方法,其特征在于,步骤二中 所述基管和模具之间的单边间隙V不大于2_。
[0021] 上述的一种全管体均匀变形的双金属复合管的制造方法,其特征在于,步骤四中 所述第一阶段压力设定值P1为第一阶段理论成形压力&的〇. 9~1.2倍。
[0022] 上述的一种全管体均匀变形的双金属复合管的制造方法,其特征在于,步骤五中 所述 Pm 为 30MPa ~80MPa。
[0023] 本发明与现有技术相比具有以下优点:
[0024] 1、本发明将水压过程分阶段设定压力,第一阶段压力为衬管开始发生塑性变形的 压力,在该阶段进行保压,能够确保衬管发生充分变形,直径变大的同时长度变短,即衬管 在环向上,外壁与基管内壁贴紧,衬管在轴向上,两端不受约束,自由收缩,长度变短,使复 合管基衬间接触的同时无明显轴向残余应力;第二阶段压力大于等于基衬管同时发生塑性 变形所需水压值的临界点,在该阶段进行保压,基衬管内部承受高于基衬管发生同步弹性 变形的力,并将额外的力通过基管外壁传递给模具内腔,由模具内腔给基衬管外壁一个反 作用力,约束其继续发生变形,全管体受模具夹持约束发生均匀变形。
[0025] 2、采用本发明的方法制造的双金属复合管的尺寸、椭圆度及直线度均能精确保 证,避免了由于复合不当导致的尺寸、椭圆度、直线度不达标的生产问题。
[0026] 3、本发明的方法能够保证衬管在复合过程中环向和轴向发生充分变形,因此采用 该方法制造的双金属复合管的基/衬接触面积大、沿轴向和环向的结合强度均匀性好。
[0027] 4、本发明突破原有水压复合的保守压力计算,提高了基衬间隙的结合强度。
[0028] 下面通过实施例,对本发明的技术方案作进一步的详细说明。
【附图说明】
[0029] 图1为本发明基管和衬管的装配示意图。
[0030] 附图标记说明:
[0031] 1-基管; 2-衬管; 3-模具;
[0032] 4 一密封圈。
【具体实施方式】
[0033] 实施例1
[0034] 本实施例成形Φ217. ImmX (10mm+2.5mm)的双金属复合管,管长11. lm,其中基管 为Φ217. ImmX IOmm的L360QS碳钢管,基管管长为11. lm,衬管为Φ 195mmX2.5mm的409L合 金钢管,衬管管长为11.24m。
[0035] 检测屈服强度:首先在待检测管材(基管或衬管)管端截取长度为200mm的短管,然 后沿短管轴向截取四组拉伸试样,所述四组拉伸试样沿短管的横截面圆周均匀分布,最后 按照GBT-228《金属材料室温拉伸试验方法》标准进行拉伸试样的屈服强度测试,计算四组 拉伸试样的屈服强度的平均值,相应的得到基管的屈服强度和衬管的屈服强度,结果见表 1〇
[0036] 表1基管和衬管的屈服强度检测结果
[0038] 强化模量的确定:
[0039] 首先将待检测管材(基管或衬管)的四组拉伸试样的应力应变试验数据导出,然后
,计算不同变形量下的强化模量,再对这些强化模量求平均值, 得到一组拉伸试样的平均强化模量,将其他三组拉伸试样按照上述方法求出平均强化模 量,再对四组平均强化模量求平均值,得到衬管的强化模量EZ1S1960MPa,基管的强化模量 为1780MPa;其中,为通过金属拉伸试验测试的实测屈服强度;(?)?艘为应变达到 0.5 %时所对应的屈服强度;为通过金属拉伸试验测试的实测应变值。
[0040] 本实施例的具体成形方法包括以下步骤:
[0041] 步骤一、如图1所示,将装配好的基管1和衬管2夹持于模具3中,衬管2两端伸出基 管1的长度均为70mm;
[0042] 步骤二、按照以下公式计算双金属复合管水压复合成形的第一阶段理论成形压力 P1和第二阶段理论成形压力K i;
[0046] P/ = InKo7 o+lnko7! (4);
[0047]其中d。为衬管的外径,195mm; di为衬管的内径,190mm; δ为基管和衬管的单边间隙, 1.05111111,为基管和模具之间的单边间隙,1111111;0。为基管的外径,217.1 111111;(^1为衬管的屈服 强度,361ΜΡ&;Ε\为衬管的强化模量,IgeOMPa 5E^为基管的强化模量,1780MPa;K为基管的 外径与内径之比,I. I; k为衬管的外径与内径之比,1.03; 〇s。为基管的屈服强度,380.75MPa;
[0048] σ' i为衬管的流动应力,经计算得到(/ i为382. IMPa; (/。为基管的流动应力,经计算 得到σ'。为397. IMPa;
[0049] 经计算得到Pi = 9.82MPa,P' i = 12.05MPa;
[0050] 步骤三、将步骤一中夹持于模具3中的基管1的两端与衬管2之间采用密封圈4密 封,然后向衬管内充水排气;
[0051] 步骤四、步骤三中所述排气完成后向衬管2内部打压,待压力上升至10.SMPa后保 压2min;
[0052] 步骤五、待步骤四中保压完成后继续升压至49.2MPa后保压30s;
[0053] 步骤六、待步骤五中保压完成后卸压排水,下料,得到双金属复合管。
[0054]本实施例制造的双金属复合管的管端和管中外径均为219.1mm,即等于模具内腔 的尺寸,管端和管中的不圆度均有所减小,直线度均有所增加,说明采用本发明的方法进行 复合能够很好的控制复合后管子的尺寸。将本实施例制造的双金属复合管的管端切除后未 出现衬管收缩现象,这是由于本发明采用密封圈密封,能够保证在复合过程中衬管可以沿 轴向的自由收缩,复合前后衬管管端预留段缩短了50mm,因此复合后切掉两端衬管并无收 缩。
[0055] 对比例I
[0056] 采用与实施例1相同的基管和衬管为原料,将基管和衬管装配好,然后将基管的两 端与衬管之间采用密封圈密封,不使用夹持模具,按照实施例1的打压方式进行基管和衬管 的水压复合,得到双金属复合管。
[0057]对比例1水压复合得到的双金属复合管的管端外径无变化,均为Φ 217.1mm,但双 金属复合管中间段(约1米长度)外径变为Φ 218mm,其余部分外径无变化。
[0058] 对比例2
[0059] 采用与实施例1相同的基管为原料,衬管为Φ 195_ X 2.5_的409L合金钢管,衬管 管长为11. lm,将基管和衬管两端封焊后按照实施例1的打压方式进行基管和衬管的水压复 合,得到双金属复合管。
[0060] 对比例2水压复合得到的双金属复合管用锯床切掉封焊焊缝后,发现衬管缩进 10mm,这说明"两端封焊"的复合管复合后衬管轴向存在较大的残余应力。其原因为两端封 焊是将衬管与基管两端焊接这样就阻止了在复合过程中衬管的自由变形,因此复合后衬管 内部存在较大的残余应力,当切掉封焊端时管口附近的残余应力得到了释放,导致衬管的 收缩。
[0061] 对比实施例1、对比例1和对比例2发现,采用本发明的方法进行复合能够很好的控 制复合后管子的尺寸,实现双金属复合管的全管体均匀变形,并且避免了切除双金属复合 管的管端后衬管收缩的问题。
[0062] 对实施例1、对比例1和对比例2的双金属复合管的剪切强度进行检测,并沿双金属 复合管管长方向每隔2m取一个试样,检测试样的剪切强度,计算试样剪切强度的最大差值, 结果见表2。
[0063] 表2实施例1、对比例1和对比例2的双金属复合管的剪切强度
[0065] 从表2中可以明显看出,采用本发明的方法制造的双金属复合管的平均剪切强度 明显高于对比例1和对比例2,且管子不同部位的剪切强度差异不大。这说明采用本发明的 方法制造的双金属复合管沿轴向结合强度分布较均匀。
[0066] 实施例2
[0067] 本实施例成形Φ 219mm X (6mm+2mm)的双金属复合管,管长5.3m,其中基管为Φ 219mmX 6mm的L245NS碳钢管,基管管长5.3m,衬管为Φ 203mmX 2mm的316L不锈钢管,衬管管 长5·5m〇
[0068] 采用实施例1中所述方法检测衬管的屈服强度〇sl = 301MPa;衬管的强化模量E^ = 1650MPa;基管的屈服强度〇s。= 330MPa;基管的强化模量E^ = HSOMPa13
[0069 ]本实施例的具体成形方法包括以下步骤:
[0070]步骤一、如图1所示,将装配好的基管1和衬管2夹持于模具3中,衬管2两端伸出基 管1的长度均为100mm;
[0071]步骤二、按照以下公式计算双金属复合管水压复合成形的第一阶段理论成形压力 P1和第二阶段理论成形压力K i;
[0075] P/ = InKo7 o+lnko7! (4);
[0076] 其中d。为衬管的外径,203mm;di为衬管的内径,199πιπι;δ为基管和衬管的单边间隙, 为基管和模具之间的单边间隙,2mm;D。为基管的外径,219mm; 〇sl为衬管的屈服强度, 30IMPa; 为衬管的强化模量,IeSOMPa5E7。为基管的强化模量,1430MPa; K为基管的外径与 内径之比,1.06; k为衬管的外径与内径之比,1.02; 〇s。为基管的屈服强度,330MPa;
[0077] σ' i为衬管的流动应力,经计算得到(/ i为333 · 5MPa; (/。为基管的流动应力,经计算 得到。为356. IMPa;
[0078] 经计算得到Pi = 6 ·SMPa^ i = 11 ·8MPa;
[0079] 步骤三、将步骤一中夹持于模具3中的基管4的两端与衬管2之间采用密封圈4密 封,然后向衬管内充水排气;
[0080] 步骤四、步骤三中所述排气完成后向衬管内部打压,待压力上升至5.2MPa后保压 IOmin;
[0081] 步骤五、待步骤四中保压完成后继续升压至11.SMPa后保压240s;
[0082] 步骤六、待步骤五中保压完成后卸压排水,下料,得到双金属复合管。
[0083] 实施例3
[0084] 本实施例成形Φ219ηιηιΧ (10mm+2mm)的双金属复合管,管长11 ·5ηι,其中基管为Φ 219mmX IOmm的415L不锈钢管,基管管长为11.5m,衬管为Φ 197mmX2mm的409L不锈钢管,衬 管管长为11.8m。
[0085] 采用实施例1中所述方法检测衬管的屈服强度〇sl = 289MPa;衬管的强化模量E^ = 1450MPa;基管的屈服强度σs。= 425MPa;基管的强化模量E/。= 1922MPa。
[0086] 本实施例的具体成形方法包括以下步骤:
[0087] 步骤一、如图1所示,将装配好的基管1和衬管2夹持于模具3中,衬管2两端伸出基 管1的长度均为150mm;
[0088] 步骤二、按照以下公式计算双金属复合管水压复合成形的第一阶段理论成形压力 P1和第二阶段理论成形压力K :;
[0092] P/ = InKo7 o+lnko7! (4);
[0093]其中d。为衬管的外径,197mm; di为衬管的内径,193mm; δ为基管和衬管的单边间隙, ImmJ'为基管和模具之间的单边间隙,lmm;D。为基管的外径,219mm;〇sl为衬管的屈服强度, 289MPa; E'i为衬管的强化模量,1450MPa; E7。为基管的强化模量,1922MPa; K为基管的外径与 内径之比,I. I; k为衬管的外径与内径之比,1.02; 〇s。为基管的屈服强度,425MPa;
[0094] σ' i为衬管的流动应力,经计算得到(/ i为303.7MPa;(/。为基管的流动应力,经计算 得到 为442.6MPa;
[0095] 经计算得到Pi = 6 · 2MPa,P' i = 11 · 9MPa;
[0096] 步骤三、将步骤一中夹持于模具3中的基管1的两端与衬管2之间采用密封圈4密 封,然后向衬管内充水排气;
[0097]步骤四、步骤三中所述排气完成后向衬管内部打压,待压力上升至5.58MPa后保压 5min;
[0098] 步骤五、待步骤四中保压完成后继续升压至42MPa后保压200s;
[0099] 步骤六、待步骤五中保压完成后卸压排水,下料,得到双金属复合管。
[0100] 实施例4
[0101 ] 本实施例成形〇219mmX (10mm+2mm)的双金属复合管,管长11 · 16m,其中基管为Φ 21 9mm X IOmm的415L不镑钢管,基管管长11.16m,衬管为Φ 197mmX 2mm的316L不镑钢管,衬 管管长11.56m。
[0102]采用实施例1中所述方法检测衬管的屈服强度〇sl = 308MPa;衬管的强化模量E^ = 1700MPa;基管的屈服强度〇s。= 430MPa;基管的强化模量E7。= 1950MPa。
[0103 ]本实施例的具体成形方法包括以下步骤:
[0104] 步骤一、如图1所示,将装配好的基管1和衬管2夹持于模具3中,衬管2两端伸出基 管1的长度均为200mm;
[0105] 步骤二、按照以下公式计算双金属复合管水压复合成形的第一阶段理论成形压力 P1和第二阶段理论成形压力K:;
[0109] P/ = InKo7 o+lnko7! (4);
[0110]其中d。为衬管的外径,197mm; di为衬管的内径,193mm; δ为基管和衬管的单边间隙, ImmJ'为基管和模具之间的单边间隙,2mm;D。为基管的外径,219mm;〇sl为衬管的屈服强度, 308MPa; E'i为衬管的强化模量,1700MPa; E7。为基管的强化模量,1950MPa; K为基管的外径与 内径之比,I. I; k为衬管的外径与内径之比,1.02; 〇s。为基管的屈服强度,430MPa;
[0111] σ' i为衬管的流动应力,经计算得到σ' i为325.3MPa; (/。为基管的流动应力,经计算 得到 为465.6MPa;
[0112] 经计算得到Pi = 6 · 6MPa,P' i = 12MPa;
[0113] 步骤三、将步骤一中夹持于模具3中的基管1的两端与衬管2之间采用密封圈4密 封,然后向衬管内充水排气;
[0114] 步骤四、步骤三中所述排气完成后向衬管内部打压,待压力上升至13.2MPa后保压 2min;
[0115] 步骤五、待步骤四中保压完成后继续升压至112MPa后保压10s;
[0116] 步骤六、待步骤五中保压完成后卸压排水,下料,得到双金属复合管。
[0117] 实施例5
[0118] 本实施例成形Φ 168.3mmX (8mm+2mm)的双金属复合管,管长8.5m,其中基管为Φ 168 · 3mm X 8mm的L360QS碳钢管,基管管长8 · 5m,衬管为Φ 150mm X 2mm的316L不锈钢管,衬管 管长8.78m。
[0119] 采用实施例1中所述方法检测衬管的屈服强度〇sl = 315MPa;衬管的强化模量E71 = 1720MPa;基管的屈服强度〇s。= 428MPa;基管的强化模量E。= 1560MPa。
[0120] 本实施例的具体成形方法包括以下步骤:
[0121] 步骤一、如图1所示,将装配好的基管1和衬管2夹持于模具3中,衬管2两端伸出基 管1的长度均为140mm;
[0122] 步骤二、按照以下公式计算双金属复合管水压复合成形的第一阶段理论成形压力 P1和第二阶段理论成形压力K :;
[0126] P/ = InKo7 o+lnko7! (4);
[0127]其中d。为衬管的外径,150mm; di为衬管的内径,146mm; δ为基管和衬管的单边间隙, 1 · 15mm; δ'为基管和模具之间的单边间隙,1 · 5mm;D。为基管的外径,168 · 3mm; 〇si为衬管的屈 服强度,SlSMPa5E7 i为衬管的强化模量,为基管的强化模量,1560MPa;K为基管 的外径与内径之比,1.105 ;k为衬管的外径与内径之比,1.027 ;〇s。为基管的屈服强度, 428MPa;
[0128] (/ i为衬管的流动应力,经计算得到(/ i为341.4MPa;(/。为基管的流动应力,经计算 得到 为455.8MPa;
[0129] 经计算得到Pi = 9 · 09MPa,P' i = 12 · 08MPa;
[0130] 步骤三、将步骤一中夹持于模具3中的基管1的两端与衬管2之间采用密封圈4密 封,然后向衬管内充水排气;
[0131] 步骤四、步骤三中所述排气完成后向衬管内部打压,待压力上升至10.9MPa后保压 5min;
[0132] 步骤五、待步骤四中保压完成后继续升压至92. OSMPa后保压60s;
[0133] 步骤六、待步骤五中保压完成后卸压排水,下料,得到双金属复合管。
[0134] 实施例2至实施例5制造的双金属复合管的管端和管中外径相等,管端切除后未出 现衬管收缩现象,说明采用本发明的方法进行复合能够很好的控制复合后管子的尺寸,实 现双金属复合管的全管体均匀变形,并且避免了切除双金属复合管的管端后衬管收缩的问 题。
[0135] 对实施例2至实施例5制造的双金属复合管的剪切强度进行检测,结果见表3。
[0136] 表3实施例2至实施例5的双金属复合管的剪切强度
[0138] 从表3中可以看出,采用本发明的方法制造的双金属复合管的平均剪切强度较高, 且管子不同部位的剪切强度差异不大,这说明采用本发明的方法制造的双金属复合管沿轴 向结合强度分布较均匀。
[0139] 以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明 技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技 术方案的保护范围内。
【主权项】
1. 一种全管体均匀变形的双金属复合管的制造方法,其特征在于,包括以下步骤: 步骤一、将装配好的基管和衬管夹持于模具中;所述衬管的长度大于基管的长度; 步骤二、按照以下公式计算双金属复合管水压复合成形的第一阶段理论成形压力PdP 第二阶段理论成形压力p'1;Pi'=ΙηΚσ7 ο+lnko7 i (4); 其中d。为衬管的外径,单位为mnucU为衬管的内径,单位为mmd为基管和衬管的单边间 隙,单位为mm; δ '为基管和模具之间的单边间隙,单位为mm; D。为基管的外径,单位为mm; 〇si 为衬管的屈服强度,单位为MPa; E' i为衬管的强化模量,单位为MPa;E'。为基管的强化模量, 单位为MPa;K为基管的外径与内径之比,无量纲;k为衬管的外径与内径之比,无量纲;〇 s。为 基管的屈服强度,单位为MPa;(/ i为衬管的流动应力,单位为MPa;(/。为基管的流动应力,单 位为MPa; 步骤三、将步骤一中夹持于模具中的基管的两端与衬管之间采用密封圈密封,然后向 衬管内充水排气; 步骤四、步骤三中所述排气完成后向衬管内部打压,待压力上升至第一阶段压力设定 值卩:后保压2min~lOmin,所述第一阶段压力设定值Pi为第一阶段理论成形压力Pj^O.S~ 2.0 倍; 步骤五、待步骤四中保压完成后继续升压至第二阶段压力设定值P2后保压l〇s~240s, 所述第二阶段压力设定值P2 = P' i+Pm,其中ΡΛ〇~lOOMPa; 步骤六、待步骤五中保压完成后卸压排水,下料,得到双金属复合管。2. 根据权利要求1所述的一种全管体均匀变形的双金属复合管的制造方法,其特征在 于,步骤一中所述衬管两端穿出基管的长度L不小于70_。3. 根据权利要求1所述的一种全管体均匀变形的双金属复合管的制造方法,其特征在 于,步骤二中所述基管和衬管的单边间隙S不大于2_。4. 根据权利要求1所述的一种全管体均匀变形的双金属复合管的制造方法,其特征在 于,步骤二中所述基管和模具之间的单边间隙S'不大于2_。5. 根据权利要求1所述的一种全管体均匀变形的双金属复合管的制造方法,其特征在 于,步骤四中所述第一阶段压力设定值?:为第一阶段理论成形压力&的〇.9~1.2倍。6. 根据权利要求1所述的一种全管体均匀变形的双金属复合管的制造方法,其特征在 于,步骤五中所述Pm为30MPa~80MPa。
【文档编号】B21D39/04GK105921589SQ201610279829
【公开日】2016年9月7日
【申请日】2016年4月28日
【发明人】梁国栋, 魏帆, 袁江龙, 吴泽, 郭霖, 梁国萍, 王剑, 李缘, 赵欣, 王斌, 赵东, 宗友刚
【申请人】西安向阳航天材料股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1